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Abstract

The quadratic complexity of the attention mod-
ule makes it gradually become the bulk of com-
pute in Transformer-based LLMs during gener-
ation. Moreover, the excessive key-value cache
that arises when dealing with long inputs also
brings severe issues on memory footprint and
inference latency. In this work, we propose
a plug-and-play approach that is able to in-
crementally compress the intermediate activa-
tion of a specified span of tokens into compact
ones, thereby reducing both memory and com-
putational cost when processing subsequent
context. Experiments on both in-domain lan-
guage modeling and zero-shot open-ended doc-
ument generation demonstrate the advantage
of our approach over sparse attention baselines
in terms of fluency, n-gram matching, and se-
mantic similarity. At last, we comprehensively
profile the benefit of context compression on
improving the system throughout. Code is
available at https://github.com/DRSY/KV_
Compression.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has become the underpinning component of mod-
ern large language models (LLMs) (Radford et al.,
2019; Devlin et al., 2019; Zhang et al., 2022; Tou-
vron et al., 2023) in recent years. However, the
quadratic computational complexity and memory
footprint of the attention mechanism have largely
limited applying Transformers to increasingly long
contexts with constrained computing resources.

To mitigate such issues, prior works (Child et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020; Ki-
taev et al., 2020) have explored an assortment of
efficient Transformer variants, mostly by replacing
the original quadratic attention operation with var-
ious forms of linearized approximation. Though
promising, large-scale pre-training and specialized
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CUDA kernels are typically required for these mod-
els to achieve performance comparable to off-the-
shelf LLMs and fulfill real efficiency gains.

In this work, we aim to improve the efficiency
of existing Transformer-based LLMs without any
architectural changes. Specifically, we focus on
the key-value cache, which accounts for the major-
ity of memory footprint and data movement (I/O)
cost when dealing with increasingly long input us-
ing LLMs. We propose a plug-and-play approach
to incrementally compress the key-value memory
of a contiguous span of tokens into compact ones.
Specifically, we introduce a pair of special sentinel
tokens <CL> and <CR> into the vocabulary of
LLMs and use them to mark the boundary of the
span to be compressed. During training, we modify
the causal attention mask such that future tokens
after <CR> are precluded from attending to tokens
between <CL> and <CR>. By continually training
LLMs with the next token prediction objective, the
model learns to extract and condense task-relevant
information of the bounded span into the ending
sentinel token. The reduced context length allevi-
ates both memory and computational costs when
processing subsequent tokens, thereby improving
system throughput with larger batch sizes and faster
decoding speed during inference.

We conduct experiments on the WikiText-2 lan-
guage modeling benchmark and show that our
approach is generalizable to LLMs with various
sizes (from 1.3B to 3B) and position encoding
schemes such as absolute position embedding (De-
vlin et al., 2019) and rotary position encoding (Su
et al., 2021). Compared to sparse attention base-
lines, our approach is able to effectively compress
historical key-value cache with significantly re-
duced degradation in perplexity. Moreover, we
demonstrate that our approach outperforms sparse
attention in zero-shot open-ended document gener-
ation across different compression ratios as eval-
uated by perplexity, ROUGE (Lin, 2004), and
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BERTScore (Zhang et al., 2019). Finally, we em-
pirically demonstrate that context compression is
able to confer considerable improvement in system
throughput for text generation.

2 Background and Related Work

In this section, we present necessary background
knowledge as well as drawing distinctions of our
approach to existing literatures.

Complexity of Attention Mechanism The self-
attention mechanism of LLMs produces a query
vector for each token to select and retrieve informa-
tion from all previously computed key and value
vectors. Thus, a key-value memory is required at
runtime to store past information. Given a pre-
trained LLM with M Transformer layers, H atten-
tion heads, per-head hidden dimension of dhead,
batch size b, and current context length L, the
model stores key and value vectors computed so
far as a tensor of shape (M, 2, b,H, L, dhead). Dur-
ing auto-regressive decoding, the size of key-value
cache grows linearly with the context length L,
leading to significant increase in memory footprint
and latency.

