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Abstract

Beyond the great cognitive powers showcased
by language models, it is crucial to scrutinize
whether their reasoning capabilities stem from
strong generalization or merely exposure to rel-
evant data. As opposed to constructing increas-
ingly complex logic, this paper probes into the
boolean logic, the root capability of a logical
reasoner. We find that any pre-trained language
models even including large language models
only behave like a random selector in the face
of multi-nested boolean logic, a task that hu-
mans can handle with ease. To empower lan-
guage models with this fundamental capabil-
ity, this paper proposes a new self-supervised
learning method Curriculum Logical Reason-
ing (CLR), where we augment the training data
with nested boolean logic chain step-by-step,
and program the training from simpler logi-
cal patterns gradually to harder ones. This
new training paradigm allows language models
to effectively generalize to much harder and
longer-hop logic, which can hardly be learned
through naive training. Furthermore, we show
that boolean logic is a great foundation for im-
proving the subsequent general logical tasks1.

1 Introduction

Artificial intelligence has made a giant leap from
perception to cognition, with powerful pre-trained
language models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; Lan et al., 2020; Clark et al., 2020; Raf-
fel et al., 2020; Brown et al., 2020; He et al., 2021b),
large language models (LLMs) (Chung et al., 2022;
Chowdhery et al., 2022; OpenAI, 2023) demon-
strating human-level comprehension and reasoning
powers on a series of challenging tasks like com-
monsense reasoning (Zellers et al., 2019), open-
domain question-answering (Mihaylov et al., 2018),
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An aeroplane flies along the
four sides of a square at the
speeds of 200, 400, 600 and
800 km/hr.
Find the average speed of the
plane around the field?

Valjean allows Javert to arrest
him, but quickly escapes. It is
hinted that Valjean escaped with
the help of a file hidden in a
coin, an item he is later proved
to possess. Valjean returns to
his house to pack his clothes and
hides behind the door when Javert
comes looking for him.

Reading Comprehension Algebra

Why does megalodon
go extinct?

Open-domain QA
Use 4 numbers
(4, 9, 10, 13) to
obtain 24 with
basic arithmetic
operations (+-*/).

Game of 24

B is not A.
C is not B.
So if A is True,
is C True or False?

Nested Boolean Logic

B is not A.
C is not B.
D is not C.
So if A is True,
is D True or False?

Emmm... Easy!

One theory is...

(13 - 9) * (10 - 4) = 24

Average speed = 151.5 km/hr

Valjean is a...

Figure 1: While language models are capable of han-
dling a range of complex logical tasks, they do not
perform well on more basic nested boolean logic.

arithmetical reasoning (Ling et al., 2017).
While this is charming, these over-parameterized

language models are shown to be good at exploiting
superficial statistical cues to achieve decent scores
on end tasks (Zhou et al., 2021; Sanyal et al., 2022a;
Wu et al., 2023b). Early on BERT, it is found
that simply by adding a “not” to the claims, BERT
would be fooled into a random selector (Niven and
Kao, 2019). It is time to go back and scrutinize
whether the state-of-the-art PLMs master solid log-
ical capability, as truly powerful logical reasoners.

Rather than creating even more complex logic,
this paper concentrates on the root level of logi-
cal reasoning - boolean logic, as in Figure 1. Any
logic can be reduced to a combination of multiple
boolean operations, including negation ¬, intersec-
tion ∧, and union ∨. In this paper, we introduce a
new probing method to quantify the boolean logi-
cal reasoning of a language model, fine-grained to
different levels of logical difficulty.

However, our results show that none of PLMs
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Figure 2: Overview of Curriculum Logical Reasoning.

possess the necessary proficiency to tackle the
multiple nesting of (multi-nested) simple boolean
operations, even the state-of-the-art models like
DeBERTa-V3 (He et al., 2021a) and ChatGPT
(OpenAI, 2023). Faced with more than three nested
boolean operations, they quickly degenerate into
a random selector. even with the chain-of-thought
prompt (Wei et al., 2022; Zhang et al., 2022b). Con-
versely, this task is very simple for humans, com-
pared to other more general reasoning tasks. This
raises a shadow over their generalizability ac-
quired from large amount of training.

