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Abstract

Large-scale vision-language models such as
CLIP have shown impressive performance on
zero-shot image classification and image-to-
text retrieval. However, such performance
does not realize in tasks that require a finer-
grained correspondence between vision and
language, such as Visual Question Answer-
ing (VQA). As a potential cause of the diffi-
culty of applying these models to VQA and
similar tasks, we report an interesting phe-
nomenon of vision-language models, which we
call the Concept Association Bias (CAB). We
find that models with CAB tend to treat in-
put as a bag of concepts and attempt to fill in
the other missing concept crossmodally, lead-
ing to an unexpected zero-shot prediction. We
demonstrate CAB by showing that CLIP’s zero-
shot classification performance greatly suffers
when there is a strong concept association be-
tween an object (e.g. eggplant) and an at-
tribute (e.g. color purple). We also show that
the strength of CAB predicts the performance
on VQA. We observe that CAB is prevalent
in vision-language models trained with con-
trastive losses, even when autoregressive losses
are jointly employed. However, a model that
solely relies on autoregressive loss seems to
exhibit minimal or no signs of CAB.

1 Introduction

Recent large-scale vision-language models such
as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) have shown remarkable performance
on zero-shot classification and text-image retrieval
tasks. These models are trained via cross-modal
contrastive learning on web-scale image-text pairs
and obtain powerful multimodal representations.
Encouraged by these strong zero-shot capabilities,
several recent papers explored CLIP for more com-
plicated vision-language tasks. The initial attempt
made by (Shen et al., 2022) reports near chance ac-

∗Equal contribution.

CLIP: "In this picture, the color of the lemon is purple."

Figure 1: When we ask CLIP the color of the lemon
in the above image, CLIP answers “purple”. The text
prompt we use is “In this picture, the color of the lemon
is [mask]”, where CLIP picks one from [red, green,
yellow, orange, purple].

curacy for zero-shot performance of CLIP on VQA-
v2 (Goyal et al., 2017), a common visual question
answering benchmark. However, they simply use
“question: [question text] answer: [answer text]”
as text input for the text encoder of CLIP, which
makes the prediction harder than it should be. A
subsequent work (Song et al., 2022) proposes a
better prompt generation method. They convert
questions into masked prompts (e.g. “What’s in the
bowl behind the cake” becomes “The [mask] is in
the bowl behind the cake”), and filter impossible
answers using a language model, which improves
CLIP’s zero-shot performance on VQA-v2.

However, the zero-shot performance of CLIP
on VQA-v2 is still not state-of-the-art (Shen et al.,
2022). In this paper, we report a phenomenon,
which we call Concept Association Bias (CAB), as
one of the reasons why CLIP struggles with VQA.

To describe this phenomenon, we present a sim-
ple image containing a “lemon” and an “eggplant”
to CLIP, and ask what color the lemon is, as shown
in Figure 1. Surprisingly, CLIP predicts “purple”
with high confidence. When we instead ask for the
color of the eggplant, CLIP answers “yellow”. To
cross-check this phenomenon, we formulate a bi-
nary zero-shot image classification task on the same
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image where the two labels are “yellow lemon” and
“purple lemon”, and find that CLIP predicts “purple
lemon” with high confidence.

We hypothesize that this phenomenon comes
from the discrepancy between what is described
in the image and text input, where CLIP attempts
to fill in the missing concept. The association be-
tween “purple” and “eggplant” is strong, so when
asked to fill in the mask in “[mask] lemon”, predict-
ing “purple” instead of “yellow” makes more sense
for CLIP, because the text description of “purple
lemon” is aligned with the image that contains both
a lemon and an eggplant more faithfully than “yel-
low lemon”, which only describes the lemon in the
image. In fact, when we randomize the color of the
lemon and eggplant (e.g. “red” for the lemon and
“green” for the eggplant), this bias disappears, and
CLIP picks the color almost randomly between the
two. We also find that CAB exists for more general
object-attribute relationship such as the part-whole
relationship (e.g. “humans” tend to have “clothes”
on, and “trees” tend to have “leaves”.)

Does CAB exist in other vision and language
models as well? To answer this question, we also
test BLIP (Li et al., 2022), BLIP-2 (Li et al., 2023),
and OFA (Wang et al., 2022). We find that CAB
exists in both BLIP and BLIP-2, but not in OFA,
which is trained solely with autoregressive loss.

Finally, we demonstrate that enabling deeper
interaction between modalities in CLIP can miti-
gate CAB. In particular, we show that extending
CLIP with an additional Transformer layer on top
and fine-tuning it on VQA is particularly helpful.
Across such variants of CLIP, we report that the
lower the degree of CAB, the higher a model per-
forms on visual question answering. However,
we also find that this fine-tuning method may not
be a comprehensive solution for the more general
binding problem (Greff et al., 2020), such as accu-
rately connecting attribute and object representa-
tions, which leaves room for further research.