Efficient Transformers Various efficient vari-
ants of Transformers have been proposed to address
the problematic complexity of attention. Sparse
Transformer (Child et al., 2019) limits the recep-
tive field of each token to a local window. Long-
former (Beltagy et al., 2020) and BigBird (Zaheer
et al., 2020) introduce additional randomly and
globally accessible tokens to compensate for the
information loss. Linear Transformer (Katharopou-
los et al., 2020) reformulates the self-attention as a
linear dot-product of kernel feature maps and make
use of the associativity property of matrix products
to reduce the complexity from O(N2) to O(N).
Nevertheless, these approximations were shown
to degrade the expressiveness of full-attention and
have been upstaged by GPT-like LLMs recently. In
this work, however, we tackle this problem by com-
pressing lengthy input into more compact represen-
tations, which is orthogonal to on-going efforts to
architectural optimization.

Gisting Tokens Mu et al. (2023) explored using
gisting tokens to compress textual prompts during
instruction tuning. They showed that verbose task
instructions can be compressed into much shorter
ones. However, their approach is only applicable to
prefix text of around 20 tokens. In contrast, we aim

A
cat

jumps

over

a
carpet

<CL>

<CR>

A cat <CL> jumps over <CR> a carpet
carpet

Figure 1: Modified attention mask for context compres-
sion. Green and grey boxes indicate positions that are
allowed and disallowed to be attended to (attention di-
rection from row → column).

for a compression scheme with more flexible com-
pression choices and larger compression ratios.

3 Approach

In this section, we present a plug-and-play ap-
proach to compress the full-length contextual rep-
resentations into shorter ones while preserving in-
formation necessary to accomplish the end task.

3.1 Context Compression with Sentinel
Tokens

To alleviate the computational and memory inten-
sity of key-value memory when processing increas-
ingly long context, we introduce two sentinel to-
kens <CL> and <CR> into the vocabulary of LLM,
that are placed around a contiguous span of tokens
of which the corresponding key-value memory will
be compressed.

In order to consolidate information of tokens
surrounded by <CL> and <CR>, we design a
modified causal attention mask to facilitate such
behaviour. An illustrative example is shown in
Figure 1. Specifically, <CL> serves a start-of-
compression symbol and can only attend to it-
self. Normal tokens (tokens except for <CL> and
<CR>) have access to all previous <CR> and nor-
mal tokens. This ensures that the contextual repre-
sentations are built upon both compressed (lossy)
and complete (lossless) past information. <CR>
then act as a form of information selection and
retrieval from contextual representations of sur-
rounded tokens. This modified masking scheme,
combined with task-specific fine-tuning of LLM,
encourages distilling task-relevant information of
potentially long token sequences into a compact
representation, thereby reducing the size of key-
value memory required for subsequent processing.
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Model Method Compression Ratio (r)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OPT-1.3B
Scattered Attention 15.0 18.2 22.6 28.2 35.8 47.2 59.6 81.0 106.4 151.6

Local Attention 15.0 15.1 15.2 15.7 16.3 17.2 18.2 19.9 23.0 29.8
KV Compression 15.0 15.0 15.2 15.6 15.9 17.3 17.8 18.0 18.1 18.3

OPT-2.7B
Scattered Attention 13.1 16.2 19.8 25.5 32.4 41.7 56.3 75.7 101.4 142.3

Local Attention 13.1 13.1 13.4 13.9 14.4 15.3 16.1 17.5 20.1 26.6
KV Compression 13.1 13.2 13.5 13.7 14.0 15.3 15.8 16.0 16.1 16.3

RedPajama-3B
Scattered Attention 11.2 13.1 16.5 20.7 26.6 34.9 47.2 65.7 91.6 135.9

Local Attention 11.2 11.3 11.5 11.8 12.2 12.9 13.6 14.8 17.2 22.9
KV Compression 11.2 11.4 11.5 11.8 11.9 12.3 13.5 13.7 13.8 14.0

Table 1: Perplexity (the lower the better) of three LLMs on WikiText-2 language modeling benchmark.

Input Transformation Given an input x with
L tokens, we define compression ratio r as the
percentage of the tokens to be enclosed by one or
more pairs of <CL> and <CR>, and max compres-
sion length l as the largest number of tokens to be
compressed by a single pair of <CL> and <CR>
tokens. We repeatedly sample span of tokens with
length conforming to a uniform distribution U(2, l)
as compression target, until ratio r is reached. But
these spans must not overlap. We tie the position
encoding of <CL> and <CR> to their previous to-
ken, such that they don’t occupy valuable positions
for LLMs using absolute position embedding.