To empower the language models with such a
fundamental capability in nested boolean logic, we
propose a new self-supervised training paradigm,
Curriculum Logical Reasoning (CLR), inspired by
curriculum learning (Bengio et al., 2009). Con-
cretely, we construct the nested boolean logic step-
by-step from simple to hard on top of the original
training samples in a self-supervised manner (De-
vlin et al., 2019). The model is encouraged to start
with learning simple logical patterns and then move
forward to hard ones gradually, rather than learning
hard logic with a single leap. We find that recalling
simpler logic while learning harder logic can result
in a better outcome. Our experiments demonstrate
that CLR significantly enhances the logical learn-
ing process. Excitingly, pre-learning boolean logic
acts as a great foundation step to further enhance
the subsequent logical end tasks, like ReClor and
DREAM. Figure 2 illustrates CLR very lively.

2 Introducing Nested Boolean Logic

This section presents our method to introduce multi-
nested boolean logic to existing data.

We first present the notations. Let x denote the
input text, with its ground truth y, and pθ denote the
classifier (e.g. a language model) with parameters

The earth is flat. Original sample

S0: The earth is flat. Convert to context-question
Is S0 true or false?

S0: The earth is flat. Add nested boolean logic
S1: S0 is a false statement. NOT only
S2: S1 is a false statement.
S3: S2 is a true statement.
Is S3 true or false?

S0: The earth is flat. Add nested boolean logic
S1: S0 is a false statement. NOT & AND & OR
S2: S1 is a false statement.
S3: Either S2 or S1 is a true statement.
/ S3: Both S2 and S1 are true statements.
Is S3 true or false?

Table 1: Method to augment arbitrary samples with
nested boolean logic.

θ. Given an arbitrary input sample x, suppose that
the model accurately predicts pθ(x) = y. We now
define an operation δ on x, which can be regarded
as a transformation on the text, denoted as δ · x.

2.1 From Simple Boolean Logic to Nested
Boolean Logic

We concentrate on the logical operation, which
specifically manipulates the underlying logical
chain by transformation on the text. We present a
new form of logical operation that corresponds to
only boolean operators, i.e. intersection ∧, union
∨, and negation ¬. We might concentrate on the
simplest negation first.

Suppose that the input statement x entails a fact
f , which can be either a true fact or a false fact,
represented by y0. The logical process can be for-
mulated as x ⇒ y0, where ⇒ refers to “implies
that” and y0 ∈ {0, 1} (0 for True and 1 for False).

We illustrate a toy example of our logical op-
eration in Table 1. First, the model is required to
discriminate whether the stated fact in x is true or
false. It states a false fact “the earth is flat”, so
y0 = 1 (False). Next, we transfer it to a context-
question template and denote the context as S0. It
is still a binary classification and the answer for it
is limited in True or False. This template can be
applied to arbitrary tasks. For instance, a sentiment
analysis sentence “cold movie” can be rewritten to
a statement like “cold movie expresses a positive
movie watching”.

Our idea is to craft a series of statements after
S0. Each statement asserts the truth or falsity of the
previous statement, which is uniformly chosen. We
denote such a statement as boolean statement, and
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ask the model to discriminate the final statement.
For instance, y0 = 1 and S1 asserts S0 is false, so
y1 should be negated, y1 = 0. After deduction, we
can obtain y3 = 1.

Logically, the assertion of “true” results in no
change of the current logic and the assertion of
“false” results in a negation. δ can be nested for k
times without affecting the fact in x:

k∏

i=1

δi · x ⇒ yk (1)

where yi denotes each intermediate answer after
i times of boolean statements and yk denotes the
eventual answer. We denote Eq. 1 as multi-nested
boolean logic.

Obtaining final yk is free of external annotation,
as in self-supervised learning, by programming the
following recursion:

yi =

{
¬ yi−1 , δi asserts false

yi−1 , δi asserts true
. (2)

Such multi-nested boolean logic poses little chal-
lenge to humans. We hopefully assume that a
strong language model can tackle that as well.

We generalize the negation operation to other
boolean operations as in the bottom of Table 1.
Concretely, we uniformly choose one statement
from S1 to Sk and append it with either “and” or
“or” chosen uniformly.

2.2 Quantify Boolean Logic
We probe the mastery in nested boolean logic of
a language model by measuring its performance
against our boolean statements. An ideal logical
reasoner is supposed to make clear logical transi-
tions between truth and falsity. We are particularly
interested in this situation: the model accurately
discriminates the original fact, while falters in
delivering the correct answer subsequent to k
boolean statements. This can be formulated as:

pθ

(
k∏

i=1

δi · x
)

̸= yk (3)

where pθ satisfies:

pθ (x) = y0. (4)

Deep neural models are good at exploiting super-
ficial features rather than delving into the entire
semantics (Wu et al., 2023a; Sanyal et al., 2022a).