2 Related Work

Vulnerability of vision and language models
There are a number of papers that study the ro-
bustness of vision and language models. Some
prior work (Sinha et al., 2021) shows that Trans-
former trained via Masked Language Modeling
(Devlin et al., 2019) is insensitive to word orders,
suggesting that the success of BERT largely de-
pends on learning higher-order word co-occurrence

rather than learning syntactic and semantic ab-
stractions. Many benchmarks are proposed to
evaluate robustness of ImageNet models towards
various perturbations including common corrup-
tion (Hendrycks and Dietterich, 2019), image style
change (Hendrycks et al., 2021), and different view-
points (Barbu et al., 2019). Our work differs from
these studies that are purely based on language or
vision, because CAB is a cross-modal phenomenon,
which occurs when both image and language data
are used.

Compositionality in vision and language models
The issue of vision and language models strug-
gling with complex compositional questions has
been studied before, where researchers have pro-
posed enhanced training methods and modified ar-
chitectures to tackle this problem (Basu et al., 2023;
Nayak et al., 2022; Jiang et al., 2023). Bogin et al.
(2021) tests compositional generalization of vision
and language models. Thrush et al. (2022) intro-
duced a probing dataset called Winoground, which
evaluates visuo-linguistic compositionality of vi-
sion and language models. They evaluate a diverse
range of state-of-the-art vision and language mod-
els, including CLIP, but all of them perform close to
or below random chance. A subsequent work (Di-
wan et al., 2022) shows that Winoground requires
not only compositional language understanding but
also other abilities such as sophisticated common-
sense reasoning and locating small objects in low
resolution images, which most vision and language
models currently lack. The work (Lewis et al.,
2023) is the most relevant to our research, although
it primarily deals with toy datasets. Our work
also reveals brittleness of vision-language models
through the lens of CAB, which has been over-
looked in the past.

3 The Concept Association Bias

The zero-shot image classification of CLIP is re-
markable for images that contain a single concept.
However, when there are multiple concepts in the
image but the text input does not cover all of them,
the zero-shot classification of CLIP can be signifi-
cantly biased towards the missing concept(s). We
call this bias the Concept Association Bias (CAB).
We first showcase this bias using color recognition
tasks.1 For this analysis, we use the Natural-Color

1For all experiments in the main text, we use the ResNet50-
x4 backbone for CLIP. The results are consistent with the ViT
backbone, which are included in the appendix.

14334



Figure 2: Example images from Natural-Color Dataset
(NCD) (Anwar et al., 2022), modified for our color
recognition tasks so that each image contains two differ-
ent objects.

Dataset (NCD) (Anwar et al., 2022), which is a
dataset of vegetables and fruits with a white back-
ground. We take the following objects: banana,
brinjal, broccoli, carrot, cherry, corn, cucumber,
lemon, orange, plum, pomegranate, strawberry,
tomato. We then randomly sample two images
with different vegetable types and place the two ob-
jects side-by-side, resulting in 494 images in total.
Examples are shown in Figure 2.

For zero-shot transfer from CLIP to our color
recognition task, we ask for the color of one of the
objects in the image. The labels we use are “red”,
“yellow”, “purple”, “green”, and “orange”, so it is
a 5-way color recognition task. When there is a
single object in the image, we use the following text
prompt: “In this picture, the color of the object is
[mask].” When there are two objects in the image,
we specify one of these objects in the prompt. For
example, if there is a lemon and another object in
the image, the prompt takes the following format:
“In this picture, the color of the lemon is [mask].”

The results are shown in Figure 3. We first
note that the zero-shot performance of CLIP on
our color recognition task is almost perfect when
there is a single object per image (“Single object”
in Figure 3). However, the classification perfor-
mance degrades to below chance when there are
two objects per image (“Two objects” in Figure 3).

How does this happen? We suggest that CLIP
does not have a mechanism that stores object-
centric representation that correctly binds the ob-
ject’s name and its attribute. In another words,
CLIP processes its input as a “bag of concepts”.

To inspect this possibility, we look at what kind
of mistakes CLIP makes when there are two objects
A and B. We find that many mistakes are derived
from a common source. That is, when asked for
the color of object A, CLIP often predicts the color
of object B in the image. In fact, when we measure
the accuracy of predicting the color of the object B

CAB gap

Figure 3: Zero-shot performance of CLIP on color
recognition tasks using NCD (Anwar et al., 2022). CLIP
achieves almost perfect accuracy when there is a single
object in the image, but the accuracy significantly drops
with two objects. “Two object*” refer to the case in
which we instead measure the accuracy of predicting
the color of the object B when it is asked for the color of
the object A, where we see 80% zero-shot accuracy. We
claim this gap between Two objects and Two objects*
is a result of the Concept Association Bias (CAB).

when in reality it is asked to predict the color of the
object A, we see that the zero-shot transfer perfor-
mance of CLIP is much higher (“Two objects*” in
Figure 3), approaching the single object accuracy.

To understand this phenomenon, we find it help-
ful to consider two variables per object, where each
variable represents the object’s name in the image
and the color attribute of the object, as shown in
Figure 4. When the colors are natural (Figure 4
(a)), both the object “lemon” and its attribute “yel-
low” in the image are fully explained by the word
“lemon” in the text prompt, resulting in the concept
of the eggplant remaining. When CLIP performs
zero-shot color recognition, we see that placing the
color “purple” in the prompt can most faithfully
explain the remaining concept of the eggplant in
the image (Figure 4 (b)).