Training We opt for a light-weight procedure for
adapting LLMs to downstream tasks through fine-
tuning. Specifically, all parameters of the LLM are
frozen except for the embeddings of <CL> and
<CR> and LoRA (Hu et al., 2021) modules applied
to all attention layers. This not only eases the train-
ing process of models with billions of parameters
but also ensures the inherent language modeling
ability and parametric knowledge in feedforward
networks are intact (Geva et al., 2021).

Manipulating Key-Value Memory for Inference-
time Compression Given a text piece as prefix,
we apply the same input transformation strategy de-
fined above to reach a specified compression ratio.
To realize perceivable memory and computation
reduction, the key-value cache of tokens enclosed
by sentinel tokens is freed from GPU in a progres-
sive manner (e.g., using a for-loop over blocks of
tokens) if the original prefix is too long to fit into
GPU. Otherwise we just feed the transformed pre-
fix through the model and free the key-value cache
of marked tokens in one go.

Method Compression Ratio (r)
0.7 0.8 0.9

Local Attention 23.1 25.2 29.5
KV Compression 21.8 22.0 22.5

Table 2: Perplexity (the lower the better) of RedPajama-
3B on WritingPrompts test set.

4 Experiments

We mainly evaluate our approach on language mod-
eling task and then explore its zero-shot general-
ization ability on open-ended document generation.
Finally, we quantitatively measure the effect of
context compression on system throughput.

4.1 Language Modeling

Benchmark We mainly conduct experiments on
the Wikitext-2 (Merity et al., 2016) dataset consist-
ing of Wikipedia articles, which has been widely
used for the evaluation of language modeling. We
report token-level (excluding <CL> and <CR> for
KV Compression) average perplexity on the test
set as the evaluation metric. We also report results
on the WritingPrompts (Fan et al., 2018) dataset to
investigate the generality of our method.

Models To demonstrate the generality of our
approach, dubbed KV Compression, we adopt
OPT-1.3B, OPT-2.7B (Zhang et al., 2022), and
RedPajama-3B (Computer, 2023) as three LLMs
with different sizes and position encoding methods.

Baselines We compare our approach with two
sparse attention baselines: (1) Scattered Attention
which samples positions that permits attention from
a Bernoulli distribution B(1-r); and (2) Local At-
tention (Beltagy et al., 2020) which restricts the
attention of token xt to be within (⌊t ∗ r⌋, t). For
KV Compression, we set l as 25 throughout the ex-

12862



0.0 0.2 0.4 0.6 0.8
Compression Ratio

13

14

15

16

17
Ro

ug
e-

L

Local Attention
KV Compression(ours)

0.0 0.2 0.4 0.6 0.8
Compression Ratio

73.0

73.5

74.0

74.5

75.0

75.5

76.0

BE
RT

Sc
or

e

Local Attention
KV Compression(ours)

0.0 0.2 0.4 0.6 0.8
Compression Ratio

32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0
52.5

Pe
rp

le
xi

ty

Local Attention
KV Compression(ours)

0.0 0.2 0.4 0.6 0.8
Compression Ratio

120
140
160
180
200
220
240
260

Th
ro

ug
hp

ut
(#

 To
ke

ns
/S

ec
on

d)

12GB GPU VRAM
24GB GPU VRAM

Figure 2: RedPajama-3B on open-ended generation on 200 sampled C4 documents. Generation quality is measured
by fluency (perplexity), n-gram matching (ROUGE-L), and semantic similarity (BERTScore). We report system
throughput as the number of tokens generated per second with different maximum GPU VRAM.

periments. Our proposed approach, alongside the
sparse attention baselines we have selected, shares
a common goal: enhancing the ratio of compu-
tation to memory access by curtailing the stored
key-value cache. For detailed training setup please
refer to Appendix A.