The consequence is that they can get the final re-
sult without correctly classifying the original fact.
Eq. 3 and 4 exclude this potential threat and fo-
cus entirely on the model’s capability in handling
nested boolean logic. In other words, if the model
reasons from a misclassified fact, its final result can
be noisy, misleading the analysis.

Hence, we are interested in two metrics:
• Clean accuracy (clean%): It refers to the gen-

eral accuracy score.
• Boolean accuracy (boolean%): It refers to the

accuracy only calculated on those samples where
the model accurately discriminates the original fact,
as represented in Eq. 3 and 4. This can only be
calculated on augmented data.

3 Benchmark

To benchmark the multi-nested boolean logic, we
construct a new dataset in this paper and following
experiments are based on this. As apart from other
datasets, it is composed of a series of subsets, rep-
resenting different levels of logical complexity. We
will release this benchmark for future research.

3.1 Data Collection

We collect the raw data from SciTail (Khot et al.,
2018), a scientific text entailment dataset with a
premise and a hypothesis for each sample, which is
labeled as entail or not entail. We join the premise
and hypothesis together to make them a “fact”, with
the entailed pair labeled as True and not entailed
one labeled as False. Some samples are shown in
Appendix A. Eventually, we get 6,000 raw samples
and randomly sample 1,000 of them as the test set
with the rest as the training set.

On top of the raw data, we convert it to the
context-question format and then impose boolean
statements to generate the adversarial set, which
means that the resultant samples are likely to fool
the model (Zellers et al., 2018, 2019). Specifically,
we uniformly choose a value k from some range
and insert k boolean statements following the origi-
nal sample. The range of k bounds the minimal and
maximal nesting of boolean logic on each sample,
and larger value of k suggests more nesting on the
logic chain. For instance, the samples in Table 1
correspond to k = 0 and k = 3 (see Appendix A).

We denote this benchmark as BoolKill, in which
each sample is a logic chain started with a potential
fact and followed by a series of boolean statements.
It is worth noting that BoolKill is a group of sets
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DeBERTa-base DeBERTa-large GPT2-1.5b

raw 96.4 98.1 96.0
u0 96.7 97.8 96.8

Table 2: Performances on raw data and its templated u0.

for different levels of logical difficulty, and each
level has its own training and test set. We use the
following notations to spot them:
• raw: the raw data in which each sample is a

statement of a fact;
• u0: the clean set in which each raw sample

is only transferred to a context-question template,
with semantics unchanged;

• uk: the adversarial set constructed on top of
u0 in which each sample is suffixed by k boolean
statements;
• uk1∼k2 : the adversarial set in which each sam-

ple is suffixed by k1 ∼ k2 boolean statements;
• ũk/ũk1∼k2 : u is negation-only, and we use ũ

to distinguish the adversarial set additionally con-
taining AND and OR.

3.2 Data Bias

The first thing to verify is whether u0 is semanti-
cally equivalent to raw. From Table 2, we find that
each model achieves very close performances on
raw and u0, suggesting that the context-question
template does not induce bias to the original data.

The average sentence length will vary due to
the boolean statements on raw data, which grows
linearly from 36 to 88, from u1 to ũ8. The overall
statistics of BoolKill are in Appendix A.

To minimize the bias between subsets, we keep
the ratio of positive and negative samples to 1:1
in all subsets. Additionally, BoolKill is a semi-
annotated dataset, comprising human-annotated
facts and synthetic boolean statements. The lat-
ter introduces several high-frequency words like
“true”, “false”, and “statement”, which may induce
large bias if these words do not occur in balance
in data. For instance, the model may make the de-
cision based on the relative number of “true” and
“false” in the sentence. Hence, we also keep the
occurrence of “true” and “false” the same for both
positive and negative samples in all subsets.

3.3 Evaluation Results

We report the thorough results on each level of logi-
cal difficulty on BoolKill. We sequentially evaluate

each model on u0, u1, u2, ..., and u8 (ũ8), indicat-
ing the number of nested boolean operations.

We evaluate two state-of-the-art PLMs:
• DeBERTa-V3 (He et al., 2021a): one of the

strongest BERT-style language models;
• ChatGPT (OpenAI, 2023): the strongest large

language model, as a powerful zero-shot learner.
ChatGPT shows an impressive ability to follow

human instructions and we directly evaluate it on
the test sets2. For DeBERTa, we first fine-tune it
on the uk training set and evaluate it on the uk test.