The above explanation suggests that there is a
strong association between the color “purple” and
the object “eggplant” in CLIP to the point where
“purple” can partially explain the concept of the
eggplant. What if we break this strong associa-
tion? Does the gap between Two objects and Two
objects* disappear?

To test this, we generate images of fruit and veg-
etable in unnatural color using Stable Diffusion
2.0 (Rombach et al., 2022) with a prompt format
‘[color name] [fruit/vegetable name]’, and filter
bad images by ourselves. Examples are shown
in Figure 5. We call this dataset UNnatural-Color
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Figure 4: The concept binding diagram. Two variables
per object represent the object name and its attribute (e.g.
color), respectively. We suggest that the text prompt and
the image are represented as two separate “bags of con-
cepts” in CLIP. When a pair of object-attribute concepts
are naturally associated with each other, both concepts
can be accounted for by including in the prompt either
of the object or the attribute. When only some of the
concepts in the image are included in the text, this leaves
other concepts in the image unaccounted for.

Figure 5: Examples from UNCD. Single object (Top)
and Two objects per image (Bottom).

Dataset (UNCD). We repeat the same experiment
on UNCD. The results are shown in Figure 6. We
see that the zero-shot performance for a single ob-
ject is still high, suggesting that CLIP can pick up
the color attribute even if the color is not strongly
associated with the object itself. However, for the
two object cases, we see that there is almost no
difference between Two objects and Two objects*
tasks. In other words, CLIP predicts the two non-
associated colors in the image with almost equal
chance. We also create a version of NCD, which
we call UNCD-v2, where we artificially change
the color of each fruit and vegetable of NCD to
non-associated color. As shown in Appendix, we
see a similar pattern of CAB as UNCD.

Why does the CAB gap disappear when objects

A
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0.00

0.25

0.50

0.75

1.00

Single object Two objects Two objects*

Zero-shot transfer from CLIP to unnatural color recognition

Figure 6: Zero-transfer performance of CLIP to color
recognition on UNCD, where we assign non-associated
color to each vegetable. CLIP achieves 80% accuracy
when there is a single object in the image. While the
accuracy drops for Two objects, the drop is not as sig-
nificant as the NCD case. Furthermore, the gap between
Two objects and Two objects* vanishes, compared to
the NCD case.

are paired with random attributes in images? This
result arises from a common mechanism that im-
pacts both the Two objects and Two objects* tasks.
To see this, we go back to our diagram in Figure 4
(c). When the colors are unnatural (e.g., a lemon
in red color and an eggplant in green color), then
the remaining bag of concepts that are yet to be
explained by the text include “red”, “green”, and
“eggplant”. This is because the color “red” is not as-
sociated with the concept of “lemon”, and therefore
the word “lemon” in the text prompt cannot explain
the color “red”, unlike the case that uses natural
color. As a result, CLIP can choose either “red”
or “green” for color recognition. And indeed, sur-
prisingly, CLIP randomly chooses between the two
– it does not associate the concept of “red“ with
the lemon, even though in the image the lemon
unambiguously appears in red. Likewise, for the
Two objects* task (in which the correct prediction
is defined as the color of object B when asked for
object A), CLIP essentially randomly picks one of
the two colors present in the image, despite the fact
that each object has their own very distinct color.

3.1 CAB exists on real-world dataset

So far, we use NCD to verify the existence of CAB.
Here, we test CAB on a common visual question an-
swering benchmark: VQA-v2 (Goyal et al., 2017).
We perform the zero-shot transfer of CLIP to the
color-related questions in VQA-v2, where our la-
bels are beige, black, blue, brown, green, gray, pur-
ple, red, orange, pink, white, yellow, and silver.
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Tree: beige > gray > green Banana: black > yellow > gray Tree: blue > green > silver

Broccoli: brown > yellow > green Knife: orange > yellow > beige Broccoli: silver > red > gray

Figure 7: The Concept Association Bias (CAB) in VQA-
v2. The text prompt is in the following format: “The
color of the [object] is [color].” The first word on top of
each image indicates the word used in place of [object]
and the remaining color names are listed in the order
CLIP chooses them for [color].

We use the prompt format “The color of the [ob-
ject] is [color].” We show example images and
the CLIP’s zero-shot color predictions (top three,
in decreasing order) in Figure 7. We can see that
these mistakes are a result of CAB. For example,
when we use the prompt format “The color of the
banana is [color]” and the image that contains both
banana and black-and-white portraits of people,
CLIP answers “black” instead of “yellow”. We
randomly sample 100 mistakes CLIP makes out of
all color-related questions, and manually inspect
these images to identify if the mistakes are based
on CAB. We find that roughly 50 mistakes are due
to CAB. In Section 6, we illustrate how the degree
of the CAB affects the performance on VQA-v2 in
more detail.

