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Abstract

We introduce CLUSTERLLM, a novel text clus-
tering framework that leverages feedback from
an instruction-tuned large language model,
such as ChatGPT. Compared with traditional
unsupervised methods that builds upon “small”
embedders, CLUSTERLLM exhibits two in-
triguing advantages: (1) it enjoys the emergent
capability of LLM even if its embeddings are
inaccessible; and (2) it understands the user’s
preference on clustering through textual in-
struction and/or a few annotated data. First,
we prompt ChatGPT for insights on clustering
perspective by constructing hard triplet ques-
tions <does A better correspond to B than C>,
where A, B and C are similar data points that
belong to different clusters according to small
embedder. We empirically show that this strat-
egy is both effective for fine-tuning small em-
bedder and cost-efficient to query ChatGPT.
Second, we prompt ChatGPT for helps on
clustering granularity by carefully designed
pairwise questions <do A and B belong to
the same category>, and tune the granular-
ity from cluster hierarchies that is the most
consistent with the ChatGPT answers. Ex-
tensive experiments on 14 datasets show that
CLUSTERLLM consistently improves cluster-
ing quality, at an average cost of ∼$0.61 per
dataset. The code will be available at https:
//github.com/zhang-yu-wei/ClusterLLM.

1 Introduction

Text clustering, as a fundamental task in natural lan-
guage processing (NLP), has a wide spectrum of
applications, such as identifying public perception
from social media (Park et al., 2022), analysing
cause of accidents (Xu et al., 2022), and detecting
emerging research topics (Martínez et al., 2022). A
common practice for text clustering is to apply clus-
tering algorithms (MacQueen, 1967; Zhang et al.,

∗ Corresponding author.
1The cost is calculated with gpt-3.5-turbo.
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Figure 1: LLMs like ChatGPT are not applicable for text
clustering directly because of the inaccessible embed-
dings. CLUSTERLLM resolves the dilemma by leverag-
ing LLM as a guide on text clustering.

2021a) on top of pre-trained embedders (Muen-
nighoff et al., 2022; Wang et al., 2022; Su et al.,
2022) which could achieve higher performance
with better pre-training quality. State-of-the-art
large language models (LLMs) such as recent GPT
series (Brown et al., 2020; Ouyang et al., 2022;
OpenAI, 2023) have demonstrated extraordinary
language capabilities for various NLP applications
however, these GPT models can only be utilized
through the APIs without accessible embedding
vectors for clustering. Hence, LLMs cannot be
directly applied on text clustering tasks.

In this paper, we provide insights on the ques-
tion: Can we leverage API-based LLMs to guide
text clustering efficiently? We attack this challeng-
ing question by drawing inspiration from an obser-
vation that humans represent an instance through
comparing with others (Nosofsky, 2011). For in-
stance, people often classify a new piece of mu-
sic into a specific genre by relating to familiar
ones. In fact, pairwise relationships have been uti-
lized in spectral clustering (Donath and Hoffman,
1972; Cheeger, 1970) before. Nonetheless, naively
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Figure 2: An overview of CLUSTERLLM. It utilizes LLM to guide an embedder for text clustering with a low cost.

traversing all the pairs within dataset is obviously
intractable and too expensive for querying LLMs.

We propose CLUSTERLLM, a framework that
utilizes LLM to guide a small embedder for finding
text clusters with a low cost, as shown in Figure 1.
It comprises two stages that are specially designed
for two aspects of clustering: (1) perspective, i.e.,
the grouping criterion such as topic, intent and emo-
tion and (2) granularity, i.e. the scope of clusters.

In Stage 1, we prompt LLMs with a triplet
task that predicts which one of the two candidate
choices is closer to anchor instance to understand
the user-preferred perspectives. We choose this
triplet task because (a) it is irrelevant with cluster
granularity and (b) the produced triplets can fine-
tune small embedder towards the right perspective.
In order to improve sample efficiency, we further
propose entropy-based triplet sampling to find the
most informative triplets. Specifically, we first cal-
culate entropy for each instance based on cluster
assignment probabilities, and then identify those
with highest entropy. Two candidate choices are
then sampled from its nearest clusters to guarantee
they are close enough to the anchor.

In Stage 2, we first obtain the cluster hierarchy
that starts from instance-level clusters and itera-
tively merge two closest clusters until the entire
dataset. And then we prompt LLMs to determine
cluster granularity with a few annotated data pairs
as demonstrations. We construct the data pairs
to prompt by sampling from two clusters that are
merged at each step of hierarchical clustering, so
that they cover a wide range of granularities. And
the final decision is made by measuring consistency
between each level of clustering and predictions.

We extensively evaluate CLUSTERLLM on 14
datasets that include diverse tasks such as intent dis-
covery, topic mining, type discovery, domain dis-
covery, and emotion detection. Furthermore, these

datasets span a wide range of granularities that have
10 to 150 number of clusters. We show that CLUS-
TERLLM is effective overall on improving clus-
tering quality, where the clustering performance is
improved over both a deep clustering baseline and
a self-supervise baseline. Moreover, the ablation
study shows that our sampling strategy is effective
compared to a random sampling baseline. Finally,
CLUSTERLLM also outperforms clustering-error
based methods on determining cluster granularity.

In summary, our contributions are three-fold: (i)
We propose a framework CLUSTERLLM that uti-
lizes sentence relations predicted from API-based
LLMs to guide clustering. Furthermore, it allows
users to provide textual instructions and/or few-
shot annotations to specify preferences on cluster-
ing. (ii) In order to reduce API-queries, we propose
a novel entropy-based sampling strategy to find the
most informative triplets. Additionally, we utilize
pairwise data sampled from hierarchical cluster-
ing to determine cluster granularity. (iii) Extensive
experiments show that our proposed method can
improve clustering performance at ∼$0.2 for per-
spective and ∼$0.4 for granularity with GPT-3.5.

2 Preliminary
Text clustering takes an unlabeled corpus D =
{xi}Ni=1 as input, and outputs a clustering assign-
ment Y = {yi}Ni=1 that maps the input text to clus-
ter indices. To specify user’s needs, CLUSTER-
LLM integrates additional textual instruction (e.g.
“Select the example that better corresponds with the
Query in terms of entity type.”) to understand per-
spective and few-shot annotations (e.g. “Sentence1
and Sentence2 have the same entity type ...”) to
determine cluster granularity.

3 Our CLUSTERLLM

CLUSTERLLM is based on a pre-trained small em-
bedder (Wang et al., 2022; Su et al., 2022) (denoted
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as f ) which usually represents sentences individu-
ally. In contrast, inspired by human cognitive abil-
ity (Nosofsky, 2011), CLUSTERLLM considers a
pair or a triplet of sentences through prompting
LLMs that are trained to follow human instruc-
tions (Ouyang et al., 2022; OpenAI, 2023). Specif-
ically, CLUSTERLLM is a two-stage framework
(See Figure 2). In Section 3.1 we introduce Stage
1 that utilizes triplet task to improve clustering
quality with respect to user-specified perspectives,
along with a sampling strategy that reduces number
of API queries. In Section 3.2, we introduce Stage
2 that leverages pairwise task to determine cluster
granularity based on predictions from LLMs.

3.1 Triplet Task for Perspective

In this section, we explore how to harness a triplet
task to refine the cluster structures for a user-
specified perspective. A triplet task takes as input
a tuple of three sentences t = (a, c1, c2), where a
is the anchor and (c1, c2) are two choices. We then
prompt LLMs to select one of (c1, c2) that better
corresponds with a using a prompt PT . Moreover,
in order to specify the user’s perspective, PT also
requires a task instruction IT as input. The LLM
should make a choice

cj = PT (IT , t), (1)

where cj ∈ {c1, c2} indicates one of the choices
that LLM selects as positive and we denote the
other (or negative) one as c\j .

3.1.1 Entropy-based Triplet Sampling
While one can randomly sample triplets to query
the LLM, we demonstrate it non-efficient in exper-
iments. In this section, we pose the question of
mining informative triplets to both save the costs
from querying LLMs and optimally improve the
clustering. To achieve this, we resort to the current
clustering results from the extracted embeddings
Z = {zi = f(xi)}Ni=1. In summary, our algo-
rithm contains two steps: Step 1: We find the most
ambiguous instances as anchors based on entropy.
Step 2: For each anchor instance, we sample two
choices from two of its closest clusters. Refer to
Algorithm 1 for entire process.