NOT: We curve the results in Figure 3. We
find that each model exhibits a high performance
on u1, suggesting their proficiency in tackling sin-
gle boolean logic. DeBERTa performs better than
ChatGPT, probably due to task-specific fine-tuning.
However, as the nesting increases, each model suf-
fers from a notable decline regardless of size. For
instance in (a), starting from u2, in which the sam-
ples are suffixed by only two boolean statements,
DeBERTa-base falls to 53.8% while DeBERTa-
large falls to 65.4%. From u3, strong as DeBERTa-
large, it leans to a random selector, whose accuracy
gets close to 50%. Similar situations can be seen on
ChatGPT, while its degradation is more gentle. It
suggests that even state-of-the-art models possess a
critical limitation in the basic nested boolean logic,
only able to handle up to three nested operations.
This is far below humans’ level.

AND & OR: From (b), it is counter-intuitive
that DeBERTa performs better on sets additionally
including AND and OR. We conjecture that the model
utilizes the inherent bias that AND⇒ False and OR
⇒ True in majority of cases. Such a shortcut is
particularly useful when k is small. Interestingly
from (d), well-trained ChatGPT appears not to use
this, and its performance drops even faster on ũ.
Therefore, we focus on ũ and ũ with large k in the
following experiments.

Chain-of-Thought (CoT) (Wei et al., 2022;
Zhang et al., 2022b; Yao et al., 2023) is proven
to be an effective prompt method to amplify the
reasoning ability of LLMs, with asking them to
offer the procedure while performing the reasoning.
From Figure 3 (c) and (d), we find that ChatGPT
performs better with the assistance of CoT. How-
ever, we raise a criticism in the paper: does CoT
promote logical reasoning? Indeed, our study show
that CoT may bring new logical concern. We will

2We use the API from openai. The backbone model is
gpt-3.5-turbo.
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Figure 3: Boolean accuracy of different models with increasing numbers of nested boolean operations (uk/ũk).

further discuss it in Sec. 6.1.

4 Empower Nested Boolean Logic

We present a new self-supervised learning manner.

4.1 Self-Supervised Learning

The straightforward method is to fine-tune the
model on BoolKill. The concept behind is to se-
quentially introduce boolean statements on top of
some corpus and let the model learn to tackle multi-
nested boolean logic self-supervisedly.

However, we find language models struggle to
fit the samples in BoolKill when the potential logic
within the data is too hard, and still be a random
selector. It indicates that naive training is not the
best therapy to learn complex logical patterns.

4.2 Curriculum Logical Reasoning

Inspired by Curriculum Learning (Bengio et al.,
2009), where the machine learning model is en-
couraged to learn the task starting with easier sam-
ples and ending with harder ones, we propose Cur-
riculum Logical Reasoning (CLR) to enhance the
process of learning logical reasoning.

There is a natural match between curriculum
learning and logical philosophy, because the logic
chain is a step-by-step progression from single to
complex. CLR means that, rather than learning hard
logic from scratch, the model starts with learning
simpler logic, e.g. single boolean logic, and then
moves forward to harder logic gradually, e.g. multi-
nested boolean logic.

We show a concrete instance. We start to train
the model on u0∼1, which solely includes single
boolean operations. Next, we train such a model on
u0∼2, which further includes two-nested boolean
operations. This gradual progression continues
until the model is trained on u0∼4. The above
procedure can be denoted as u0∼1 → u0∼2 →
u0∼3 → u0∼4. We find that reusing the easier

samples in the new turn of training benefits the
eventual performance, which potentially reminds
the model of what it learns previously. Our ultimate
goal is that the model can gradually learn to tackle
more complex logic that it has not seen before.

5 Empirical Results

As opposed to the prior section, where we evaluate
the model on each level of logical difficulty, in
this section, we evaluate each model on BoolKill
u1∼4, u5∼8, and ũ5∼8 as an alternative. These sets
cover the range from k = 1 to k = 8. u1∼4 is a
simpler one and u5∼8 and ũ5∼8 appear to be highly
challenging, since we previously show that state-of-
the-art PLMs are almost powerless for the nested
boolean logic beyond u3.

We experiment on DeBERTa-V3-base and
DeBERTa-V3-large. Each model is trained for
3,000 steps with a batch size of 16 and learning
rate of 2e-5 / 1e-5 for the base / large one.

