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Abstract
Multilingual language models (MLMs) are
jointly trained on data from many different lan-
guages such that representation of individual
languages can benefit from other languages’
data. Impressive performance in zero-shot
cross-lingual transfer shows that these models
are able to exploit this property. Yet, it remains
unclear to what extent, and under which condi-
tions, languages rely on each other’s data. To
answer this question, we use TracIn (Pruthi
et al., 2020), a training data attribution (TDA)
method, to retrieve training samples from mul-
tilingual data that are most influential for test
predictions in a given language. This allows us
to analyse cross-lingual sharing mechanisms of
MLMs from a new perspective. While previous
work studied cross-lingual sharing at the model
parameter level, we present the first approach
to study it at the data level. We find that MLMs
rely on data from multiple languages during
fine-tuning and this reliance increases as fine-
tuning progresses. We further find that training
samples from other languages can both rein-
force and complement the knowledge acquired
from data of the test language itself.

1 Introduction

Multilingual joint learning is often motivated by
the idea that when multilingual language models
(MLMs) learn information for multiple languages
simultaneously, they can detect and leverage com-
mon universal patterns across them. Thus, these
models can exploit data from one language to
learn generalisations useful for another, obtain-
ing impressive performance on zero-shot cross-
lingual transfer for many languages (Wu and
Dredze, 2019). Various studies suggest that rep-
resentations created by popular MLMs, such as
mBERT and XLM-R (Conneau et al., 2020), are
not fully language-agnostic (Doddapaneni et al.,
2021; Singh et al., 2019), but instead strike a bal-
ance between language-agnosticism and captur-
ing the nuances of different languages through

language-neutral and language-specific compo-
nents (Libovickỳ et al., 2020; Gonen et al., 2020;
Tanti et al., 2021). This naturally raises the ques-
tion of how much models really benefit from mul-
tilingual data and cross-lingual sharing, and under
what conditions this occurs. Many works have stud-
ied the encoding of cross-lingual patterns within
MLMs by either focusing on probing for particu-
lar cross-linguistic differences (Ravishankar et al.,
2019; Choenni and Shutova, 2022), or by analyz-
ing the distributional properties of representational
language subspaces (Yang et al., 2021; Rajaee
and Pilehvar, 2022; Chang et al., 2022; Chi et al.,
2020). Yet, it is not straightforward how to trans-
late these results into model behavior at inference
time. We aim to directly study how much influence
languages exert cross-lingually on the predictions
for individual languages.

In this study, we take a step back in the training
pipeline to study the extent to which the model
exploits its multilingual training data when mak-
ing predictions. We hypothesise that if a model
performs cross-lingual information sharing, then it
will base its inference-time predictions (to some ex-
tent) on training data from multiple languages. An-
alyzing the cross-lingual sharing mechanism from
the data reliance perspective leads to a set of inter-
esting questions that we explore:

1. Given a test language A, does our MLM tend
to base its predictions only on data from A
itself, or does it also employ data from other
languages that it was exposed to during task
fine-tuning?

2. Do MLMs only employ data cross-lingually
out of necessity, e.g., in scenarios where in-
language fine-tuning data is unavailable or
insufficient?

3. Do languages support each other by adding
similar information to what is relied upon
from in-language data (i.e., reinforcing the

13244



model in what it already learns), or do they
(also) provide complementary information?

4. How do cross-lingual sharing dynamics
change over the course of fine-tuning?

5. Is the cross-lingual sharing behaviour similar
when the test language was seen during fine-
tuning compared to when it is used in a zero-
shot testing scenario?

To study this, we use TracIn (Pruthi et al., 2020), a
training data attribution (TDA) method to identify
a set of training samples that are most informative
for a particular test prediction. The influence of
a training sample ztrain on a test sample ztest can
be formalized as the change in loss that would
be observed for ztest if ztrain was omitted during
training. Thus, it can be used as a measure of how
influential ztrain is when solving the task for ztest.

To the best of our knowledge, we present the first
approach to studying cross-lingual sharing at the
data level by extending the use of a TDA method
to the multilingual setting. We find that MLMs
rely on data from multiple languages to a large
extent, even when the test language was seen (or
over-represented) during fine-tuning. This indi-
cates that MLM representations might be more uni-
versal than previous work suggested (Singh et al.,
2019), in part explaining the ‘surprising’ effective-
ness of cross-lingual transfer (Pires et al., 2019; Wu
and Dredze, 2019; Karthikeyan et al., 2020). More-
over, we find that cross-lingual sharing increases
as fine-tuning progresses, and that languages can
support one another by playing both reinforcing
as well as complementary roles. Lastly, we find
that the model exhibits different cross-lingual be-
haviour in the zero-shot testing setup compared to
when the test language is seen during fine-tuning.