In Step 1, since the granularity is unknown at
current stage, we perform clustering on top of Z ,
where the clustering hyperparameters2 are consis-

2It can be number of clusters in K-means or maximum
distance to merge two clusters in hierarchical clustering

Algorithm 1: Entropy-based Triplet Sampling

Input: embeddings Z = {zi = f(xi)}Ni=1, interval
boundaries γhigh and γlow, closest clusters
fraction ϵ = 2%, maximum number of queries
Q.

1 Step 1: K clusters← Clustering(Z);
2 Compute µk for each cluster k by averaging;
3 Compute Kclosest with Eq. 3;
4 Compute entropy H with Eq. 4;
5 Ind← argsort(H)[::-1];
6 Ind← Ind[γhighN :γlowN ];
7 Step 2: Initialize triplets {tq} ← {};
8 while len({tq})< Q do
9 for a in Ind do

10 Obtain Kclosest closest clusters;
11 Sample C1, C2 from closest clusters;
12 c1 ∼ C1, c2 ∼ C2, t = (a, c1, c2);
13 if t not in {tq},c1 ̸= a, c2 ̸= a then
14 Append t to {tq};

Output: A set of triplets {tq}Qq=1

tent across datasets and only specific to the embed-
der model f . Cluster center µk will thereafter be
calculated for cluster k by averaging embeddings
assigned to it. Following (Xie et al., 2016; Van der
Maaten and Hinton, 2008), we calculate instance-
wise soft assignments with Student’s t-distribution,

pik =
(1 + ||zi − µk||2/α)−

α+1
2

∑
k′(1 + ||zi − µk′ ||2/α)−

α+1
2

(2)

where α = 1 is the degree of freedom. We then
define closest clusters for instance i as Kclosest clus-
ters with largest soft assignment pik. Here, Kclosest
is proportional to the total number of clusters K.

Kclosest = max(ϵK, 2) (3)

where we fix ϵ to be a small value, such as 2%.
We then compute entropy based on these closest
clusters with renormalized probabilities p′ik,

hi = −
Kclosest∑

k=1

p′ik log(p
′
ik) (4)

where p′ik = pik∑Kclosest
k′=1

pik′
. We sort the entire dataset

in descending order according to the entropies
H = {hi}Ni=1. We introduce two hyperparameters
γhigh and γlow that control the proportion interval
to filter out from ordered dataset. Our hypothesis
is that higher entropy (smaller γhigh and γlow) an-
chors form more informative triplets that we verify
in Section 4.6. In Step 2, we randomly sample
two clusters C1, C2 from Kclosest closest clusters,
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and then sample two sentences c1, c2 from each
of them as choices (see line 11 and line 12). In
another word, these choices should be either a pos-
itive or a hard negative to the anchor. Finally, we
also remove triplets that are either repeated or have
identical choice and anchor. We continue to sample
triplets until reaching budget Q.
Remarks. (1) Since Q is defined by the user and
is independent with the dataset size, our sampling
is cost-efficient. For example, in our experiments,
using 1, 024 queries can improve performance on
both dataset scales of ∼ 3, 000 and ∼ 50, 000. (2)
From the view of ground truth, the sampled triplets
might contain “both are correct” or “none of the
above”. However, we argue that even these triplets
might provide soft aligning information, i.e. the
ranking of closeness between choices. (3) Our
sampling method may also be utilized in active
learning to acquire human annotations when no
prior knowledge is available on the categories.

3.1.2 Finetuning Embedder
Now that we have the triplet predictions, it is still
not clear how to utilize them in clustering. Previous
research rely on deep constrained clustering (Zhang
et al., 2020; Manduchi et al., 2021) which are of-
ten sensitive to noisy labels (Basu et al., 2008).
In this paper, we instead focus on finetuning the
base embedder f towards producing an embedding
space that better explains the user’s perspective.
We exploit both hard and in-batch negatives. Fol-
lowing (Su et al., 2022; Ni et al., 2022b), for a
triplet t = (a, cj , c\j) with positive cj and hard
negative c\j , we optimize the following objective,

lj =
exp (s(a, cj)/τ)∑
cl∈B exp (s(a, cl)/τ)

(5)

where B combines cj , c\j and other in-batch nega-
tives. τ is a temperature parameter. Following the
original implementation, we also compute the loss
with a and cj swapped. Finally fine-tuned embed-
ders can be applied to find even more informative
triplets with our sampling method which will fur-
ther improve performance in an iterative manner.
We acquire clustering assignments by running clus-
tering algorithms on top of extracted embeddings.

3.2 Pairwise Task for Granularity

In this section, we build upon the refined embed-
ding space in Section 3.1 to determine cluster gran-
ularity. In this paper, we convert the problem of

determining granularity into finding the best step
in a cluster hierarchy (see Figure 2 right), where
each step denotes a unique granularity (or equally
number of clusters). It is non-trivial, since differ-
ent granularities can be applied to the same dataset
(such as domains or topics). To tackle this chal-
lenge, we query LLM with pairwise task that pre-
dicts whether a pair of data p belong to the same
cluster with a prompt PP ,

w = PP (IP , {p̃d}Dd=1, p) (6)

where w ∈ {same, different} is the binary decision,
IP is the task instruction and {p̃d}Dd=1 are few-shot
demonstration pairs used for in-context learning
(typically D = 4). We assume these demonstration
pairs are annotated by users who have a desired
cluster granularity in mind. We also combine a
brief justification for each demonstration pair (see
Table 12 bottom for example).

3.2.1 Determine Granularity with Pairwise
Hierarchical Sampling

We then introduce how to sample pairs from cluster
hierarchy to query LLMs and determine granularity.
We assume a maximum and a minimum number of
clusters (denoted as kmax and kmin) following Pel-
leg et al. (2000) which depend on the user’s expec-
tation on the granularity. We then randomly sample
λ (1 or 3 in our experiments) pairs of data from the
two clusters to be merged at each step to form can-
didate pairs {pi}Np

i=1, where Np = λ(kmax − kmin).
These pairs cover the entire range of granularity
between kmax and kmin, and will be used to query
LLMs. After that, each level of granularity can be
examined against LLM predictions to choose the
one with the highest consistency measure M,

k∗ = argmax
k

M(W p,W k) (7)

where W p = {wp
i }

Np

i=1 denotes the predictions ob-
tained from Eq. 6 and W k represents a set of binary
values indicating whether each pair of data is in
the same cluster at granularity k. Empirically, we
found the following performs better in our frame-
work: use F-beta score, a weighted harmonic mean
of precision and recall, as measurement M and set
W p/W k as labels/predictions. Finally, for large-
scale datasets, we address the high time complexity
of hierarchical clustering by applying it on top of
mini-batch K-means. See details in Appendix A.
Remarks. Similar to Section 3.1.1, pairwise hierar-
chical sampling can also be used to acquire human

13906



annotations. Nonetheless, the reliability of the al-
gorithm still depends on the quality of clusters. In
an extreme case where the clusters are completely
random, it is unable to find granularity even though
all the pairwise predictions are correct.

4 Experiments

We first evaluate CLUSTERLLM on clustering qual-
ity with ground truth number of clusters in Sec-
tion 4.4. Then we conduct ablation studies in
Section 4.6 to further analyze the effectiveness of
CLUSTERLLM. Finally, we show results of deter-
mining cluster granularity in Section 4.7.

4.1 Datasets

We provide a high-level summary of evaluated
datasets in this section, and see Appendix E for
more descriptions. In this paper, we evaluate on a
broad range of clustering datasets with various per-
spectives and granularities. Furthermore, to better
analyze the effect of scale, each dataset has both a
small-scale and a large-scale version. The two ver-
sions are different in number of data while keeping
the same number of clusters. A summary of dataset
statistics is shown in Table 1. Note that there is no
data splits in clustering.
Intent (Domain) Discovery. Intent discov-
ery (Zhang et al., 2021b, 2022) discovers unknown
intents in unlabeled customer utterances. For
CLINC, Massive and MTOP, we also use domains
as labels to convert them into domain discovery.
Type Discovery. Type Discovery (Li et al., 2022)
resolves the closed-world set-up of traditional Infor-
mation Extraction. In this work, we focus on three
tasks: entity, relation and event type discovery. To
indicate specific mentions (entities or event trig-
gers), we directly append them behind sentences
with natural language formats, such as “The rela-
tion between [ENTITY1] and [ENTITY2]”.
Topic Mining. We adapt three topic mining
datasets from MTEB (Muennighoff et al., 2022).
Emotion. We adapt GoEmo (Demszky et al.,
2020), a fine-grained emotion detection dataset by
removing multi-label or neutral instances.