To verify CLR, we report two experiments. In
the first experiment, we compare different training
settings and evaluate the models on BoolKill. In the
second, we leverage the boolean logic in BoolKill
to benefit other general logical tasks.

5.1 Nested Boolean Logic

The results across various BoolKill sets are sum-
marized in Table 3. We find that naively training
the model on u5∼8 only produces random accuracy
scores on all three test sets, even on two simpler
ones u0 and u1∼4. While on u0∼4 and ũ0∼4, we
find that DeBERTa-V3-large can achieve better out-
comes on simpler u1∼4 compared to DeBERTa-V3-
base. It suggests that a larger model possibly has
a greater learning ability to handle more nested
boolean operations, but it is still very hard even for
strong DeBERTa-V3-large, to learn very difficult
logical patterns in u5∼8 within a single leap.

However, CLR brings significant performance
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u0 u1∼4 u5∼8 ũ5∼8

clean% boolean%

DeBERTa-V3-base

NAIVE
u5∼8 50.2 46.6 49.6 51.2
u0∼4 96.0 71.5 53.6 53.4
ũ0∼4 94.6 72.2 52.9 56.0

CLR

u0∼1 96.2 64.6 49.0 50.5
→ u0∼2 96.4 89.6 ↑ 57.6 ↑ 56.7 ↑
→ u0∼3 96.1 94.6 ↑ 70.0 ↑ 60.7 ↑
→ u0∼4 96.3 96.8 ↑ 79.2 ↑ 66.8 ↑
→ ũ0∼4 95.8 97.4 ↑ 77.5 73.0 ↑

DeBERTa-V3-large

NAIVE
u5∼8 55.2 48.6 51.3 50.8
u0∼4 96.4 97.9 61.9 54.7
ũ0∼4 96.1 77.6 51.7 60.8

CLR

u0∼1 97.7 70.2 52.7 48.7
→ u0∼2 98.0 87.0 ↑ 60.7 ↑ 55.2 ↑
→ u0∼3 97.7 98.5 ↑ 71.1 ↑ 59.3 ↑
→ u0∼4 97.6 99.4 ↑ 84.3 ↑ 68.2 ↑
→ ũ0∼4 97.3 99.5 ↑ 81.9 82.3 ↑

Table 3: Results on BoolKill, comparing CLR with
naive training. We use “→” to denote the curriculum
setting we perform, where the model inherits the trained
weights from the last level. We highlight the step-by-
step performance gains CLR brings with “↑”.

boosts on every model and every test set. Its ad-
vantages are especially significant on harder u5∼8

and ũ5∼8. For instance on DeBERTa-V3-large, it
achieves an impressive boolean accuracy of 84.3%
on u5∼8 and 82.3% on ũ5∼8, uplifting naive train-
ing by about 30%, also keeping a high clean accu-
racy of 97.6% and 97.3% on u0. It is worth noting
that the model has not ever seen the hard samples in
u5∼8 and ũ5∼8 during training, and CLR effectively
generalizes the model to unseen logical patterns.
Additionally, all models consistently maintain a
strong accuracy on u0 throughout the process of
CLR, suggesting that they learn to discriminate the
original facts and tackle boolean logic simultane-
ously. As a contrast, naive self-supervised training
leads to inferior u0 results.

Moreover, we find that each level of curriculum
brings a considerable improvement to the model.
For instance, the performance of DeBERTa-V3-
base has outperformed all naive baselines when it
just completes the second level of training on u0∼2.

5.2 Boolean Benefits Complex Logic

Boolean logic acts as the atomic component of
logic. Our intuition is that it can solidify more
general end tasks that require complex logical rea-
soning. We conduct validation on two machine
reading comprehension (MRC) datasets: • ReClor

ReClor DREAM

DeBERTa
-V3-base

sp 58.2 79.9
u0 → sp 59.0 80.2

u0∼1 → sp 61.6 ↑3.4 82.0 ↑2.1
u0∼1 → u0∼2 → sp 62.6 ↑4.4 82.8 ↑2.9

DeBERTa
-V3-large

sp 71.4 90.4
u0∼1 → u0∼2 → sp 74.8 ↑3.4 92.5 ↑2.1

LLaMA2
-7b (LoRA)

sp 55.4 85.1
u0∼1 → u0∼2 → sp 61.6 ↑6.2 86.9 ↑1.8

u0∼1

DeBERTa
-V3-base

u0∼1 96.6 98.1
sp → u0∼1 95.3 ↓1.3 97.8 ↓0.3

Table 4: Results on general MRC tasks. “sp” refers to
the task-specific training set and we evaluate the model
on the corresponding test set.