3.2 CAB exists for attributes other than color

In this section, we test whether or not CAB exists
for attributes beyond color. While there are various
attributes we can evaluate, here we focus on part-
whole attributes. Part-whole attributes are suitable
for our CAB experiment because just like color, we
can construct a syntactically reasonable prompt by
finding two objects with a part-whole relationship.
For example, “A tree has leaves” would be a good
example prompt for our test, where the verb “has”
indicates the part-whole relationship between the
two objects in the sentence. To evaluate the perfor-
mance of zero-shot transfer of CLIP on part-whole
recognition, we use the Rel3D dataset (Goyal et al.,
2020), which was originally proposed to test spa-
tial relationship understanding of vision models.
Rel3D consists of images of 3D scenes, where two
objects with a particular spatial relationship are sit-
uated in each scene. Example images from Rel3D

Figure 8: Example images from Rel3D (Goyal et al.,
2020).

Two objects
Two objects*

0.0 0.2 0.4

Prediction accuracy on Rel3D

Figure 9: Zero-shot transfer performance of CLIP to
part-whole recognition on Rel3D (Goyal et al., 2020).
Similar to the color recognition task, CAB exists for
part-whole recognition.

are shown in Figure 8.
We select 8 objects and their corresponding part

attributes as follows: (person, clothes), (camera,
lens), (plant, leaves), (car, wheel), (cat, tail), (com-
puter, screen), (bed, sheet), (gun, trigger). In total,
we collect 356 images from Rel3D that contain one
of these pairs. Prompt examples include “In this
picture, the human has [mask]”, “In this picture,
the plant has [mask]” etc., and we let CLIP pick
one from the 8 part attributes as above (e.g., clothes,
lens, leaves, etc.).

The results are shown in Figure 9. We find that
indeed, similar to the zero-shot color recognition
task, the part-whole recognition task also shows
CAB. This result suggests that CAB more generally
applies to CLIP across types of object-attribute
relations.

4 How does the strength of concept
binding affect CAB?

In Section 3, we verify CAB for color recognition
and part-whole recognition tasks. In this section,
we investigate if varying the strength of the binding
between two words affects the degree of CAB. We
use ConceptNet (Speer et al., 2017) to measure the
association strength between two words. Concept-
Net is a knowledge graph that connects words with
labelled, weighted edges. When selecting words,
we focus on the edges that are labelled as “Relat-
edTo”. For each Rel3D object name we used in
Section 3.2, we pick 5 related words in the decreas-
ing order of association strength, as shown in Table
1. For this concept recognition task, we use the
following prompt format: “[object] [word]” and
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object 1 2 3 4 5

person human doll character statue servant
camera picture flash subject photographer tripod
plant seed tree flower green cotton
car drive vehicle motor automobile wheels
cat feline animal pet kitten dog

computer apple desk print dell data
bed sleeping furniture mattress place pillows
gun bullet weapon rifle shooting pistol

Table 1: Object names from Rel3D (the first column)
and the top five related words from ConceptNet (Speer
et al., 2017). The smaller the column number is, the
stronger the association to the corresponding object
name is.

Binding strength
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0.4

0.6

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Two objects Two objects*

Prediction accuracy for different binding strengths

Figure 10: We vary the strength of concept binding, and
compute the accuracy for Two objects and Two objects*.
We see that as the association strength gets weaker, CAB
becomes smaller, although it is somewhat noisy.

the label sets are restricted to the words in the same
column. The results are shown in Figure 10. While
it is noisy, we see that as the concept association
becomes weaker, CAB becomes smaller.

5 CAB widely exists in vision-language
models

In Section 3, we demonstrate CAB using CLIP. In
this section, we extend our experiments to other
vision-language models, including BLIP (Li et al.,
2022), BLIP-2 (Li et al., 2023), and OFA (Wang
et al., 2022).

BLIP and BLIP-2 are both multi-modal, multi-
task model that has three heads and pre-training
objectives: the CLIP-like image-text contrastive
loss, the binary image-text matching loss that clas-
sifies whether the text corresponds to the image,
and the language modeling loss, which autoregres-
sively generates the caption for an image. For
BLIP-2, there is the second stage of pre-training
for visual conditioned language generation, boot-
strapped from pre-trained LLM. In our experiment,

we treat these models with different heads sepa-
rately and abbreviate them as “contrast”, “match”,
and “caption”. OFA unifies various vision and
language tasks via a simple sequence-to-sequence
framework and employs autoregressive loss for its
objective.

For comparison across models, we define the
CAB score as:

Acctwo object∗ −Acctwo object + 1

2

where Acc stands for accuracy. The CAB score
ranges from 0 to 1, and a higher score indicates a
more severe CAB.

In Table 2, we report results on NCD for the
aforementioned models and order them according
to the CAB scores. While these networks all have
high single-object recognition performance, they
demonstrate a spectrum of levels of CAB.

The networks trained with contrastive or match-
ing losses (i.e. CLIP, BLIP-contrast/match, BLIP-
2-contrast/match) have stronger CAB than those
trained with autoregressive loss (i.e. BLIP-caption,
BLIP-2-caption, and OFA). Moreover, in compari-
son with BLIP, BLIP-2 uses a large language model
as the final decoder on top of its sub-networks, mak-
ing them more associated with the autoregressive
loss and having less CAB scores than their counter-
parts in BLIP.