4.2 Experiment Details

Query LLMs. The prompt only contains a task-
specific instruction (see Table 11). We set gen-
eration temperature to 0.5. Explanations are sup-
pressed by adding a postfix:“Please respond with
’Choice 1’ or ’Choice 2’ without explanation” and

Task Name #clusters #data(small) #data(large)

Intent

Bank77 77 3,080 10,003
CLINC(I) 150 4,500 15,000
MTOP(I) 102 4,386 15,638

Massive(I) 59 2,974 11,510

Type
FewRel 64 4,480 40,320

FewNerd 58 3,789 50,000
FewEvent 34 4,742 18,969

Topic
StackEx 121 4,156 50,000

ArxivS2S 93 3,674 50,000
Reddit 50 3,217 50,000

Emotion GoEmo 27 5,940 23,485

Domain
CLINC(D) 10 4,500 15,000
MTOP(D) 11 4,386 15,667

Massive(D) 18 2,974 11,514

Table 1: Dataset statistics.

set up a max token of 10. We then assign them to
binary choices by directly checking whether one
of the texts “Choice 1” or “Choice 2” is in the re-
sponse. We also find that a very small amount of
responses do not contain any choices and we dis-
card them during fine-tuning. We use the Python
API tool provided by OpenAI.

Triplet Sampling. For both small- or large-scale
experiments, we set a budget of Q = 1, 024 triplets.
We set γlow = 20% and γhigh = 0. For clustering
methods, we fix hyperparameters of these algo-
rithms across datasets in Stage 1. We choose ag-
glomerative clustering with fixed distance threshold
67 for small-scale experiments on Instructor, and
77 on E5 (the embeddings are preprocessed by stan-
dard scaler). For large-scale datasets, we choose
mini-batch K-means with fixed number of clusters
100 due to its lower latency. Clustering algorithms
are implemented by scikit-learn (Pedregosa et al.,
2011).

Fine-tune Embedders. In this work, we focus on
two state-of-the-art pre-trained embedders: Instruc-
tor (Su et al., 2022) and E5 (Wang et al., 2022). We
only use the large versions. Refer to Appendix D
for details.

Evaluation. To reduce cost, we run CLUSTER-
LLM once for each dataset. We then run (mini-
batch) K-means on (large) small-scale datasets for
5 seeds with ground truth K. We show two metrics.
The first one is clustering accuracy calculated after
Hungarian alignment (Kuhn, 1955) that permute
prediction classes back to label classes. Another
popular metric for clustering is normalized mutual
information (NMI) that calculates mutual informa-
tion between two assignments, and normalized by
their individual entropies.
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Method
Intent Discovery Emotion

Bank77 CLINC(I) MTOP(I) Massive(I) GoEmo
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

E5 (Wang et al., 2022) 59.90(0.91) 77.71(0.42) 75.83(0.79) 91.16(0.42) 33.54(0.92) 70.79(0.26) 52.52(0.62) 70.67(0.50) 22.13(1.04) 20.98(0.53)

SCCL-E (Zhang et al., 2021a) 63.60(1.37) 77.34(0.62) 77.96(1.78) 91.89(0.49) 33.82(1.07) 70.42(0.34) 54.48(1.80) 71.57(0.89) 22.03(0.69) 20.05(0.63)

self-supervise-E 64.76(2.09) 80.75(0.67) 78.91(0.69) 92.06(0.23) 33.81(0.81) 71.71(0.42) 54.23(1.57) 71.78(0.25) 21.35(0.42) 20.92(0.55)

CLUSTERLLM-E 69.09(1.99) 83.17(0.48) 79.51(1.10) 92.73(0.36) 34.66(1.31) 73.19(0.41) 54.80(0.72) 73.97(0.38) 22.69(0.41) 22.07(0.23)

CLUSTERLLM-E-iter 70.13(1.34) 84.16(0.36) 80.48(0.93) 92.92(0.29) 37.22(1.18) 74.46(0.11) 56.08(1.01) 74.39(0.21) 22.22(1.15) 22.23(0.17)

Instructor (Su et al., 2022) 64.49(1.52) 81.43(0.61) 79.29(1.03) 92.60(0.19) 33.35(1.32) 70.63(0.27) 54.08(1.53) 73.42(0.62) 25.19(0.98) 21.54(0.46)

SCCL-I (Zhang et al., 2021a) 65.48(1.36) 81.77(1.36) 80.85(0.74) 92.94(0.44) 34.28(0.58) 73.52(0.38) 54.10(1.05) 73.90(0.36) 34.33(0.86) 30.54(0.68)

self-supervise-I 68.18(0.73) 83.31(0.59) 80.82(0.75) 93.88(0.17) 34.06(0.64) 72.50(0.47) 55.07(1.25) 72.88(0.77) 24.11(2.02) 22.05(0.53)

CLUSTERLLM-I 70.77(0.49) 85.07(0.33) 82.77(1.20) 93.88(0.17) 35.84(2.07) 73.52(0.38) 59.89(2.05) 76.96(0.54) 27.49(1.25) 24.78(0.56)

CLUSTERLLM-I-iter 71.20(1.59) 85.15(0.41) 83.80(0.41) 94.00(0.21) 35.04(0.97) 73.83(0.79) 60.69(0.96) 77.64(0.21) 26.75(1.76) 23.89(0.68)

Method
Type Discovery Topic Mining

FewRel FewNerd FewEvent StackEx Reddit
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

E5 (Wang et al., 2022) 39.62(1.22) 55.78(0.25) 25.49(0.44) 40.62(0.16) 37.30(1.97) 59.28(0.52) 37.31(0.95) 58.59(0.62) 39.03(0.62) 48.63(0.75)

SCCL-E (Zhang et al., 2021a) 39.93(0.83) 56.49(0.10) 27.86(1.04) 43.12(0.47) 35.39(0.53) 57.23(0.35) 37.85(0.71) 59.17(0.33) 44.45(0.79) 53.29(0.71)

self-supervise-E 43.01(1.46) 58.78(0.45) 29.25(0.74) 44.77(0.21) 37.07(0.70) 62.14(0.70) 42.19(0.79) 63.06(0.39) 48.69(2.40) 57.02(0.64)

CLUSTERLLM-E 47.53(1.00) 62.89(0.30) 28.52(0.63) 44.45(0.20) 42.17(1.24) 67.55(0.31) 43.01(1.58) 63.81(0.50) 47.72(1.53) 56.41(0.43)

CLUSTERLLM-E-iter 52.95(1.15) 67.64(0.29) 32.16(0.83) 48.16(0.25) 44.64(0.90) 70.74(0.35) 43.93(0.93) 64.66(0.36) 49.05(1.15) 57.35(0.31)

Instructor (Su et al., 2022) 41.23(0.60) 57.55(0.41) 30.02(1.24) 46.12(0.54) 41.99(2.04) 62.88(0.67) 44.81(0.94) 65.76(0.32) 54.98(1.51) 62.51(0.62)

SCCL-I (Zhang et al., 2021a) 41.15(1.51) 57.04(0.34) 31.09(0.87) 46.47(0.47) 39.97(0.52) 57.36(0.43) 45.11(0.93) 65.36(0.16) 53.66(0.94) 61.34(0.57)

self-supervise-I 41.72(0.47) 57.83(0.34) 31.39(0.74) 47.25(0.27) 43.94(1.15) 64.71(0.29) 46.15(1.17) 66.49(0.32) 55.41(0.93) 63.45(0.86)

CLUSTERLLM-I 47.94(1.37) 62.43(0.43) 34.75(1.58) 51.03(0.57) 46.17(2.18) 70.73(0.34) 47.21(1.07) 66.78(0.29) 56.79(1.90) 63.87(0.56)