(Yu et al., 2020), a reasoning-required MRC col-
lected from graduate admission exams; • DREAM
(Sun et al., 2019), a dialogue-based MRC. Con-
cretely, we first train DeBERTa-V3 on BoolKill as
an initialization and then fine-tune it on the task-
specific data of ReClor and DREAM.

The results are shown in Table 4. We find that
learning boolean logic acts as a nice initialization
for the subsequent reasoning tasks on both ReClor
and DREAM. For instance, initializing with u0∼1

improves DeBERTa-V3-base by 3.4% compared
to naive fine-tuning on ReClor, and u0∼1 → u0∼2

further improves by 4.4%. It is worth noting that u0
alone does not provide any useful signals (59.0%
on ReClor and 80.2% on DREAM), suggesting that
it is the boolean logic that we add into the data that
enhances the eventual logical performance.

As a contrast, we first train the model on task-
specific data and then fine-tune it on boolean logic.
We find that more complex logic in ReClor or
DREAM does not enable the model to perform
any better on u0∼1 or even harms it, confirming our
initial idea, that the model may ignore the basic
logic during training, even if it appears to handle
more complex problems sometimes.

It is the generic form of CLR to pre-learn boolean
logic and then learn complex logic.

5.3 Ablation Study

The ablation study is made under negation-only
sets. We first discuss the composition of levels
to make up the curriculum to perform CLR. We
remove some levels from the full curriculum setting
u0∼1 → u0∼2 → u0∼3 → u0∼4. Additionally, we
include another strong baseline by merging all the
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u0 u1∼4 u5∼8

clean% boolean%

NAI u0∼1, · · · , u0∼4 95.5 95.8 66.5
CLR u0∼1 → · · · → u0∼4 96.3 96.8 79.2

NAI u0∼1, u0∼3 95.4 86.6 55.7
CLR u0∼1 → u0∼3 95.8 92.7 66.4
NAI u0∼2, u0∼4 95.8 60.1 51.1
CLR u0∼2 → u0∼4 90.8 82.9 55.8

NAI u0∼1, u2, u3, u4 95.6 95.6 65.6

CLR

u0∼1 96.2 64.6 49.0
→ u2 95.9 89.9 57.7
→ u3 95.3 94.3 64.8
→ u4 95.6 96.5 72.2

Table 5: Ablation study on DeBERTa-V3-base. We omit
the notations of u0∼2 and u0∼3 in “· · ·”.

training sets together, e.g. u0∼1, u0∼2, u0∼3, u0∼4

and performing naive training. The difference is
that CLR strategically samples the training data
from easy ones to hard ones rather than uniformly.
The results are summarized in Table 5. We find
that any leap from the full curriculum can result
in a notable performance drop, highlighting the
importance of a complete and gradual progression
of logical learning. Interestingly, we also find that
learning from simpler u0∼1 → u0∼3 achieves a
better outcome compared to harder u0∼2 → u0∼4.

Next, we discuss the composition of samples for
each level. We remove the simpler samples that
belong to the prior level (u0∼1 → u2 → u3 →
u4) and see whether the model would forget what
it has learned before as a result. From Table 5,
we find that the removal process gives comparable
results on u0 and u1∼4, However, when it comes
to harder u5∼8, it leads to a performance drop of
6%. These findings underscore the importance of
reusing simpler samples when stepping forward to
the new level, especially when evaluating on harder
or even unseen data like u5∼8.

5.4 Fine-tuning Large Language Models

We also evaluate our method on LLMs. However,
fine-tuning LLMs requires a huge amount of re-
sources. As a compromise, recent studies propose
several efficient fine-tuning methods that only up-
date a small ratio of parameters within LLMs. We
experiment on three models, GPT2-1.5b (Brown
et al., 2020), OPT-7b (Zhang et al., 2022a), and
LLaMA2-7b (Touvron et al., 2023). They both be-
long to the decoder-only architecture as ChatGPT.
We fine-tune GPT2-1.5b with full parameters and
fine-tune the 7b models with the low rank adaption

u0 u1∼4 u5∼8

clean% boolean%

GPT2-1.5b
NAI u0∼1, · · · , u0∼4 93.8 99.2 65.6

CLR

u0∼1 95.6 74.0 52.8
→ u0∼2 94.4 84.6 55.8
→ u0∼3 94.1 98.6 71.2
→ u0∼4 94.3 99.9 ↑0.7 79.4 ↑13.8