2 Background and related work

2.1 Training data attribution methods

TDA methods aim to explain a model’s predictions
in terms of the data samples that it was exposed to
during training. Proposed methods include measur-
ing the similarity between learned model represen-
tations from training and test samples (Rajani et al.,
2020), and influence functions (Koh and Liang,
2017) that aim to compute changes in the model
loss through Hessian-based approximations. While
these methods compute influence between train-
ing samples and the final trained model, discrete

prediction-based methods like Simfluence (Guu
et al., 2023) base influence on the full training tra-
jectory instead. TracIn (Pruthi et al., 2020), used in
this paper, is somewhere in between these methods:
rather than using a direct loss difference, it tracks
the similarity between gradients of training and test
samples over model checkpoints. In NLP, TDA
methods have so far mostly been used for unveiling
data artifacts and explainability purposes (Han and
Tsvetkov, 2022), for instance, to detect outlier data
(Han et al., 2020), enable instance-specific data fil-
tering (Lam et al., 2022), or to fix erroneous model
predictions (Meng et al., 2020; Guo et al., 2021).

2.2 Studying cross-lingual sharing

Many approaches have been used to study the cross-
lingual abilities of MLMs (Doddapaneni et al.,
2021). Pires et al. (2019) and Karthikeyan et al.
(2020) showed that MLMs share information cross-
lingually by demonstrating that they can perform
zero-shot cross-lingual transfer between languages
without lexical overlap. This led to work on under-
standing how and where this sharing emerges.

One line of study focuses on how MLMs dis-
tribute their parameters across languages by ana-
lyzing the distributional properties of the resulting
language representations. In particular, they aim to
understand to what extent MLMs exploit universal
language patterns for producing input representa-
tions in individual languages. As such, Singh et al.
(2019) find that mBERT representations can be
partitioned by language into subspaces, suggest-
ing that little cross-lingual sharing had emerged.
Yet others show that mBERT representations can
be split into a language-specific component, and a
language-neutral component that facilitates cross-
lingual sharing (Libovickỳ et al., 2020; Gonen et al.,
2020; Muller et al., 2021). In addition, Chi et al.
(2020) show that syntactic information is encoded
within a shared syntactic subspace, suggesting that
portions of the model are cross-lingually aligned.
Similarly, Chang et al. (2022) more generally show
that MLMs encode information along orthogonal
language-sensitive and language-neutral axes.

While the previous works studied parameter shar-
ing indirectly through latent model representation,
Wang et al. (2020) explicitly test for the existence
of language-specific and language-neutral parame-
ters. They do so by employing a pruning method
(Louizos et al., 2018) to determine the importance
of model parameters across languages, and find that
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some parameters are shared while others remain
language-specific. Moreover, Wang et al. (2020)
focused on the negative interference effects (Ruder,
2017) of cross-lingual sharing, i.e., parameter up-
dates that help the model on one language, but harm
its ability to handle another. They show that cross-
lingual performance can be improved when param-
eters are more efficiently shared across languages,
leading to new studies on finding language-specific
and language-neutral subnetworks within MLMs to
better understand (Foroutan et al., 2022) and guide
(Lin et al., 2021; Choenni et al., 2022) cross-lingual
sharing at the parameter level. In contrast to these
works, we do not study cross-lingual sharing at the
model parameter level, but instead consider sharing
at the data level. To the best of our knowledge, we
are the first to explore this direction.

3 Tasks and data

We conduct model fine-tuning experiments in three
multilingual text classification tasks.

Natural language inference (NLI) The Cross-
Lingual Natural Language Inference (XNLI)
dataset (Conneau et al., 2018) contains premise-
hypothesis pairs that are labeled with the relation-
ship that holds between them: ‘entailment’, ‘neu-
tral’ or ‘contradiction’. The dataset contains paral-
lel data in 15 languages. The original pairs come
from English and were translated to the other lan-
guages. We use English, French, German, Russian
and Spanish for model fine-tuning and testing.

Paraphrasing The Cross-Lingual Paraphrase
Adversaries from Word Scrambling (PAWS-X)
dataset (Yang et al., 2019) and task requires the
model to determine whether two sentences are para-
phrases of one another. To create this dataset, a sub-
set of the PAWS development and test sets (Zhang
et al., 2019) was translated from English to 6 other
languages by professional translators, while the
training data was automatically translated. We use
English, French, German, Korean and Spanish.

Sentiment analysis The Multilingual Amazon
Review Corpus (MARC) (Keung et al., 2020) con-
tains Amazon reviews written by users in various
languages. Each record in the dataset contains the
review text and title, and a star rating. The corpus
is balanced across 5 stars, so each star rating con-
stitutes 20% of the reviews in each language. Note
that this is a non-parallel dataset. We use Chinese,
English, French, German and Spanish.