CLUSTERLLM-I-iter 51.22(1.43) 65.53(0.40) 40.60(0.77) 57.35(0.23) 50.60(0.79) 73.89(0.47) 47.75(1.24) 67.08(0.30) 57.02(0.87) 63.92(0.38)

Method
Topic Mining Domain Discovery

Avg
ArxivS2S MTOP(D) Massive(D) CLINC(D)

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
E5 (Wang et al., 2022) 30.85(0.37) 54.49(0.15) 91.23(4.23) 86.75(1.94) 63.70(0.86) 66.20(0.72) 59.64(2.73) 57.23(0.66) 47.72 61.35
SCCL-E (Zhang et al., 2021a) 32.78(0.69) 55.77(0.30) 92.28(0.18) 86.01(0.22) 61.22(1.15) 65.27(0.99) 59.88(2.74) 56.21(0.94) 48.82 61.70
self-supervise-E 34.41(0.52) 57.09(0.26) 91.40(4.61) 88.20(1.71) 61.79(2.50) 65.02(1.32) 57.29(2.51) 57.07(0.88) 49.87 63.60
CLUSTERLLM-E 34.93(0.36) 57.90(0.09) 89.18(5.25) 86.19(2.05) 60.73(2.81) 66.15(0.69) 56.25(2.94) 56.32(0.81) 50.77 64.77
CLUSTERLLM-E-iter 35.73(0.87) 58.42(0.38) 89.58(5.08) 87.25(1.96) 58.63(1.32) 65.59(0.81) 60.84(2.88) 58.55(2.09) 52.40 66.18
Instructor (Su et al., 2022) 24.31(0.77) 48.04(0.39) 90.56(3.34) 87.30(1.53) 61.81(2.56) 67.31(1.79) 52.50(2.44) 56.87(2.03) 49.90 63.85
SCCL-I (Zhang et al., 2021a) 25.63(0.53) 49.07(0.22) 89.08(3.77) 84.77(2.18) 61.34(2.77) 68.69(1.42) 54.22(3.15) 51.08(1.05) 50.74 63.85
self-supervise-I 25.65(0.37) 49.41(0.17) 92.12(2.66) 88.49(1.25) 53.97(2.14) 71.53(0.77) 58.58(2.56) 60.84(1.04) 51.39 65.33
CLUSTERLLM-I 26.61(0.48) 50.06(0.26) 93.53(0.10) 89.36(0.11) 61.06(1.91) 68.62(0.90) 52.39(1.84) 54.98(2.08) 53.09 66.58
CLUSTERLLM-I-iter 26.34(0.38) 50.45(0.19) 92.13(3.81) 89.23(1.21) 60.85(4.33) 68.67(1.59) 51.82(1.91) 54.81(1.15) 53.99 67.53

Table 2: Comparison of clustering accuracy and NMI with known granularity for evaluation. Average over all 14
datasets are shown in the last two columns. Best results are bolded.

4.3 Compared Methods

E5 and Instructor. We directly apply (mini-
batch) K-means on extracted embeddings from
instructor-large and e5-large.
self-supervise-I(E). To verify that the performance
improvement of CLUSTERLLM does not only
come from domain-specific fine-tuning, instead of
the more accurate triplet prediction. We propose
a self-supervise fine-tuning that uses exactly the
same triplets as CLUSTERLLM but only switch to
self-supervised triplet predictions that select closest
choices in embedding space.
SCCL-I(E). We also combine Instructor and E5
with SCCL (Zhang et al., 2021a), an unsupervised
deep clustering algorithm that utilizes entire dataset

for training. Notice that our method uses fewer data
for training. See Appendix D for details.

4.4 Main Results

We show main results with small-scale datasets in
Table 2. We show several variants of our method:
CLUSTERLLM-I(E) adopt Instructor or E5 as em-
bedders. CLUSTERLLM-I(E)-iter applies the en-
tire framework twice in an iterative manner by
using previous fine-tuned model as initialization
and the 1, 024 triplets inferred from new embed-
dings for fine-tuning. All of these use GPT-3.5
for prediction. We make the following observa-
tions: (1) CLUSTERLLM consistently improves
upon both embedders. For example, CLUSTER-
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Type Model Bank77 CLINC(I) MTOP(I) Massive(I) GoEmo FewRel FewNerd

Random

#GT Triplets 23 6 102 61 117 41 156
Instructor 100 100 98.04 88.52 68.38 80.49 71.15
GPT3.5 100 100 85.29 85.25 68.38 85.37 82.05

∆ (+0) (+0) (-12.75) (-3.27) (+0) (+4.88) (+10.90)

Entropy-based

#GT Triplets 510 462 140 98 206 266 347
Instructor 64.12 76.19 65.74 63.56 64.08 62.41 59.65
GPT3.5 † 76.67 79.44 67.41 68.76 64.56 76.69 68.88

∆ (+12.55) (+3.25) (+1.67) (+5.20) (+0.48) (+14.28) (+9.23)
GPT4 79.41 80.74 76.04 74.84 61.65 87.22 82.13
∆ (+15.29) (+4.55) (+10.30) (+11.28) (-2.43) (+24.81) (+22.48)

Type Model FewEvent StackEx Reddit ArxivS2S MTOP(D) Massive(D) CLINC(D)

Random

#GT Triplets 105 14 40 22 184 148 189
Instructor 98.10 85.71 80 95.45 96.74 80.41 76.72
GPT3.5 94.29 71.43 70 81.82 85.87 82.43 68.25

∆ (-3.81) (-14.28) (-10) (-13.63) (-10.87) (+2.02) (-18.47)

Entropy-based

#GT Triplets 259 271 92 145 144 108 208
Instructor 70.66 68.27 61.98 59.31 70.31 63.82 75.06
GPT3.5 † 83.78 71.22 63.28 73.79 69.79 72.09 75.78

∆ (+13.12) (+2.95) (+1.30) (+14.48) (-0.52) (+8.27) (+0.72)
GPT4 85.71 79.70 67.71 77.93 72.40 70.28 74.58
∆ (+15.05) (+11.43) (+5.73) (+18.62) (+2.09) (+6.46) (-0.48)

Table 3: Analysis on the triplet prediction accuracy († is used to produce results of CLUSTERLLM-I in Table 2).
Red and green mean decreased or increased performances respectively. “#GT Triplets” means triplets that have
ground truth (see Section 4.5 for details).

LLM-I increases the performance by 6.71% on
FewRel. CLUSTERLLM-E increases the perfor-
mance by 9.19 on Bank77. However, we do ob-
serve that on Massive(D) and CLINC(D), there are
no improvements. (2) CLUSTERLLM outperforms
deep clustering and self-supervise baselines. For in-
stance, CLUSTERLLM-I surpasses self-supervise-I
on most datasets except for two and it is also better
than SCCL-I on 11 over 14 datasets. Furthermore,
these improvements are consistent across both re-
ported metrics. (3) Combined with the results in
Appendix F, applying CLUSTERLLM iteratively
is beneficial, emphasizing the potential of further
improvements.

4.5 Analysis on Triplet Prediction Accuracy

We attribute the improvements on clustering qual-
ity to more accurate triplet predictions. In Table 3,
we show the accuracy on predicted triplets that
have ground truth (exactly one positive and one
negative choices based on ground truth) with two
different sampling methods. Random triplet sam-
pling uniformly samples three random instances as
query and two choices, and we guarantee the two
choices are different from the anchor by filtering.
Furthermore, we also show a selection accuracy
with Euclidean distances between embeddings as
a comparison. We observe that, GPT-3.5/4 consis-
tently improves upon Instructor on high entropy ex-

amples, demonstrating our hypothesis. In contrast,
with random sampling, the ground truth triplets is
significantly fewer and the accuracy gap is much
smaller or even decreases performance.