OPT-7b (LoRA)
NAI u0∼1, · · · , u0∼4 94.3 98.0 63.8

CLR

u0∼1 93.3 68.7 54.2
→ u0∼2 94.3 78.2 53.0
→ u0∼3 94.7 97.9 64.5
→ u0∼4 95.5 98.8 ↑0.8 69.4 ↑5.6

LLaMA2-7b (LoRA)
NAI u0∼1, · · · , u0∼4 97.3 99.4 67.9

CLR

u0∼1 96.3 64.3 48.3
→ u0∼2 97.6 86.2 51.8
→ u0∼3 97.7 98.6 67.8
→ u0∼4 97.6 99.9 ↑0.5 75.9 ↑8.0

Table 6: Results of LLMs, including the efficient fine-
tuning method (LoRA).

method (LoRA) (Hu et al., 2022).
From Table 6, we find that CLR works very well

on GPT2-1.5b, achieving a boolean accuracy of
79.4% on u5∼8, outperforming naive training by a
notable margin of 13.8%. However, larger-scaled
OPT-7b does not yield better results as expected.
Specifically, it achieves comparable results on sim-
pler u1∼4, while greatly lags behind much smaller
GPT2-1.5b on harder u5∼8. We conjecture that
parameter efficient fine-tuning might compromise
the acquisition of complex reasoning capability,
e.g. multi-nested boolean logic, leading to a non-
negligible performance drop.

6 Further Discussion

6.1 Chain-of-Thought

We discuss CoT in more detail, and this part is par-
ticularly geared to the current LLMs. It has been
shown that when being asked to give the procedure,
the model can perform the reasoning more pre-
cisely. In the prior section, we show that CoT can
assist ChatGPT in achieving better performance on
BoolKill. We notice that the intermediate thinking
procedure exposed by CoT is equally important. A
ideal reasoner can not only make the final answer
but also reasonable intermediate results.

However, we find that ChatGPT leans to fall into
inconsistent deduction when giving the intermedi-
ate results, as we illustrate in Table 7.

For [a], we can first obtain that S3 is false from
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the previous statements since S0 is true. Hence,
the deduction of the model up to this step is cor-
rect. In the next step, however, the model draws
an incorrect conclusion based on the fact that S3 is
false, that is S4 is true. Indeed, S4 should be false
since it doesn’t match S3, incurring a wrong final
answer. Similar cases can be found in [b]. These
cases indicate that when making longer reasoning,
ChatGPT can fall into mistake in some logical step,
even though each step is very easy when cutting
individually.

[a] Query

S0: A crust is a portion of a world.
S1: S0 is a false statement.
S2: S1 is a false statement.
S3: S2 is a false statement.
S4: S3 is a true statement.
Is S4 true or false? Let’s think step by step.

[a] Answer

...
S3: S2 is a false statement.
It contradicts the prior assessment S2 is true, so S3 is false.
S4: S3 is a true statement.
It contradicts the prior assessment S3 is false, so S4 is true.

[b] Query

S0: Humans sometimes eat clouds.
S1: S0 is a true statement.
S2: S1 is a false statement.
S3: S2 is a true statement.
S4: S3 is a true statement.
S5: S4 is a false statement.
Is S5 true or false? Give the procedure.

[b] Answer

...
S1: S0 is a true statement. (True assuming S0 is true)
S2: S1 is a false statement. (False because S1 is true)
S3: S2 is a true statement. (True because S2 is false)
S4: S3 is a true statement. (False because S3 is true)
...
Therefore, S5 is true based on the evaluation.

Table 7: ChatGPT case study. S4 in [a] should be false.

6.2 True or False
We take a further look at true-or-false questions, a
specific and common question type in MRC and
logical end tasks. Specifically, we filter out the sam-
ples with questions that contain keywords “true” or
“false”. In ReClor, there are 173 such samples out
of the 500 in its development set. The evaluation
results on true-or-false questions are shown in Ta-
ble 8. We find that both DeBERTa models strug-
gle with seemingly simple true-or-false questions,
showing lower accuracy compared to the overall
performance. However, the models pre-learned

True/False All

DeBERTa-V3-base sp 51.4 58.2
DeBERTa-V3-base boolean → sp 57.8 62.6
DeBERTa-V3-large sp 67.1 71.4
DeBERTa-V3-large boolean → sp 73.4 74.8

Table 8: Results on true-or-false questions in ReClor.

with nested boolean logic showcase a significant
improvement, achieving 6.4% and 6.3% points of
gain respectively.