4 Methods

4.1 Models and fine-tuning

For all tasks, we add a classification head on top of
the pretrained XLM-R base model (Conneau et al.,
2020). The classifier is an MLP with one hidden
layer and uses tanh activation. We feed the hidden
representation corresponding to the beginning-of-
sequence token for each input sequence to the clas-
sifier for prediction. We use learning rates of 2e-5,
9e-6, and 2e-5 for XNLI, PAWS-X, and MARC,
and use AdamW (Loshchilov and Hutter, 2017)
as optimizer. We fine-tune the full model on the
concatenation of 2K samples from 5 different lan-
guages, i.e. 10K samples for each task. This allows
us to limit the computational costs of computing
influence scores (which increase linearly with the
number of training samples), while still obtaining
reasonable performance. We also reduce computa-
tional costs by converting each task into a simpler
classification problem1: for XNLI, we follow Han
et al. (2020) by classifying “entailment or not” (i.e.,
mapping neutral and contradiction samples to a
non-entailment label); for MARC, we collapse 1
and 2 stars into a negative and 4 and 5 stars into a
positive review category. We train for 10 epochs
and use early stopping (patience=3). We find that
training converges at epoch 4 for XNLI, and at
epoch 5 for PAWS-X and MARC, obtaining 78%,
83%, and 90% accuracy on their development sets.

4.2 TracIn: Tracing Influence

We denote our training set D = {zi : (xi, yi)}Ni=1,
where each training sample zi consists of an input
sequence xi and a label yi. Koh and Liang (2017)
show that we can compute how ‘influential’ each
training sample zi ∈ D is to the prediction for a
test sample xtest : ŷtest = fθ̂(xtest). The influence
score for a training sample zi on a test sample ztest

is defined as the change in loss on ztest that would
have incurred under the parameter estimates fθ̂ if
the model was trained on D \ zi. In practice, this
is prohibitively expensive to compute as it requires
training the model |D|+ 1 times. Koh and Liang
(2017) show that we can approximate it by mea-
suring the change in loss on ztest when the loss

1This reduces computational costs indirectly because sim-
pler tasks require fewer training samples to obtain reasonably
high performance for. As a result, we need to compute influ-
ence scores between fewer training and test samples.
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associated with zi is upweighted by some ϵ value:

I(zi, ztest) ≈
−∇θL(ztest, θ̂)

TH−1

θ̂
∇θL(zi, θ̂)

(1)

where H−1

θ̂
is the inverse-Hessian of the loss

L(D, θ̂) with respect to θ, i.e. [ ∇2
θL(D, θ̂)]−1.

However, as computing H−1

θ̂
is still expensive,

this method requires further approximations if the
model is non-convex, and they can be less accurate
when used on deep learning models (Basu et al.,
2021). Pruthi et al. (2020) find a similar, but first-
order, solution that we use in this study, TracIn:

I(zi, ztest) =
E∑

e=1

∇θL(ztest, θe) ·∇θL(zi, θe) (2)

where θe is the checkpoint of the model at each
training epoch. The intuition behind this is to
approximate the total reduction in the test loss
L(ztest, θ) during the training process when the
training sample zi is used. This gradient prod-
uct method essentially drops the H−1

θ̂
term and

reduces the problem to the dot product between the
gradients of the training and test point loss.

Normalization A problem of gradient products
is that they can be dominated by outlier training
samples of which the norm of their gradients is
significantly larger than the rest of the training sam-
ples (Yu et al., 2020). This could lead TracIn to
deem the same set of outlier samples as most in-
fluential to a large number of different test points
(Han et al., 2020). In the multilingual setup, we
know that dominating gradients is a common prob-
lem (Wang et al., 2020).2 Barshan et al. (2020)
propose a simple modification that we adapt: sub-
stituting the dot product with cosine similarity, thus
normalizing by the norm of the training gradients.

5 Experimental setup

After fine-tuning our models (see Section 4.1), we
in turns, use 25 test samples from each language
for testing and compute influence scores between
each test sample and all 10K training samples.3 For
each test sample, we then retrieve the top k training

2From experiments using non-normalised FastIF (Guo
et al., 2021), we found that outlier fine-tuning languages (e.g.
Korean) would suspiciously often be ranked on top.

3Note that, despite using a NVIDIA A100 GPU, this is
still computationally expensive because we have to recompute
the influence scores between each test sample and all 10K
training samples separately for each model checkpoint.

I Sentence pair

test El río Tabaci es una vertiente del río Leurda en Rumania.
El río Leurda es un afluente del río Tabaci en Rumania.

4.19 El río Borcut era un afluente del río Colnici en Rumania.
El río Colnici es un afluente del río Borcut en Rumania.

4.15 El río Colnici es un afluente del río Borcut en Rumania.
El río Borcut era un afluente del río Colnici en Rumania.

4.10 La rivière Slatina est un affluent de la rivière .. Roumanie
La rivière Cochirleanca est un affluent de la .. Roumanie.