Furthermore, we observe that matching losses
have lower CAB than contrastive losses for both
BLIP and BLIP-2. Although the two losses are
similar, the matching task uses cross-attention that
jointly processes texts and images, whereas the
contrastive task only uses unimodal self-attention.
Based on this observation, we hypothesize that the
deeper cross-modal interaction helps mitigate the
CAB. We further investigate this in Section 6.

It is worth noting that the amount of CAB in
autoregressive models is substantial. For example,
Two objects*’s accuracy for BLIP-caption, BLIP-2-
caption, and BLIP-2-FlanT5 are 0.471, 0.483, and
0.377 respectively. This means that when joitnly
trained with contrastive losses, even autoregressive
models are biased by concept association, resulting
in Two objects*’s accuracy being much higher than
random chance. The only model with minimal or
almost no CAB is OFA, which sorely relies on
autoregressive loss.

In Table 3, we compare CAB scores for CLIP
with vision encoders in different sizes. Although

14338



Models Two objects Two objects* Single CAB

CLIP 0.011 0.932 0.929 0.961
BLIP-contrast 0.086 0.879 0.846 0.896
BLIP-match 0.123 0.841 0.925 0.859

BLIP-2-contrast 0.138 0.840 0.844 0.851
BLIP-2-match 0.330 0.627 0.925 0.648

BLIP-2-caption 0.359 0.558 0.775 0.599
BLIP-caption 0.438 0.471 0.862 0.516

BLIP-2-FlanT5 0.604 0.377 0.984 0.386
OFA 0.855 0.078 0.879 0.111

Table 2: CAB experiments using Natural Color-
ful Dataset (NCD) on multiple architectural variants.
FlanT5 refers to BLIP-2-ViTg-FlanT5XL .

CLIP Two objects Two objects* CAB

ViT-B/32 0.023 0.944 0.961
ViT-B/16 0.059 0.886 0.913
ViT-L/14 0.057 0.918 0.931

ViT-L/14@336 0.058 0.926 0.934
RN50 0.011 0.932 0.961

RN50x4 0.045 0.916 0.936
RN50x16 0.121 0.842 0.860
RN50x64 0.074 0.872 0.899

RN101 0.034 0.944 0.955

Table 3: CAB experiments for CLIP with vision en-
coders in different sizes.

the size varies greatly, the CAB score stays around
the same level for these different CLIP models.

In Table 4 and Table 5, we compare CAB with
Winoground (Thrush et al., 2022), whose task is to
correctly match two images with two captions, but
the key aspect is that both captions consist of the
exact same words, albeit arranged differently. We
compare CLIP, BLIP-contrast/match, and BLIP-
2-contrast/match because they are more suitable
for the Winoground matching task. We roughly
see that as CAB decreases, Winoground perfor-
mance goes up, which is aligned with what CAB
attempts to measure. However, we also observe
that using matching loss benefits more for both
CAB and Winoground, presumably because the
matching loss uses cross-attention between text
and image encoders.

6 How can we mitigate CAB?

Fine-tuning helps reduce CAB In the last sec-
tion, we show that CAB can be seen in vision-
language models, and it is especially prominent for
purely contrastively trained models. In this sec-
tion, we test our hypothesis from Section 5 that a
deeper modality interaction helps mitigate CAB in

Contrastive-loss network CAB Winoground-group

CLIP 0.961 0.0724
BLIP-contrast 0.896 0.0800

BLIP-2-contrast 0.851 0.0850

Table 4: CAB vs. Winoground with contrastive models.

Matching-loss network CAB Winoground-group

BLIP-match 0.859 0.206
BLIP-2-match 0.648 0.235

Table 5: CAB vs. Winoground with matching models.

a controlled experiment using CLIP.
The idea of using deep modality interaction on

top of image and text embeddings has been ex-
plored before in (Kim et al., 2021). However, in
(Kim et al., 2021), the image and text encoders
are shallow unlike CLIP. In (Shen et al., 2022),
instead of using CLIP as is, they employ the archi-
tecture that uses the image encoder of CLIP, the
BERT text embeddings, and a Transformer as an
additional modality interaction module. They ap-
ply this model for vision and language tasks such
as Visual Question Answering, Visual Entailment,
and V&L Navigation tasks. The goal of (Shen
et al., 2022) was to demonstrate that the image
encoder of CLIP is more helpful than ImageNet-
pretrained image encoders. For our architecture,
we use both image and text encoders from CLIP,
and also a Transformer for modality interaction on
top of CLIP, as shown in Figure 11.

We conducted experiments in two settings: 1.
Freezing CLIP and only fine-tuning the Trans-
former head, and 2. Fine-tuning both CLIP and the
Transformer head. Following (Shen et al., 2022),
we use VQA-v2 to fine-tune these model variants.
We follow the standard pre-processing of VQA-v2,
where we filter less common answers and select

Vision 
Encoder

Text 
Encoder

Modality Interaction

Image Text Image Text

Transformer

Text 
Encoder

Vision 
Encoder

CLIP CLIP+Transformer head

Figure 11: Original architecture of CLIP (Left) and the
architecture we use for fine-tuning on VQA-v2 (Right).
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NCD Two objects Two objects* CAB Score VQA-v2

CLIP(Frozen) 0.352 0.094 0.371 0.542
CLIP(Finetuned) 0.328 0.168 0.420 0.390

Table 6: Given two objects A and B per image, when
we ask the color of object A, “Two objects” refer to the
case where we use the color of object A as true labels,
and “Two objects*” refer to the case where we use the
color of object B as true labels. For both cases, the
Transformer head on top of CLIP are fine-tuned. See
text for details of the two models.