7 Related Work

The study of boolean operations is the fundamen-
tal requirement for a series of challenging tasks,
e.g. arithmetical reasoning (Ling et al., 2017), com-
monsense reasoning (Zellers et al., 2019), read-
ing comprehension (Yang et al., 2018), dialogue
comprehension (Sun et al., 2019). We concentrate
on the multi-nested boolean logic by augmenting
the text with boolean statements. Previous stud-
ies analyze more general logical reasoning, e.g.
RICA (Zhou et al., 2021), RobustLR (Sanyal et al.,
2022a), FaiRR (Sanyal et al., 2022b), by logical
paraphrase or contrast sets.

Self-supervised learning methods typically gen-
erate learnable inputs on top of unlabeled corpora,
e.g. by masking (Devlin et al., 2019), insertion (Wu
et al., 2022), sentence reordering (Lan et al., 2020),
contrastive learning (Gao et al., 2021), while our
method is by imposing a series of sentences to the
suffix, actually generating learnable logic. We in-
troduce curriculum learning (Bengio et al., 2009),
which allows the model to learn step by step to fur-
ther facilitate self-supervised learning. Curriculum
learning is under-discussed in context of language
processing (Xu et al., 2020; Lee et al., 2022).

While deep neural networks are capable of han-
dling very complex tasks, in reality they lean to ex-
ploit spurious cues (Goodfellow et al., 2015; Madry
et al., 2018; Wu et al., 2023a), and can be powerless
to very simple perturbations as a consequence. Our
work discloses that language models are poorly
skilled at basic boolean logic. In parallel, studies
show that language models can be easily fooled
by some naive patterns within the text, e.g. lexi-
cal overlap (McCoy et al., 2019; Wu et al., 2023c),
entity boundary (Yang et al., 2023), word order
(Zhang et al., 2019).

We also release a challenging benchmark to eval-
uate boolean logical reasoning. There are a series
of work focusing on constructing challenging logic,
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e.g. ReClor (Yu et al., 2020), HotpotQA (Yang
et al., 2018), ANLI (Nie et al., 2020).

8 Conclusion

This paper provides a quantified analysis on the
multi-nested boolean logic. We flag the deficiency
in the state-of-the-art language models in terms of
such basic capability, which will inevitably cause
pitfalls in dealing with more complex reasoning
tasks. For this, we propose Curriculum Logical
Reasoning, a new self-supervised learning method
to empower language models with foundational
logical capability. We also show that our idea can
act as a cornerstone learning method for general
logical reasoning.

Limitations

We cannot exhaust all the arrangements of cur-
riculum to perform CLR, which could potentially
achieve even better performances. We have dis-
cussed the potential risk of chain-of-though as sec-
ondary contribution of our work, which will be
interesting to study in the future. Our method to
introduce nested boolean logic is general, while
our experiments are based on one source. Another
option is to collect data from more general corpus
or specific domains of interest, which is promising.
Eventually, we do not have enough resources to run
large language models above 7b.
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A BoolKill

Task PN ratio Size Length Vocab

BoolKill binary 1:1 6000 36∼88 14315

Table 9: Statistics of BoolKill.

SciTail

[Premise] The planet Mercury is the closest of
the planets to the Sun.
[Hypothesis] Mercury is closest to the sun.
[Label] Entail

Context-
question
(k=0)

S0: The planet Mercury is the closest of
the planets to the Sun.
So, Mercury is closest to the sun.
Is S0 true or false?
[Label] True

BoolKill
(k=1)

S0: The planet Mercury is the closest of
the planets to the Sun.
So, Mercury is closest to the sun.
S1 is a false statement.
Is S1 true or false?
[Label] False

BoolKill
(k=3)

S0: The planet Mercury is the closest of
the planets to the Sun.
So, Mercury is closest to the sun.
S1 is a false statement.
S2 is a true statement.
S3 is a false statement.
Is S3 true or false?
[Label] True

Table 10: Illustration of some samples from BoolKill.

13742

https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.18653/v1/n19-1131
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.18653/v1/2021.emnlp-main.598
https://doi.org/10.18653/v1/2021.emnlp-main.598