4.6 Ablation Study

Clustering Quality. We show ablation studies
on CLUSTERLLM based on Instructor in Table 4.
Specifically, we present results with 3 kinds of
predictions on the same set of triplets for fine-
tuning: GPT-3.5/4, replace triplet predictions of
GPT-3.5 to ground truth on those triplets that have
ground truth. We observe that GPT-4 marginally
improves upon GPT-3.5 given the much higher
cost. When provided with human labels, CLUS-
TERLLM-GT&GPT3.5 achieves the highest perfor-
mance, which indicates the possibility for further
improvement with more accurate predictions. We
make similar observations for large-scale datasets
in Table 6.
Sampling Strategy. In this section, we show abla-
tion study on entropy-based sampling. In Figure 3,
we observe that clustering accuracy increases when
increasing entropies (or equally decreasing mean
of interval) except for GoEmo. We make two hy-
pothesis: (1) LLMs are much better than small
embedders on harder instances. (2) high-entropy
instances are generally more informative. In Ta-
ble 4, we observe that training with randomly se-
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Method
Intent Discovery Emotion

Bank77 CLINC(I) MTOP(I) Massive(I) GoEmo
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

CLUSTERLLM-GPT3.5(random) 59.88(2.56) 79.69(0.63) 74.40(0.91) 90.38(0.20) 28.05(1.69) 61.76(0.62) 51.66(2.41) 68.87(0.73) 28.62(1.95) 25.88(1.02)

CLUSTERLLM-GPT3.5 70.77(0.49) 85.07(0.33) 82.77(1.20) 93.88(0.17) 35.84(2.07) 73.52(0.38) 59.89(2.05) 76.96(0.54) 27.49(1.25) 24.78(0.56)

CLUSTERLLM-GPT4 69.71(1.13) 84.68(0.40) 81.91(1.20) 93.76(0.24) 34.48(0.38) 73.57(0.40) 59.10(1.12) 76.59(0.41) 27.41(1.13) 23.77(0.42)

CLUSTERLLM-GT&GPT3.5 71.35(1.97) 85.12(0.45) 84.00(1.04) 94.34(0.30) 36.86(0.42) 75.36(0.08) 59.27(1.43) 77.37(0.54) 30.91(1.16) 27.71(0.46)

Method
Type Discovery Topic Mining

FewRel FewNerd FewEvent StackEx Reddit
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

CLUSTERLLM-GPT3.5(random) 40.65(0.89) 56.54(0.30) 27.15(0.53) 43.56(0.49) 44.23(1.72) 66.75(0.87) 40.81(0.94) 62.10(0.34) 54.60(2.23) 61.82(1.64)

CLUSTERLLM-GPT3.5 47.94(1.37) 62.43(0.43) 34.75(1.58) 51.03(0.57) 46.17(2.18) 70.73(0.34) 47.21(1.07) 66.78(0.29) 56.79(1.90) 63.87(0.56)

CLUSTERLLM-GPT4 48.96(1.14) 63.58(0.39) 37.54(0.54) 53.94(0.27) 47.98(1.45) 71.32(0.70) 46.82(0.78) 66.72(0.11) 55.38(0.37) 63.45(0.49)

CLUSTERLLM-GT&GPT3.5 48.91(1.20) 63.34(0.47) 37.27(0.61) 53.57(0.32) 48.12(1.52) 72.31(0.84) 47.55(1.17) 67.04(0.31) 58.33(1.26) 65.34(0.51)

Method
Topic Mining Domain Discovery

Avg
ArxivS2S MTOP(D) Massive(D) CLINC(D)

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
CLUSTERLLM-GPT3.5(random) 22.03(0.28) 45.50(0.16) 87.00(2.27) 82.09(1.54) 56.40(2.35) 64.39(1.12) 60.27(4.20) 58.11(2.93) 48.27 61.96
CLUSTERLLM-GPT3.5 26.61(0.48) 50.06(0.26) 93.53(0.10) 89.36(0.11) 61.06(1.91) 68.62(0.90) 52.39(1.84) 54.98(2.08) 53.09 66.58
CLUSTERLLM-GPT4 26.16(0.22) 50.06(0.20) 92.04(2.67) 88.39(1.33) 60.16(2.97) 67.98(1.04) 57.45(2.48) 59.98(1.14) 53.22 66.98
CLUSTERLLM-GT&GPT3.5 26.14(0.57) 50.19(0.33) 92.26(3.62) 89.36(1.42) 61.65(3.50) 69.51(1.50) 52.87(2.63) 56.43(1.21) 53.96 67.64

Table 4: Ablation study on clustering quality with Instructor as backbone and known granularity for evaluation. See
more results with large-scale datasets in Table 6.
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Figure 3: Relative clustering accuracy (divided by max-
imum for better aligning across datasets) of CLUSTER-
LLM-GPT3.5 with different range of entropy selected.
x-axis shows the mean of interval where interval length
is set to 20%. For example, “mean of interval= 50%”
means γhigh = 40% and γlow = 60% (see Section 3.1.1).
♦ marks the setting for main experiments.

lected triplets even decreases performance, which
demonstrates the cruciality of triplet sampling.

4.7 Determining Cluster Granularity

In this section, we show the results for determining
cluster granularity. We evaluate on a subset of
8 datasets including various cluster granularities
with kmax = 200 and kmin = 2. We compare with
different methods that rely on clustering errors. For
our methods, we show results with λ = {1, 3}
(except for GPT-4 to reduce costs), which involve

198 & 594 pairs in total respectively. To simulate
experts for providing demonstrations, we directly
sample 16 pairs from small-scale datasets when
λ = 3 and then choose 2 positive and 2 negative
as demonstrations. Notice that we use the same
demonstrations for large-scale experiments. See
more details in Appendix B.

We make several observations from Table 5 and
Table 7: (1) Our methods have higher ranks. Most
baseline methods predict similar number of clusters
for domain and intent, while our methods can ef-
fectively distinguish between the two. For instance,
on MTOP(I)/(D) in Table 5, BIC predicts num-
ber of clusters 69/64 while our method (GPT-3.5,
λ = 3) predicts 92/18. (2) Increasing λ generally
helps (MTOP(D) in Table 5) but might not always
make a large difference. (3) GPT-4 significantly
improves upon GPT-3.5, probably due to its better
understanding of demonstrations.

5 Related Works

Clustering. As a fundamental task in machine
learning, clustering has been applied on diverse
data types, including texts (Xu et al., 2015; Hadi-
far et al., 2019; Zhang et al., 2021a), images (Yal-
ing Tao, 2021; Yang et al., 2016; Caron et al.,
2018; Niu et al., 2020; Xie et al., 2016) and
graphs (Huang et al., 2014; Chiang et al., 2019).
Recent research has been shifted to deep cluster-
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Method Bank77 FewRel Massive(I) Massive(D) MTOP(I) MTOP(D) CLINC(I) CLINC(D) Rank
GT #clusters 77 64 59 18 102 11 150 10 -

Silhouette (Rousseeuw, 1987) 118 (53.25) 10 (84.38) 38 (35.59) 41 (127.8) 11 (89.22) 11 (0) 172 (14.67) 163 (1530) 10
Elbow (Thorndike, 1953) 53 (31.17) 43 (32.81) 45 (23.73) 46 (155.6) 33 (67.65) 34 (209.1) 66 (56.00) 68 (580.0) 9

X-means (Pelleg et al., 2000) 69 (10.39) 30 (53.13) 32 (45.76) 34 (88.89) 28 (72.55) 27 (145.5) 130 (13.33) 135 (1250) 8
BIC (Goutte et al., 2001) 123 (59.74) 58 (9.38) 56 (5.08) 60 (233.3) 69 (32.35) 64 (481.8) 167 (11.33) 176 (1660) 7

ClusterSize (Zhang et al., 2021b) 86 (11.69) 71 (10.94) 72 (22.03) 90 (400.0) 82 (19.61) 85 (672.7) 105 (30.00) 106 (960.0) 6
Ours (GPT3.5,λ = 1) 64 (16.88) 46 (28.13) 43 (27.12) 90 (400.0) 43 (57.84) 40 (263.6) 151 (0.67) 96 (860.0) 5
Ours (GPT3.5,λ = 3) 64 (16.88) 46 (28.13) 52 (11.86) 37 (105.6) 92 (9.80) 18 (63.63) 142 (5.33) 107 (970.0) 2
Ours (GPT4,λ = 1) 56 (27.27) 46 (28.13) 41 (30.51) 20 (11.11) 53 (48.04) 8 (27.27) 146 (2.67) 39 (290.0) 3

Ours (GT,λ = 1) 100 (29.87) 91 (42.19) 42 (28.81) 18 (0) 41 (59.80) 11 (0) 141 (6.00) 39 (290.0) 4
Ours (GT,λ = 3) 99 (28.57) 94 (46.88) 62 (5.08) 20 (11.11) 37 (63.73) 11 (0) 142 (5.33) 31 (210.0) 1