3,129 answer vocabularies. We then formulate the
VQA task as a classification problem over 3,129
answer vocabularies given images and questions as
input. After fine-tuning on VQA-v2, we perform
zero-shot color recognition using NCD to evaluate
CAB in a similar manner to Section 3. That is,
given two fruits in an image, we ask the color of
one of the fruits. The results are shown in Table
6. We can see that adding deeper modality inter-
action reduces CAB (See Fig. 3 for comparison).
Moreover, we also see that between these model
variants, the lower the CAB score is, the higher
the accuracy on VQA-v2 is. Does this relationship
hold more generally? To see this, we prepare three
other baselines: A. CLIP image encoder + BERT
text embeddings + Transformer head, fine-tuned
altogether; B. The same as A. but with the CLIP
image encoder frozen; C. The same as A. but uses
V&L pre-trained weights before fine-tuning. These
architectures are based on (Shen et al., 2022).

V&L pre-training used the aggregated data from
MS COCO Captions (Chen et al., 2015), Visual
Genome Captions (Krishna et al., 2017), VQA
(Antol et al., 2015), GQA (Hudson and Manning,
2019), and Visual7W (Zhu et al., 2016), which re-
sults in 9.18M image-text pairs. For C. we used
the publicly available pre-trained model released
by (Shen et al., 2022). For A. and B., we train the
models on our own. We detail the hyperparameters
in the appendix. The results are shown in Figure
12. We see that as the CAB Score becomes lower
(i.e., as models become less susceptible to the con-
cept association bias), the accuracy on VQA-v2
increases. This encourages us to reduce the bias de-
rived from Concept Association to further improve
vision and language models in general.

Fine-tuning alone may not necessarily solve the
binding problem The last section demonstrates
that by introducing deeper modality interaction and
fine-tuning, we can mitigate CAB on NCD. Can
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Figure 12: The lower the CAB Score (less susceptible
to the Concept Association Bias), the higher the models
perform on VQA-v2. A-E refers to different model
configurations. A-C are detailed in the main text. D and
E are the same as CLIP(Frozen) and CLIP(Finetuned)
in Table 6, respectively.

such a procedure solve the binding problem (Greff
et al., 2020) more generally? The binding prob-
lem for neural networks refers to the inability of
models to dynamically bind information that is dis-
tributed across the network (Greff et al., 2020). In
fact, we can view CAB as an instance of the bind-
ing problem because one of the causes of CAB is
the model’s inability to correctly bind object and
attribute representations across modalities. If allow-
ing for deeper modality interaction and fine-tuning
helps to more faithfully bind attributes and objects
across vision and language inputs, then we should
expect to see accuracy improvement for the Two
objects setting, even on UNCD. This is because a
model that can successfully localize an object and
its attributes, and separate the representation of dif-
ferent objects, should be able to identify the color
of the queried object even if the object is randomly
colored. Contrary to this prediction, we find that
the accuracy on Two objects for these fine-tuned
models is lower than the original CLIP, except for
the model C, which uses large pre-training datasets.
In fact, we find that these fine-tuned models also
have lower accuracy for Two objects* (Table 7),
indicating that the fine-tuned models most often
choose a color that is not present in the image. This
suggests that fine-tuning on VQA-v2 simply allows
the model to pick up real-world co-occurrence of
colors and objects more easily and consistently.
Therefore, fine-tuning the Transformer head may
not fundamentally solve the problem of correctly
binding objects and their attributes.
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UNCD CLIP(Original) CLIP(Frozen) CLIP(Finetuned) A B C

Two objects 0.436 0.216 0.216 0.308 0.313 0.574
Two objects* 0.517 0.077 0.132 0.165 0.153 0.105

Table 7: The performance of CLIP with fine-tuned
deeper interaction module. We see that fine-tuning
rather mostly harms the accuracy for Two objects, in-
stead of improving it, which suggests that fine-tuning
may not solve the more general binding problem (Greff
et al., 2020). The values for CLIP(Original) are the
same as Figure 6. A-C refer to specific fine-tuned model
configurations, detailed in the main text.

7 Conclusion

Every object has a set of concepts that are roughly
associated with it. For instance, the object “lemon”
can be associated with “yellow”, “fruit”, and so on.
Such concept association is automatically learned
in vision-language models, to the point where the
word “yellow” can partially explain the object
“lemon” in certain cases. We establish that the
Concept Association Bias (CAB) exists for vision-
language models through a series of experiments,
and find that the models trained with contrastive
loss are especially affected. Furthermore, we verify
that the lower the degree of CAB is, the higher the
performance of VQA-v2 is. Contrastive models
like CLIP is increasingly popular in both computer
vision and natural language processing. We hope
our work raises awareness of the brittleness of con-
trastive objectives as we develop new vision and
language models.