Table 1: The top 3 most positively influential training
samples retrieved for a Spanish test input from PAWS-X,
and their corresponding influence scores (I). Note that
the last training samples are truncated to fit in the table.
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Figure 1: Average percentage of decrease in model con-
fidence across test samples and fine-tuning languages
when removing the top k most positively influential
training samples for PAWS-X.

samples with the highest influence scores and refer
to them as the set of the most positively influential
samples. Similarly, we refer to the top k training
samples with the most negative influence scores
as the most negatively influential samples. Note
that negative cosine similarity between gradients
are commonly referred to as gradient conflicts (Yu
et al., 2020) and have been shown to be indicative
of negative interference in the multilingual setting
(Wang et al., 2020; Choenni et al., 2022).

To pick the test samples for which we will com-
pute influence scores, we select from the set of sam-
ples that the model labeled correctly, i.e. we study
which training samples (and the languages they
come from) positively and negatively influenced
the model in making the correct prediction. For
XNLI and PAWS-X, we train on parallel data; thus,
as the content in our fine-tuning data is identical
across languages, each language has equal oppor-
tunity to be retrieved amongst the most influential
samples. Hence, we can ascribe the influence from
each influential sample to the specific language that
it is coming from as well as to the content of the
sample itself (through the number of translations
retrieved irrespective of the source language).
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ID I Sentence pair P

es test Winarsky es miembro de IEEE, Phi Beta Kappa, ACM y Sigma Xi.
+Winarsky es miembro de ACM, IEEE, Phi Beta Kappa y Sigma Xi.

de345 2.3 Bernicat spricht neben Englisch auch Russisch, Hindi und Französisch.
+Bernicat spricht neben Englisch auch Französisch, Hindi und Russisch.

en987 2.08 The festival ’s main partners are UBS , Manor , Heineken , Vaudoise Assurances and Parmigiani Fleurier.
+

The main partners of this festival are Parmigiani Fleurier , Manor , Heineken , Vaudoise and UBS .

fr987 2.04 Les principaux partenaires du festival sont UBS, Manor, Heineken, Vaudoise Assurances et Parmigiani Fleurier.
+

Les principaux partenaires de ce festival sont Parmigiani Fleurier, Manor, Heineken, Vaudoise et UBS.

es115 -2.16 Il est le fils de Juan, a trois frères: Danilo Jr., Antonio, Danilo Rapadas et Cerila Rapadas ainsi que ses soeurs Roberta et Christina. −
Il est le fils de Danilo Rapadas et de Cerila Rapadas. Il a trois frères, Danilo Jr., Antonio, Juan et ses soeurs Roberta et Christina.

ko115 -2.13 그는 Juan의아들이고 Danilo Jr., Antonio, Danilo Rapadas, Cerila Rapadas와그의아버지 Roberta와 Christina가있습니다. −
Danilo Rapadas와 Cerila Rapadas의아들로 Danilo Jr., Antonio, Juan과그의자매인 Roberta와 Christina가있습니다.

es1771 -2.06 Además de Michael y Patrick, el álbum incluye contribuciones musicales de Diana, John, Chick, Stanley. −
Además de Diana, el álbum contiene contribuciones musicales de Chick, Stanley, John, Michael y Patrick.

Table 2: The top 3 most positively (top) and negatively (bottom) influential samples retrieved for a random test
input from the PAWS-X dataset. + indicates a correct paraphrase and − an incorrect one. Also, correct re-ordered
words are denoted by orange, incorrect ones by red and the respective words in the original sentence by green.

6 Quality of most influential samples

We qualitatively test the plausibility of our influ-
ence scores. In Table 1, we show a Spanish test
input from PAWS-X and the corresponding top 3
most positively influential samples retrieved using
TracIn. We see that TracIn ranks extremely similar
samples with the same label as most influential. In
Table 2, we also observe some evidence of cross-
lingual sharing. The 3 most positively influential
samples do not come from the test language, but
they clearly test the model for the same knowledge:
if the order of an unstructured list is slightly altered,
do we get a correct paraphrase? In each case, this is
correct. Yet, for the negatively influential samples,
similar alterations are performed (i.e. changing the
order of names), but in these cases this does cru-
cially change the meaning of the sentences.