Table 5: Cluster granularity on small-scale datasets. Maximum & minimum number of clusters are set to 200 & 2.
The results are shown in format of “[#clusters] (errors)”. “Rank” column is computed with 1-level ranking (Colombo
et al., 2022) with inverse errors. “GT” is ground truth. See results for large-scale datasets in Table 7.

ing (Zhou et al., 2022) which focuses on how to
leverage deep neural network in clustering. Zhou
et al. (2022) has categorized deep clustering re-
search into four types including multi-stage (Yal-
ing Tao, 2021; Huang et al., 2014), iterative (Yang
et al., 2016; Caron et al., 2018; Van Gansbeke
et al., 2020; Niu et al., 2022; Chang et al., 2017;
Niu et al., 2020), generative (Dilokthanakul et al.,
2016) and simultaneous (Xie et al., 2016; Zhang
et al., 2021a; Hadifar et al., 2019) depended on
how representation learning and clustering mod-
ules interact with each other. Most recently, a con-
current work (Wang et al., 2023) studies a similar
problem by assigning instances to different expla-
nations proposed by LLMs. Another recent work
IDAS (Raedt et al., 2023) directly encode the con-
catenation of sentence and abstractive summariza-
tions from LLMs for clustering.

Clustering with Relations. Clustering with rela-
tions has been explored in different situations. To
start with, spectral clustering (Donath and Hoff-
man, 1972; Cheeger, 1970) makes use of similarity
matrix where each entry measures the similarity
between a pair of data. More recently, several
works in deep clustering utilize relational supervi-
sion (Yang et al., 2016; Niu et al., 2020; Van Gans-
beke et al., 2020; Chang et al., 2017) via pseudo-
labelling which could be noisy. Another line of
works that is closely related to ours is constrained
clustering. It usually incorporates pairwise must-
link or cannot-link constraints (Basu et al., 2004;
Wagstaff et al., 2001; Basu et al., 2008; Zhang
et al., 2020; Manduchi et al., 2021). Nonetheless,
these constraints are often sampled from labels as
a prior which significantly limits its application in
our scenario. In this work, we study how to utilize
contemporary API-based LLMs to infer relations.

Pre-trained Embedding Model. Generic pre-

trained text embedding models (Reimers and
Gurevych, 2019; Gao et al., 2021; Ni et al.,
2022a,b) are widely applied in text similarity, clas-
sification, clustering and information retrieval. Re-
cently, two embedding models E5 (Wang et al.,
2022) and Instructor (Su et al., 2022) have
shown superior performance on a popular bench-
mark (Muennighoff et al., 2022). Specifically E5
is pre-trained on web-scraped data pairs with con-
trastive objective. Instructor is pre-trained on 330
tasks with instructions. CLUSTERLLM aims at
improving these models with LLMs.

6 Conclusion

In this paper, we study how to leverage API-based
LLMs to guide small embedders for text cluster-
ing in order to benefit from high-level language
capability of LLMs and user’s instructions on clus-
tering. We propose to prompt LLMs with two
kinds of sentence relationship tasks: triplet task
and pairwise task. Triplet task chooses the sentence
that is most similar with anchor combining with a
perspective instruction from users. The predicted
triplets are used for fine-tuning small embedders.
Pairwise task judges whether a pair of sentences
belong to the same category hinted by few-shot
demonstrations, and then the predictions are used
to determine cluster granularity with a consistency
measure. Extensive experiments show that our
proposed framework CLUSTERLLM can improve
clustering quality and propose reasonable cluster
granularity at a negligible cost. However, CLUS-
TERLLM still relies on the embedding model itself,
which is inefficient and inapplicable on black-box
embedding models. We encourage future works to
explore the potential of model-free training such as
constrained clustering.
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Limitations

We list several limitations of our work that we hope
to be improved in the future:
Reliance on pre-trained embedder. To find the
most informative data, we have to rely on a pre-
trained embedder that can indicate the largest clus-
tering assignment entropy. We hope that self-
supervise triplets and LLM-predicted triplets can
be combined to solve such an issue.
Computational cost for fine-tuning. Our initial
idea is to utilize constrained clustering which is a
light-weight algorithm that do not need to update
small embedders. However, the inevitable unsta-
ble training will be heavily affected by the errors in
LLM predictions. We make a comprise by introduc-
ing embedder into fine-tuning to temporarily solve
the issue, but we hope to reduce the computational
cost in a future work.
Sub-optimal performance on domain discovery.
We notice that on domain discovery datasets such
as Massive(D) and CLINC(D), the performance
is usually sub-optimal compared with original In-
structor embedding. We provide discussions on
this issue in Appendix H.
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loading privacy-sensitive data is risky and might
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A Details of Scaling up Hierarchical
Clustering

A major drawback of hierarchical clustering is
its O(N3) time complexity which makes the al-
gorithm hard to be deployed on larger datasets.
However, since we are only interested in a spe-
cific range of granularity in our scenario, the hier-
archical clustering can start from an intermediate
step. We address this issue by first running mini-
batch K-means with kmax and then run hierarchi-
cal clustering with current assignments as inputs.
Specifically, we use agglomerative clustering with
ward’s method (Ward Jr, 1963). We first calculate
distances between each pair of clusters according
to Murtagh and Contreras, 2011 and then provide
them as inputs to nearest neighbor chain algorithm.
Finally the returned hierarchy is combined with the
K-means assignments to infer clusters.

B More Details about Determining
Cluster Granularity

Previous methods often employ clustering errors as
a metric and they ignore user’s need on the granu-
larity. Silhouette coefficient (Rousseeuw, 1987) in-
dicates the clustering quality without ground truths,
which exploits the inter-cluster distance with near-
est clusters and the intra-cluster distance. We find
the granularity by choosing the one with the best
silhouette coefficient. Elbow method (Thorndike,
1953) is a heuristic method that plots the clustering
error with respect to different levels of granular-
ity in the hierarchy. And then the best granular-
ity is determined with the largest elbow length.
X-means (Pelleg et al., 2000) is a variation of
K-means that starts with the lowest number of
clusters, and then repeatedly attempt to split the
clusters by running 2-means on them and evaluate
with Bayesian Information Criterion (BIC) (Goutte
et al., 2001). BIC (Goutte et al., 2001) calcu-
lates BIC for each of the granularity. Cluster-
Size (Zhang et al., 2021b) uses a confidence thresh-
old to filter small clusters starting from the maxi-
mum number of cluster. For all methods, we use
the same fine-tuned embeddings (CLUSTERLLM-I
in Table 2). The same cluster hierarchy is used (ex-
cept for X-means that relies on K-means), which
is either acquired from hierarchical clustering for
small-scale or our proposed two-step method in
Section 3.2 for large-scale. For out methods, the
weight in F-beta score is set to 0.92 through em-
pirical selection on Bank77. Because of the high
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Figure 4: Consistency score v.s. various number of
clusters with GPT-4 and λ = 1.

latency, results for Silhouette and X-means are not
shown on large-scale datasets. After sampling 16
data pairs, we tend to choose positives with finer
granularity or negatives with coarser granularity.
We also consider the sentence length to minimize
the cost. We use label names as justifications and
we always put 2 positive before 2 negative (See
Table 12 bottom).

C Analysis for Determining Granularity

Prompt Design. We show the analysis results of
prompt design for determining granularity in Ta-
ble 8. We experiment with two settings: (1) remove
justification for all demonstrations and only keep
the “Yes” or “No” answer. (2) remove all demon-
strations and any granularity-related words (such
as domain)3. We observe that demonstrations are
necessary and adding justifications have a positive
impact.
Visualization of Consistency Score. We visualize
consistency score with respect to the number of
clusters. The consistency scores exhibit continuous
variations and peak at the best number of clusters.

D Details of Embedders and Fine-tuning

For all the experiments (including those
with or without fine-tuning), we use
large version of both Instructor and
E5 (i.e. hkunlp/instructor-large &
intfloat/e5-large). For Instructor, we
use the same or similar prompt as original paper.
See Table 10.