Limitations

While we verify CAB in zero-shot transfer of con-
trastive based vision and language models for color
recognition and part-whole recognition, there are
other object-attribute relationships that are not ex-
plored in this paper such as object material, shape,
and texture. Additionally, we focus our study on
VQA, as the task format of VQA is directly ap-
plicable to our CAB experiments. An interesting
future study to complement our work is to explore
the effect of CAB on other vision-language tasks
(e.g., visual entailment (Song et al., 2022)), and
explore other methods to mitigate CAB. Finally,
we focus on CLIP, BLIP, BLIP-2, and OFA in this
study. Future work should also investigate other
vision-language models that incorporate more ex-
tensive modality interactions (e.g., FLAVA (Singh
et al., 2022) and ALBEF (Li et al., 2021). However,
given that these models are widely adopted in both
computer vision and natural language processing

for a wide variety of downstream tasks, we believe
our results are important to the community.

Ethics statement

Although our findings may not have immediate im-
plications for the misuse of AI systems, it is essen-
tial to acknowledge that biases and unintended be-
haviors exhibited by models like CAB can pose po-
tential risks, including social bias and other forms
of harm. Addressing these biases and limitations
becomes imperative to ensure the ethical and fair
utilization of vision-language models in real-world
scenarios. We strongly advocate for continued
research and development that emphasizes trans-
parency, fairness, and accountability in the design
and implementation of vision-language models.
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Figure 13: The Concept Association Bias (CAB) remains regardless of the spatial configurations such as “left &
right”, “up & down”, “upper-left & down-right”, and “large & small”. We use the same subset of NCD as in Figure
3.

A Details of UNCD

We used ‘512-base-ema.ckpt’ from Stable Diffusion’s official github repository2. We used the deafult
hyperparameters for sampling, except we set the size of images to be 512 by 512, and we sample 4 images
for each prompt. We used the following negative prompt: ‘low-res, oversaturated, ugly, cartoon, grain, out
of focus, ambiguous, blurred, split frame, out of frame, cropped, multiple frame, split panel, multi panel,
people, human, logo’

B CAB is robust across different conditions

B.1 The spatial arrangement has almost no effect on CAB

In our earlier experiments on NCD and UNCD, two objects are positioned side-by-side. To see if CAB
is robust to the positioning of objects, we vary the spatial arrangement of the two objects in the image.
Concretely, we test the following spatial configurations: left & right, up & down, and upper-left &
down-right. We also vary the size of the two objects for left & right, which is denoted as “large & small”.
As Figure 13 shows, CAB is not affected by either spatial arrangements or the object size.

B.2 CAB persists for prompt variations

The original CLIP paper (Radford et al., 2021) reports that varying text prompts changes zero-shot transfer
performance of CLIP. Here, we test if CAB remains effective when we vary the prompt. As Figure 14
shows, CAB is relatively stable across prompt variations. It is interesting that as long as the names of
the object and color (denoted as [object] and [color]) are included in the prompt, CAB exists even if text
prompts are semantically meaningless such as: “[object] [color]”, “The color of [color] is [object]” and
“This prompt is random [object] [color]”. Moreover, even if we negate the sentence (e.g. “The color of
[object] is not [color]”) CAB still exists, which suggests that the text encoder of CLIP seems to ignore the
negation.

2https://github.com/CompVis/stable-diffusion
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This prompt is random [object] [color].
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Figure 14: The Concept Association Bias (CAB) is relatively stable across prompt variations, including semantically
meaningless prompts. We use the same subset of NCD as in Figure 3

Figure 15: Examples from UNCD-v2. Single object (Top) and Two objects per image (Bottom).

C CAB experiments using UNCD-v2

We utilize the same instances of NCD, but we assign non-associated colors to each vegetable. Figure
15 displays some example images. In Figure 16, we observe that Two objects and Two objects* exhibit
similar performance, mirroring the pattern observed with UNCD discussed in the main text.

D Inspecting object representations of CLIP

The section 6 demonstrates that by introducing more modality interaction, we can mitigate CAB. However,
this requires an additional procedure to fine-tune the newly introduced module. Can we alleviate CAB by
spatially pooling features of the original CLIP? Such an approach would work if CLIP develops localized
object-centric representations. To investigate this possibility, we use NCD and take the image tokens that
correspond to the left half of images (“Left Pool”), and conduct zero-shot classification to predict the
color of the left object of an image. We compare the performance of this procedure with the case where
we use the average of all tokens in the image (“Global Pool”). If CLIP develops localized object-level
representations, we should see an increase in accuracy compared to Global Pool. However, as shown
in Table 8, we see that the accuracy of the left pooling is lower than global pooling. (We also show the
accuracy values based on the original CLIP CLS embeddings.) This suggests that the features of an
object that is positioned in the left half of the input image are propagated to the right half as well, so
taking the features strictly from the left side reduces the information that is necessary to accurately predict
the color. Therefore, when there are multiple objects, we can see that CLIP struggles with the binding
between object representations and attribute representations. Future work should explore incorporating
object-centric learning into CLIP to guide and structure the binding between objects and their attributes.
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Figure 16: Zero-transfer performance of CLIP to color recognition on UNCD-v2, where we assign non-associated
color to each vegetable. CLIP achieves 80% accuracy when there is a single object in the image. While the accuracy
drops for Two objects, the drop is not as significant as the NCD case. Furthermore, the gap between Two objects
and Two objects* vanishes, compared to the NCD case.