Effect of k on model confidence We run quan-
titative tests to assess the quality of our influence
scores, and to select the optimal number for the top
k most influential samples to analyze in our further
experiments. We hypothesize that only a subset
of our fine-tuning data will substantially influence
predictions, while a long tail of training samples
will have little influence (either positively or nega-
tively). To find this threshold value k, we select the
top k ∈ {50, 100, 150, 200, 250} most influential
samples to test how our model confidence changes
when leaving out these sets of samples from our
fine-tuning data in turns. If our influence scores are
meaningful, removing the top k most positively in-
fluential samples will reduce the model confidence
(i.e. the class probability) in the correct prediction,
while removing the top k most negatively influen-
tial samples should increase it. When we find the
k value for which the change in confidence con-

verges, we conclude that the remaining samples
do not exert much influence anymore, and we stop
analyzing the ranking after this point.

Results Figure 1 shows the effect of retraining
the model on PAWS-X while removing the top k
most positively influential samples. We find that af-
ter k=100, the decrease in model confidence starts
to level off. The same was found for negatively
influential samples and XNLI. Thus, all further ex-
periments focus on analysing the top 100 most in-
fluential samples (see Appendix A for more details
on selecting k). Yet, while for XNLI removing
the top 100 most positively influential results in
a clear decrease in model confidence, removing
the most negative ones does not result in a similar
confidence increase. Thus, compared to PAWS-X,
negative interference effects seem less strong in
XNLI given our 5 fine-tuning languages. This is
also reflected in Table 3 where we report the aver-
age influence scores between all training and test
samples per language pair and task, and on aver-
age observe much higher scores for XNLI than for
PAWS-X (see Appendix B for more statistics on
the influence scores).

7 Cross-language influence

We now study how much each test language relies
on fine-tuning data from other languages at test
time for parallel and non-parallel datasets. Figure
2 shows, for all datasets, the percentage of training
samples that contributed to the top 100 most posi-
tively and negatively influential samples based on
their source language.
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Train
de en es fr ru

Te
st

de .431 .442 .425 .434 .418
en .633 .657 .633 .639 .610
es .563 .603 .597 .587 .542
fr .514 .540 .525 .529 .499
ru .651 .667 .652 .660 .641

(a) XNLI

Train
de en es fr ko

Te
st

de .244 .256 .241 .237 .155
en .283 .308 .285 .279 .153
es .221 .236 .223 .218 .146
fr .320 .335 .325 .323 .189
ko .143 .146 .141 .140 .166

(b) PAWS-X

Table 3: For each language pair (a, b), we compute the
average influence score between all 2K training samples
from the fine-tuning language a and all the test samples
from the test language b.

7.1 Parallel datasets

For XNLI and PAWS-X, across all test languages,
the retrieved sets of most-influential training sam-
ples contain relatively high numbers of samples
from languages other than the test language. This
high degree of cross-language influence provides
strong evidence of cross-lingual information shar-
ing within the models. Korean (PAWS-X) is the
only exception, which is least surprising as it is
also least similar to the other fine-tuning languages
and might therefore be processed by the model in
relative isolation. Yet, we see that Korean still con-
tributes cross-lingually to some extent (∼13% to
the most positively influential samples on average).
However, after further inspection we find that only
in ∼11% of these Korean samples the sentences
are fully written in the Hangul script; in all other
cases, code-switching might be responsible for the
cross-lingual alignment. Moreover, we observe
that all test languages across both tasks mostly rely
on data from their own language as most positively
influential. Yet, the opposite does not hold: for in-
stance, for PAWS-X we see that Korean is always
the largest negative contributor irrespective of the
test language, nicely showcasing the problem of
negative interference (Ruder, 2017). Lastly, we
find that while English obtains the highest aver-
age influence score across all training samples (see
Table 3), this is not representative of its actual influ-
ence when judged by the most influential samples.
This confirms our hypothesis that there is a long
tail of training samples that are of little influence.

7.2 Non-parallel dataset

While parallel datasets allow for a fair comparison
across languages in terms of the content that they
were exposed to, this setting is not representative
of most scenarios as most datasets are not paral-
lel. Also, the translation of training samples across
languages might decrease the variation between
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(b) PAWS-X
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(c) MARC

Figure 2: For each test language, we show the per-
centage of samples that each fine-tuning language con-
tributed to the top 100 most positively (left) and neg-
atively (right) influential training samples averaged
across all test samples.

languages, thus artificially boosting cross-lingual
sharing within the models. Therefore, we also train
a model on the non-parallel MARC dataset that con-
tains user-written product reviews. In Figure 2c, we
see that while languages indeed seem to rely more
strongly on their own data for MARC compared to
PAWS-X and XNLI (≈+10%), strong evidence for
cross-lingual sharing is still observed. Moreover,
similar language pair effects can be seen across
tasks, e.g. French and Spanish rely on each other’s
data the most for both PAWS-X and MARC. Yet
we also find interesting differences such as that for
both parallel datasets, English contributes to the
negatively influential samples the least, while for
MARC it is instead the largest contributor. Given
that our fine-tuning data is balanced across lan-
guages, it is possible that we are seeing the effect of
translation here, i.e. parallel data is translated from
English, which results in the other language data
conforming more to English, a phenomena known
as “translationese” (Koppel and Ordan, 2011). This
is also supported by Table 3, where we found that
on average the training samples from English ob-
tained the highest influence scores, but for MARC
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Translations (%) de en es fr ko ru