For fine-tuning, we adopt the same hyper-
parameters as in (Su et al., 2022), but modify the

3After removing, the prompt will be in the format “De-
termine whether the two sentences below belong to the same
category.”
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learning rate to 2e−6, the maximum gradient steps
to 3, 840 for Instructor (∼ 15 epochs) and 1, 280
for E5, and batch size to 4. We choose this gra-
dient in the begining of our experiments by ob-
serving no performance increase after that on sev-
eral datasets. Training is conducted with a single
NVIDIA Quadro RTX 8000 GPU.

For SCCL-I(E), we change the maximum token
length to 128 due to the limited compute resource4.
We use the same learning rate 2e − 6 as before
for Instructor and 2e − 7 for E5 since we found
that the performance is unstable with large learn-
ing rate. Batch size is set to 16 and we evaluate
representations with K-means after 200 iterations.
Also notice that we do not interrupt prompts in
Instructor during data augmentation.

E Description of Datasets

Bank77 (Casanueva et al., 2020) is a popular
dataset in intent discovery that focuses on creating
fine-grained intent categories for a single-domain,
“banking”. CLINC(I) (Larson et al., 2019) is orig-
inally created for detecting utterances that falls
outside of supported intents. The dataset also con-
tains multiple domains, such as “travel”, “utility”
and “work”. In this experiment, we discard all
the out-of-scope utterances and only focus on in-
domain ones. Moreover, we create a domain dis-
covery dataset CLINC(D) that uses domains as
labels. Massive(I)/(D) (FitzGerald et al., 2022)
and MTOP(I)/(D) (Li et al., 2021) are both from
MTEB (Muennighoff et al., 2022). Here “I” de-
notes intent and “D” for domain (or scenario).
These datasets are originally used for classifica-
tion but are adapted here for clustering. We also
remove those intents with only a few instances and
keep English-only data. For all datasets, we use the
train & test sets as large- & small- scale datasets
respectively. For FewRel (Gao et al., 2019) and
FewEvent (Deng et al., 2020), we first randomly
split datasets into train & test sets, and then sample
from train set as large-scale and test set as small-
scale. For FewNerd (Ding et al., 2021), we use
the original train & test splits. For StackEx, Red-
dit (Geigle et al., 2021) and ArxivS2S, we combine
all the splits into a single dataset and remove topics
that only have few instances. Finally, the datasets
are randomly splitted into large- & small- scale
versions. To show the dataset balancy, we show the

4We also tried maximum token length 512 with smaller
batch size, but the performance is not better.

1 2 3 4
Iteration

0.75

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

Cl
us

te
rin

g 
Ac

cu
ra

cy

Bank77
Bank77-self
FewRel
FewRel-self
StackEx
StackEx-self
GoEmo
GoEmo-self

Figure 5: Relative clustering accuracy (divided by max-
imum for better aligning across datasets) of CLUSTER-
LLM-GPT3.5 over 4 iterations.

entropy of class distribution in Table 9.

F Results of More Iterations

We show the results over 4 iterations of CLUS-
TERLLM in Figure 5. During iteration, we sam-
ple triplets from previously fine-tuned embedding
space and continue to fine-tune the model with pre-
vious checkpoint as initialization. We also show
the self-supervise results using the same checkpoint
fine-tuned with GPT-3.5 predictions as initializa-
tion at each iteration. We observe that using GPT-
3.5 predictions is almost always beneficial. The
performance generally increases and saturate at the
fourth iteration with the exception of GoEmo.

G More Related Works

Generalized Category Discovery (GCD).
GCD (Vaze et al., 2022; Lin et al., 2020; Zhang
et al., 2021b, 2022; Mou et al., 2022; An
et al., 2022) assume partial known classes with
annotations which can also be used to infer
user’s requirement on clustering. As an infant
research area, most previous works employ
pseudo-labelling, via optimal transport (Rizve
et al., 2022b; Yang et al., 2022), similarity
learning (Rizve et al., 2022a; Cao et al., 2022)
or prototype-based learning (Sun and Li, 2022).
Furthermore, new intent discovery (Zhang et al.,
2022, 2021b, 2023; An et al., 2022; Lin et al.,
2020) is proposed to study a similar research
problem in the domain of intent detection. Most
recently, Hogan et al., 2023 adapts the setting into
relation type discovery. However, GCD relies on
sufficient annotated and unlabeled data for training.
In contrast, CLUSTERLLM seeks for minimal
supervision and studies a setting with controlled
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Method
Intent Discovery Emotion

Bank77 CLINC(I) MTOP(I) Massive(I) GoEmo
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Instructor 60.30(2.39) 78.37(0.78) 79.52(1.96) 92.65(0.42) 35.53(1.05) 70.78(0.74) 54.72(2.00) 72.29(0.61) 24.02(1.11) 20.15(0.19)

+self-supervise 61.48(2.84) 79.28(1.02) 81.87(0.97) 93.55(0.41) 35.27(1.53) 71.88(0.66) 58.30(1.42) 73.73(0.56) 24.34(1.25) 21.17(0.56)

+CLUSTERLLM-GPT3.5 65.47(2.28) 81.60(0.92) 82.29(1.09) 93.91(0.11) 36.80(0.83) 73.16(0.37) 57.70(2.92) 74.24(0.68) 25.23(1.21) 22.19(0.42)

+CLUSTERLLM-GT&GPT3.5 67.30(1.35) 82.46(0.17) 80.90(1.58) 93.80(0.25) 37.75(1.64) 74.51(0.51) 58.92(1.80) 75.07(0.43) 27.96(2.59) 25.90(0.69)

Method
Type Discovery Topic Mining

FewRel FewNerd FewEvent StackEx Reddit
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Instructor 41.38(0.75) 53.97(0.23) 29.62(1.02) 42.83(0.31) 41.42(2.09) 61.13(1.11) 46.76(0.80) 61.20(0.37) 55.04(2.69) 59.55(0.98)

+self-supervise 41.09(0.99) 54.02(0.29) 30.57(0.18) 43.64(0.26) 45.54(1.70) 64.70(0.50) 46.24(0.46) 60.78(0.26) 56.45(1.59) 60.11(0.39)

+CLUSTERLLM-GPT3.5 47.22(0.89) 59.87(0.21) 33.86(1.19) 46.91(0.52) 47.55(1.51) 70.21(0.59) 47.42(1.35) 61.34(0.30) 55.47(2.44) 58.73(1.09)

+CLUSTERLLM-GT&GPT3.5 49.20(0.47) 61.20(0.30) 34.85(1.42) 48.59(0.33) 46.90(1.77) 71.51(0.83) 48.12(0.93) 62.04(0.36) 57.95(1.96) 61.39(0.92)

Method
Topic Mining Domain Discovery

Avg
ArxivS2S MTOP(D) Massive(D) CLINC(D)

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
Instructor 24.55(0.42) 39.86(0.06) 85.01(2.18) 83.96(0.93) 56.11(5.07) 61.86(3.27) 51.74(2.97) 55.28(2.56) 48.98 60.99
+self-supervise 24.49(0.75) 40.70(0.16) 89.54(4.56) 86.69(2.09) 58.14(3.88) 64.49(2.28) 50.93(4.11) 53.01(4.48) 50.30 61.98
+CLUSTERLLM-GPT3.5 25.60(0.51) 41.50(0.14) 84.08(3.34) 84.57(1.97) 58.14(3.97) 65.50(1.35) 50.12(4.13) 53.46(2.13) 51.21 63.37
+CLUSTERLLM-GT&GPT3.5 25.29(0.41) 41.81(0.13) 84.99(4.24) 86.59(1.53) 58.55(1.40) 65.66(1.00) 57.08(1.75) 58.35(1.78) 52.55 64.92

Table 6: Ablation study on clustering quality for large-scale datasets.