CLS Global Pool Left Pool

NCD 0.617 0.417 0.209
UNCD 0.474 0.429 0.134

Table 8: 5-way color classification accuracy using spatial pooling. The prompt format we use is “The color is
[mask].” The original CLIP uses the CLS embedding to compute the similarity between image and text embedding.
Global Pool takes the average of image tokens as their image embedding. Left Pool take the average of the tokens
corresponding to the left side of the image. The reason why CLS for NCD is higher than 0.5 is that sometimes the
color of two vegetables in the image are the same. In that case, the zero-shot classifier’s prediction is almost always
correct, which biases the overall accuracy towards 1.0.
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Figure 17: Ratio of caption score before and after text manipulation. We can see that CLIPScore operates as a bag
of concepts, which is not affected by either noun swapping or word shuffling, compared to other caption metrics.

E Hyperparameter details for fine-tuning

In our experiment of fine-tuning the modality interaction architecture (Section 6), we used the exact same
hyperparameters as those in (Shen et al., 2022). The specific repository we used is https://github.com/
clip-vil/CLIP-ViL/tree/master/CLIP-ViL-Pretrain. They originally used a BERT text encoder
and CLIP image encoder. When replacing the BERT text encoder with CLIP text encoder (i.e., the cases
D and E in Figure 12), we add a linear layer on top of the CLIP text encoder to map the embedding
dimension to be the same as the Transformer head. For all fine-tuning experiments, we trained for 5
epochs, which is the default number of epochs in (Shen et al., 2022).

F CLIPScore experiment: CAB suggests precaution in downstream applications of CLIP

As we see in Section 3, CLIP tends to treat input as a bag of concepts, which can have undesired
consequences when we use CLIP for downstream tasks. Here, we examine a recent application of CLIP,
and find that it suffers from this phenomenon. CLIPScore (Hessel et al., 2021) was recently proposed
as a way to assess the quality of image captioning models. In contrast to reference-based scores, which
compare the similarity between generated captions and reference captions, CLIPScore simply compares
the similarity between the embedding from input images and the embedding from corresponding captions
generated by an image captioning model. The original paper reports high similarity of CLIPScore to
human judgement, which is one of the favorable attributes of CLIPScore compared to existing reference-
based captioning scores. Here, we show that CLIPScore can be insensitive to swapping and shuffling of
words in a sentence, although humans can easily tell such differences.

We first use NLTK (Bird et al., 2009) to find part-of-speech tagging, and randomly shuffle the nouns
within each sentence (“noun swapping”). We also prepare a baseline where we shuffle all words in each
sentence (“word shuffling”). We then evaluate the ground truth captions of the validation set of VQA-v2
(Goyal et al., 2017) using CLIPScore, and compare how our shuffling procedures affect CLIPScore. In
Figure 17, we see that there is almost no effect of our text permutations on CLIPScore and its reference
augmented version RefCLIPScore, while other reference-based score methods are affected. For example,
given a sentence that reads “A man is walking into the room”, CLIPScore returns almost the same score
for “A room is walking into the man.” This further illustrates that CLIP treats the input sentence as a bag
of concepts, and calls for caution when we use CLIPScore to evaluate image captioning models.
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Figure 18: When both color and object names are available for ground truth labels, CLIP tends to pick object names
over colors, suggesting that they are not completely interchangeable.

G Are the object name and attribute interchangeable?

We see evidence that the word “purple” serves as a replacement for the word “eggplant” in our CAB
experiments so far, which leads to a caption such as “purple lemon” to represent an image of a lemon and
an eggplant. However, it would be especially surprising if the color attribute is completely interchange-
able with the object name. To test this, we expand the labels we use for evaluating zero-shot transfer
performance of CLIP. Previously, for color recognition task, we use the colors as our labels. We now
include the object names as our labels in addition to the color labels. In particular, we expand the label
set from yellow, red, ... , purple to yellow, red, ... , purple, banana, tomato, ... , eggplant. Therefore, if
the object names and color attributes are not completely interchangeable and the object names are more
suitable to explain the image than attributes, then we should see a decrease in accuracy when we use the
colors as our ground truth (GT) label. The results are shown in Figure 18. We see that the accuracy for
“Color as GT” is much lower than “Object as GT”, which suggests that CLIP only uses colors when object
names are not available.

H Additional related work

Peculiarities of CLIP In the image generation community, it has been reported that state-of-the-art
models such as DALL·E 2 (Ramesh et al., 2022) struggle with compositionality (Rassin et al., 2022).
One of the potential causes of such failure has been attributed to the use of CLIP-based image encoder
(Ramesh et al., 2022). In fact, image generation models that do not use CLIP such as Imagen and Parti
are known to be better at generating images that require compositional reasoning (Saharia et al., 2022;
Yu et al., 2022). However, few works go into depth to analyze the behavior of CLIP in zero-shot image
classification and visual question answering. Our analysis based on CAB offers a new perspective on the
weakness of CLIP-based models for compositional reasoning.
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