XNLI POS 60 59 58 62 – 60
NEG 64 60 61 62 – 62

PA
W

S-X POS 43 46 44 45 31 –
NEG 45 50 46 46 32 –

Table 4: For the positively and negatively influential
samples in the top 100 for each test language, we report
how many of the samples coming from other fine-tuning
languages are translations of the most influential sam-
ples from its own language (i.e. % reinforcing samples).

we find that Spanish most often obtains the highest
scores instead (see Appendix B, Table 6).

8 Further analysis

We further analyze cross-lingual sharing for the
tasks with parallel datasets since some of our anal-
ysis requires translation retrieval.

8.1 Complementary vs. reinforcing samples

Now that we have seen that our models rely on data
from languages other than the test language, we
study how these samples might contribute to the
model performance, i.e., are they reinforcing the
model with similar knowledge that it has seen from
the test language, or do these samples somehow
encode complementary knowledge that the model
did not retrieve on from its own language? In or-
der to make this distinction, we look at whether
the most influential samples retrieved in other lan-
guages are translations of the most influential sam-
ples retrieved from the test language itself.

Results We report these percentages in Table 4,
and find that for XNLI, over half of the contribu-
tions from different languages are translations of
the most influential training samples from the re-
spective test language, indicating that the model
largely benefits from reinforcing data from other
languages. For PAWS-X, this is not the case, indi-
cating that here the biggest benefit of cross-lingual
sharing can more likely be attributed to the model
learning to pick up on new, complementary, in-
formation from other languages. As XNLI re-
quires deep semantic understanding, we speculate
that the model does not need to learn language-
specific properties, but only needs to capture the
content from data (possibly creating more universal
representations to induce implicit data augmenta-
tion). Thus, the most influential samples might
more often be translations since some samples are
content-wise more influential, and samples across
languages can contribute equally. Yet, for PAWS-X,
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Figure 3: For each test language, we plot the percentage
of samples coming from their own language that were
included in the most positively influential training sam-
ples, i.e. the extent to which the model relies on its own
language and how this changes over fine-tuning epochs.

the model requires some knowledge of grammat-
ical structure, e.g. identical paraphrases can take
different forms across languages, thus the model
might learn from cross-lingual sharing differently.

8.2 Sharing dynamics during fine-tuning
As explained in Section 4.2, TracIn approximates
influence over training, obtaining separate scores
after each fine-tuning epoch. While in previous
results we reported the sum of these scores, we
now analyze them separately per fine-tuning epoch.
Blevins et al. (2022) study cross-lingual pretraining
dynamics of multilingual models to see when cross-
lingual sharing emerges. We instead study whether
different patterns emerge when looking at language
influence across fine-tuning.

Results In Figure 3, we plot, for each test
language, what percentage of samples from in-
language data were included in the top 100 most
influential samples across different fine-tuning
epochs. From this, we see that for both tasks,
the languages start relying less on their own fine-
tuning data after epoch 2. Thus we conclude
that on average the models gradually start to per-
form more cross-lingual sharing as fine-tuning pro-
gresses. Moreover, in line with previous find-
ings (Blevins et al., 2022), we observe that the
amount of cross-lingual sharing between differ-
ent language-pairs fluctuates during fine-tuning
(see Appendix C for results). To test whether the
ranked influence scores between epochs are statisti-
cally significantly different, we apply the Wilcoxon
signed-rank test (Wilcoxon, 1992), and confirm that
between all epochs this holds true (p-value < 0.05).

8.3 Zero-shot testing
Another interesting testbed is zero-shot cross-
lingual testing, in which no samples from the test
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Figure 4: Percentage of samples that each fine-tuning
language contributed to the top 100 most influential sam-
ples for Korean and Spanish during zero-shot testing.

language are seen during fine-tuning; here, the
model must rely solely on samples from other
languages. Thus, for a language l, we compare
the influential-samples ranking from the model for
which l was included in the fine-tuning languages
T , fθT , to that of a model for which it was ex-
cluded, fθT\l . We check for two potential differ-
ences: (1) Will fθT\l replace l-samples that were
highly influential in fθT with translations of those
same samples?; and (2) Will fθT\l rely on the same
non-l samples that were highly influential in fθT ?

As Korean was found to be the most isolated
language for PAWS-X (i.e., it relies on data from
other languages the least), while Spanish relies on
cross-lingual sharing the most, we in turns retrain
our model without Korean and Spanish, obtaining
74% and 81% accuracy respectively, and recom-
pute the influence scores. We then compare the
top 100 most influential samples from the two zero-
shot models to those of fθT , and report how many
translations of the samples from the test language
vs. the other languages are covered.