Method Bank77 FewRel Massive(I) Massive(D) MTOP(I) MTOP(D) CLINC(I) CLINC(D) Rank
GT #clusters 77 64 59 18 102 11 150 10 -

Elbow (Thorndike, 1953) 50 (35.06) 38 (40.63) 47 (20.34) 45 (150.0) 35 (65.69) 35 (218.2) 64 (57.33) 71 (610.0) 7
BIC (Goutte et al., 2001) 183 (137.7) 183 (185.9) 148 (150.8) 141 (683.3) 169 (65.69) 170 (1445) 179 (19.33) 178 (1680) 8

ClusterSize (Zhang et al., 2021b) 90 (16.88) 95 (23.38) 79 (33.90) 81 (350.0) 84 (17.65) 83 (654.5) 105 (30.00) 109 (990.0) 5
Ours (GPT3.5,λ = 1) 79 (2.60) 32 (50.00) 122 (106.8) 55 (205.6) 56 (50.00) 13 (18.18) 143 (4.67) 118 (1080) 6
Ours (GPT3.5,λ = 3) 79 (2.60) 52 (18.75) 108 (83.05) 54 (200.0) 61 (40.20) 20 (81.81) 145 (3.33) 118 (1080) 4
Ours (GPT4,λ = 1) 64 (16.88) 40 (37.50) 58 (1.69) 16 (11.11) 24 (76.47) 8 (27.27) 143 (4.67) 32 (220.0) 3

Ours (GT,λ = 1) 59 (23.38) 79 (23.44) 61 (3.39) 17 (5.56) 27 (73.53) 11 (0) 148 (1.33) 32 (220.0) 2
Ours (GT,λ = 3) 77 (0) 78 (21.88) 54 (8.47) 37 (105.6) 19 (81.37) 11 (0) 148 (1.33) 32 (220.0) 1

Table 7: Inferred granularity on large-scale datasets. The setting is the same as in Table 5.

Method
small-scale large-scale

Massive(I) Massive(D) CLINC(I) CLINC(D) Massive(I) Massive(D) CLINC(I) CLINC(D)
GT 59 18 150 10 59 18 150 10

Ours 41 20 146 39 58 16 143 32
w/o Justification 41 50 137 41 80 36 129 32

w/o Demonstration 41 64 141 108 77 74 120 105

Table 8: Prompt designs in determining granularity. We use the Instructor embedding with prompts, and we report
results of GPT-4 with λ = 1.

(a) Massive(D) - Instructor (b) Massive(D) - CLUSTERLLM-I-iter (c) CLINC(D) - Instructor (d) CLINC(D) - CLUSTERLLM-I-iter

Figure 6: Scatter plots for t-SNE of embeddings. We select 10 classes from each datasets, denoted by colors.
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Task Name entropy(small) entropy(large)

Intent

Bank77 1.00 1.00
CLINC(I) 1.00 1.00
MTOP(I) 0.74 0.75

Massive(I) 0.91 0.92

Type
FewRel 1.00 1.00

FewNerd 0.82 0.82
FewEvent 0.85 0.85

Topic
StackEx 0.98 0.98

ArxivS2S 1.00 1.00
Reddit 1.00 1.00

Emotion GoEmo 0.91 0.91

Domain
CLINC(D) 1.00 1.00
MTOP(D) 0.98 0.98

Massive(D) 0.94 0.94

Table 9: Entropy of class distribution.

Dataset Prompt
Bank77 Represent the bank purpose for retrieval:

CLINC(I) Represent the sentence for retrieving the purpose:
FewRel Represent the relation between two entities for retrieval:

FewNerd Represent the entity type for retrieval:
FewEvent Represent the event type for retrieval:
StackEx Represent the question for retrieval:

ArxivS2S Represent the science statement for retrieval:
GoEmo Represent an emotion sentence for retrieval:

Massive(I) Represent the sentence for retrieving the purpose:
MTOP(I) Represent the sentence for retrieval:

Reddit represent a reddit community title:
Massive(D) Represent the scene for retrieval:
MTOP(D) Represent a sentence:
CLINC(D) Represent a sentence:

Table 10: Prompts for Instructor.

computation- & data- cost.
LLMs as Annotators. Recent instruction-tuned
LLMs, such as ChatGPT, have been shown to
have the ability to reproduce or improve human-
generated labels (Gilardi et al., 2023; He et al.,
2023; Zhu et al., 2023). Furthermore, several works
dedicate to fine-tune models with feedbacks from
LLMs (Cheng et al., 2023; Bai et al., 2022). This
paper instead focuses on clustering tasks.

H Sub-optimal Performance on Domain
Discovery

We noticed that the performance of domain dis-
covery (MTOP(D), Massive(D) and CLINC(D))
is barely improved or even decreased with CLUS-
TERLLM from original embedders (see Table 2).
Furthermore, the ablation studies reveal that even
with CLUSTERLLM-GT&GPT3.5, clustering per-
formance is not as good as self-supervise or CLUS-
TERLLM-random (see CLINC(D) in Table 4 and
MTOP(D) in Table 6). We also observe that, CLUS-
TERLLM-I-iter will further decrease the perfor-
mance (see Massive(D) in Table 2). While we
do not have rigorous explanations, one hypothe-
size is that the embedding space after fine-tuning

tends to be more compact than before and forming
small cliques, making it better for clustering fine-
grained clusters but not for coarse-grained clus-
ters. We showcase scatterplots on two datasets
with both Instructor and CLUSTERLLM-I-iter. It
can be observed that the clusters in embedding
space are tighter and more separated especially on
CLINC(D).

I Dataset Leakage

Since LLMs like ChatGPT are trained on web-
scraped texts from internet, it is likely they already
have access to our evaluation datasets during train-
ing. For example, the topic mining datasets use
StackExchange, Reddit and Arxiv tags as labels
which is freely available online. However, as ob-
served in Table 3, the performance of triplet pre-
diction on these datasets are often far from perfect.
Furthermore, the other datasets like Bank77 are
synthesized datasets which is not accessible dur-
ing training. FewRel is collected from Wikipedia
corpus but their labels are not easily accessible.
Similarly, GoEmo is collected from Reddit but the
emotion labels are not accessible during training.
Thus, dataset leakage is not a primary concern of
this paper.
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Dataset Prompt
Bank77 Select the banking customer utterance that better corresponds with the Query in terms of intent.

CLINC(I) Select the customer utterance that better corresponds with the Query in terms of intent.
FewRel Select the example that better corresponds with the Query in terms of relation type.

FewNerd Select the example that better corresponds with the Query in terms of entity type.
FewEvent Select the example that better corresponds with the Query in terms of event type.
StackEx Select the StackExchange question that better corresponds with the Query in terms of topic.

ArxivS2S Select the Arxiv paper title that better corresponds with the Query in terms of domain.
GoEmo Select the sentence that better corresponds with the Query in terms of emotion expressed.

Massive(I) Select the user utterance that better corresponds with the Query in terms of intent.
MTOP(I) Select the user utterance that better corresponds with the Query in terms of intent

Reddit Select the Reddit question that better corresponds with the Query in terms of topic.
Massive(D) Select the user utterance that better corresponds with the Query in terms of scenario.
MTOP(D) Select the user utterance that better corresponds with the Query in terms of domain.
CLINC(D) Select the customer utterance that better corresponds with the Query in terms of domain.

Table 11: Prefix of prompts for triplet task. Notice while we use different prompts for domain and intent (such as
CLINC(I) and CLINC(D)) in our experiments, they might be used interchangeably.

Dataset Prompt

Triplet Task

Select the banking customer utterance that better corresponds with the Query in terms of intent.

Query: Should i reinstall the payment app?
Choice 1: I’ve received my card so now I need to know how to sync it to the app.
Choice 2: Can I still use the app if I switched phones?

Please respond with ’Choice 1’ or ’Choice 2’ without explanation.

Pairwise Task

[Example1]
Sentence 1: I would like to see the source of my money.
Sentence 2: My source of funds need verified.
Yes. Because both intents are verify source of funds.

[Example2]
Sentence 1: Is there a fee for topping up
Sentence 2: What are the top up charges for US cards?
Yes. Because both intents are top up by card charge.

[Example3]
Sentence 1: Can I reactivate my lost card that I found this morning in my jacket pocket?
Sentence 2: how to activate card?
No. Because Sentence 1 has intent card linking and Sentence 2 has intent activate my card.

[Example4]
Sentence 1: What will I be charged for a physical card?
Sentence 2: My card is about to expire and I need to know how much it costs and how long ...
No. Because Sentence 1 has intent order physical card and Sentence 2 has intent card ...

Determine whether the intents of two banking customer utterances
below belong to the same intent category using above examples.

Sentence 1: $1 extra has been charged on my statement, why is that?
Sentence 2: Will it automatically top-up if there isn’t much money left?

Please respond with ’Yes’ or ’No’ without explanation.

Table 12: One example from Bank77 on both triplet task and pairwise task.
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