Results Surprisingly, we find that, in the zero-
shot setup, the models barely rely on the specific
training samples that were found when the test lan-
guage was included during fine-tuning. For Korean,
only 5% of the most positively influential samples
from the zero-shot model are direct translations
of the Korean samples that were retrieved when
it was included during training. Moreover, only
4% of training samples from the other languages
that were retrieved were deemed most influential
again in the zero-shot setup. The same trend was
found for Spanish, albeit to a lesser extent, where
translations of 14% of the Spanish and 13% from
the other languages were recovered. Lastly, in Fig-
ure 4, we show the data reliance distribution across
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Figure 5: The percentage of data contributing to either
the most positively (left) or negatively (right) influential
samples for a particular language when adding p % of
data on top of that language’s data during fine-tuning.

fine-tuning languages for our zero-shot models. We
find that the models still rely on cross-lingual shar-
ing, and while Korean was previously processed in
isolation (i.e., mostly relying on its own fine-tuning
data), it now benefits from multiple languages.

8.4 Sharing as an effect of data-imbalance

An important aspect that can affect cross-lingual
sharing is the (im)balance of language data during
fine-tuning. For instance, if some languages are
over-represented during training, then they might
end up exerting stronger influence over other train-
ing languages, while languages that are under-
represented might end up benefiting more from
cross-lingual sharing (Wu and Dredze, 2020). To
study how much the cross-lingual sharing effects
observed so far can be ascribed to data scarcity,
we perform experiments in which, for each lan-
guage l in turn, we fine-tune on PAWS-X, but with
p ∈ {25, 50, 75, 100}% additional l data included,
thus ensuring that language l is over-represented
with respect to the other fine-tuning languages.

Results In Figure 5, we plot the percentage of
in-language training samples that contribute to the
set of most influential samples for the respective
test language as an effect of data imbalance. For
all languages, we see a clear trend: as the data
gets more biased towards one language, training
samples from that language increase in influence—
both positive and negative—within the model. Yet
we also see that this trend does not always steadily
increase (e.g. for French and German). Moreover,
for all languages except Korean, even when the lan-
guage’s data has fully doubled (+100%), its most
influential samples set is still more than 50% from
other fine-tuning languages. This indicates that
even with data imbalances, the model largely ben-
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efits from cross-lingual sharing. An interesting
outlier is English, for which we see that positive
influence from its own data rapidly increases (sim-
ilar to Korean); we hypothesize that this could be
due to being considerably overrepresented during
pretraining, nudging the model towards processing
this language in isolation as well.

9 Conclusion

To the best of our knowledge, we are the first to
study the extent to which multilingual models rely
on cross-lingual sharing at the data level. We show
that languages largely influence one another cross-
lingually, and that this holds under various condi-
tions. Moreover, we find that cross-lingual sharing
increases as fine-tuning progresses, and that lan-
guages can support one another both by playing a
reinforcing as well as a complementary role. Lastly,
we show how TracIn can be used to study data shar-
ing in LMs. We hope that this paper can inspire
future work on studying the sharing mechanism
within multi-task and multi-modal models as well.

10 Limitations

One limitation of this study is that the experiments
are computationally expensive to run, resulting in
us only studying the effect on 125 test samples.
Previous works have used more efficiency tricks
to limit computational costs, for instance, by only
computing influence scores between the test sam-
ples and the k most similar training samples as
found based on k nearest neighbour search on their
representations (Rajani et al., 2020; Guo et al.,
2021; Jain et al., 2022). However, limiting the
pool of training samples will bias us to retrieving
samples based on the similarity between the hidden
model representations from the final trained model.
As one of our main goals is to study cross-lingual
sharing from a new perspective, we opted against
using such methods, and instead compute influence
scores over the full training set.

Moreover, due to the computational costs, we are
restricted to relatively easy tasks as (1) we can not
use a large fine-tuning set and (2) TracIn operates
on the sequence-level, i.e., it estimates how much
a full training instance contributed to a prediction,
making this method mostly suitable for classifica-
tion and regression tasks. We suspect that cross-
lingual sharing exhibits different cross-lingual be-
haviour for other types of tasks where language-
specific information plays a bigger role at test time

(e.g. text generation or sequence labelling). In such
tasks, the model could learn to rely on cross-lingual
sharing to a lesser extent. Jain et al. (2022) recently
extended influence functions to sequence tagging
tasks to allow for more fine-grained analysis on the
segment-level. Even though this further increases
computational costs, it would be a good direction
for future work on cross-lingual sharing.

Finally, we focus our analysis on the fine-tuning
stage. However, pre-training and fine-tuning ef-
fects are hard to disentangle. As such, it would be
reasonable to study the emergence of cross-lingual
abilities during pre-training as well. However, in
practice, this is difficult to achieve using TDA meth-
ods due to the large amount of training samples
seen during pre-training. It requires (1) access to
the full pre-training data, and (2) sufficient com-
putational resources to compute influence scores
between each test sample and (an informative sub-
set of) training samples. Yet, given that many re-
searchers are actively working on more efficient
TDA methods, and our approach to studying cross-
lingual data sharing can generally be coupled with
any type of TDA method, we expect that similar
studies that focus on the pre-training stage will be
possible in the future as well.
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A Selecting k for different tasks

Selecting a right threshold value for k is not trivial
as the number of most influential samples varies
across languages and specific test samples. More-
over, in many cases, the top k most positively influ-
ential training samples have the same label as the
test instance, while the opposite holds true for the
most negatively influential samples. Thus, when
selecting a value for k that is too large, we might
not be able to distinguish between the effect of re-
moving the most influential samples and the effect
of data imbalance on our model. Thus, we opt for a
more careful approach and select the smallest pos-
sible value of k for which we observe consistent
change in model confidence.
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Figure 6: Average percentage (%) of decrease in model
confidence across test samples and fine-tuning lan-
guages when removing the top k most positively in-
fluential training samples for the XNLI dataset.
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Figure 7: Average percentage (%) of increase in model
confidence across test samples and fine-tuning lan-
guages when removing the top k most negatively in-
fluential training samples from the PAWS-X dataset.
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Figure 8: Average percentage (%) of decrease in model
confidence across test samples and fine-tuning lan-
guages when removing the top k most positively in-
fluential training samples for the XNLI dataset.

B Influence score statistics

Figures 9, 10 and 11, show how for each task the
influence scores between fine-tuning and test lan-
guages are distributed. We show separate plots for
the distributions of positive and negative influence
scores. In Table 5, we show an example of a ran-
dom test input from XNLI and its corresponding
top 3 most positively and negatively influential sam-
ples. In Table 6, we report average influence scores
between training and test samples for MARC.
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Figure 9: The distribution of influence scores for PAWS-
X for all training samples from a language.
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ID / I Premise and hypothesis E

test Ich bin mir also nicht wirklich sicher warum. -Ich bin mir bezüglich des Grundes sicher.

de935/2.40 Und ich weiß nicht , was die Lösung ist. -Ich habe eine perfekte Vorstellung davon , was zu tun ist

en1696/2.34 yeah i don’t know why -I know why.

ru1696/2.30 Да, я не знаю, почему. -Я знаю почему.

es758/-1.36 Antes de la caída del comunismo, el Congreso aprobó sanciones amplias contra el régimen del apartheid en Sudáfrica. +El Congreso no apoyó el apartheid en Sudáfrica .

en1188/-1.33 But there is one place where Will’s journalism does seem to matter, where he does toss baseball. +Will’s articles are only good in regards to sports

es1188/-1.14 Pero hay un lugar donde el periodismo de will parece importar, donde él tira el béisbol. +Los artículos de will sólo son buenos en lo que se refiere a los deportes

Table 5: An sample of the top 3 most positively (top) and negatively (bottom) influential samples retrieved for a
random test input from the XNLI dataset. Note that + indicates a correct entailment and − a contradiction.
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Figure 10: The distribution of influence scores for XNLI
for all training samples from a language.

Train
de en es fr zh

Te
st

de .554 .540 .589 .582 .455
en .540 .554 .593 .582 .458
es .539 .536 .607 .582 .440
fr .561 .556 .618 .617 .454
zh .535 .544 .577 .576 .542

Table 6: For each language pair, we show the average
influence score between all 2K training samples from
a fine-tuning language and each test sample (from the
respective test language) for the MARC dataset.
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Figure 11: The distribution of influence scores for
MARC for all training samples from a language.

C Cross-language influence dynamics
over fine-tuning epochs

In Figures 12 and 13, we show the full influence dy-
namics between all fine-tuning and test languages
after different epochs during fine-tuning. Note that,
to compare whether our ranked influence scores
between different epochs are statistically signifi-
cantly different, we applied the Wilcoxon signed-
rank test (Wilcoxon, 1992), and we can confirm
that between all fine-tuning epochs this holds true
(p-value < 0.05).
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Figure 12: Full overview of how much each fine-tuning language exerts influence on each test language across the
different fine-tuning epochs. We report percentages for which each fine-tuning language was represented in the test
language’s top 100 most positively (green) and negatively (purple) influential training samples.

Figure 13: Full overview of how much each fine-tuning language exerts influence on each test language across the
different fine-tuning epochs. We report percentages for which each fine-tuning language was represented in the test
language’s top 100 most positively (green) and negatively (purple) influential training samples.
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