Results The results on WikiText-2 are shown in
Table 1. As the compression ratio r gets larger,
all three methods result in an increase in perplex-
ity either due to: (1) important tokens are out-of-
scope for attention, or (2) the capacity of single
<CR> token is insufficient to encapsulate the full
information of compressed token span. We observe
that Local Attention substantially outperforms Scat-
tered Attention, suggesting the importance of local
context for language modeling. KV Compression
achieves the best perplexity across various com-
pression ratios. Notably, at high compression ra-
tios, e.g., r ≥ 0.7, KV Compression incurs signif-
icantly fewer degradation in perplexity compared
to Local Attention, demonstrating its advantage
in compressing scattered local information mean-
while keeping coherent global information. In Ta-
ble 2, we report the perplexity of RedPajama-3B
on WritingPrompts dataset using Local Attention
and the proposed KV Compression, with compres-
sion ratio from {0.7, 0.8, 0.9}. KV Compression
achieves consistently lower perplexity compared
to Local Attention, indicating its superiority as a
domain-generalizable method for context compres-
sion.

4.2 Zero-shot Open-ended Generation

Data We randomly select 200 documents from
C4 (Raffel et al., 2020) validation set for evaluation.
We use the leading 128 words as prefixes and treat
the next 64 words as ground-truth references.

Models We directly take the RedPajama-3B
model trained on Wikitext-2 to perform zero-shot

open-ended document generation. Given a prefix
text p, nucleus sampling (Holtzman et al., 2019) is
used to generate a completion c for it.

Baselines Because Scattered Attention performs
poorly according to Table 1, we only compare KV
Compression with Local Attention with compres-
sion ratio r ranging from 0.0 to 0.9 applied to the
prefix p using input transformation defined in Sec-
tion 3 for KV Compression and restricted attention
defined in Section 4. For Local Attention to achieve
inference-time compression, it amounts to main-
taining a FIFO queue to store the key-value cache:
as the time step during generation increases, old
key-value memory in the queue is popped out and
newly generated key-value memory is pushed in.

Evaluation Metrics We evaluate the quality of
generated completions from three aspects: (1)
fluency, (2) n-gram matching with ground-truth
continuation, and (3) semantic similarity with
ground-truth continuation. Fluency is evaluated
by perplexity computed from Pythia-1B (Biderman
et al., 2023) model pre-trained using C4. N-gram
matching and semantic similarity are measured by
ROUGE-L and BERTScore (Zhang et al., 2019) re-
spectively. To account for the randomness induced
by nucleus sampling, for each prefix, we generate
8 completions and report the average results.

Results Figure 2 shows that, as r increases, the
generated completions of Local Attention tend
to diverge from the original topic, leading to de-
creased ROUGE-L/BERTScore and increased per-
plexity. Again, KV Compression excel at pre-
serving relevant information and can still generate
decent-quality continuations up to 0.5 compres-
sion ratio. Notably, KV Compression can gener-
ate fluent text even when the prefix is extremely
compressed. The reason is that, during training,
Local Attention receives rapidly faded information
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from the distant past, making the discourse struc-
ture for subsequent generations incoherent. On the
contrary, KV Compression better preserve such in-
formation by consolidating it into sentinel tokens.

4.3 Throughput Gain from Context
Compression

With KV Compression, the key-value cache corre-
sponding to tokens enclosed by sentinel tokens can
be freed from memory. In this way, it permits a
larger batch size and improves the system through-
put in return. To quantitatively measure the impact
of context compression on throughput, we conduct
experiments on open-ended generation by testing
with different maximum available GPU VRAM.
The full length of the dummy input prefix is set to
800 and we use RedPajama-3B with nucleus sam-
pling to generate a continuation for it. The through-
put of the text generation system is defined as the
number of tokens generated per second. The re-
sults are shown in the bottom right of Figure 2. We
can see that, at extreme compression ratios (e.g.,
r ≥ 0.8), context compression offers more than
1.5x throughout improvement with 12GB GPU
VRAM and a slightly smaller 1.3x improvement
with 24GB GPU VRAM. At moderate compres-
sion ratio (e.g., r ≈ 0.5), KV compression is still
able to deliver 1.2x-1.4x throughout improvement
while only suffering from mild quality drop (Sec-
tion 4.2). More visualized memory-compression
ratio correlation is deferred to Appendix D.

5 Conclusion

In this work, we propose a simple yet effective
approach that enables LLMs to summarize the key-
value memory of specified span of tokens. Experi-
ments on language modeling and open-ended gen-
eration demonstrate that our approach substantially
outperforms sparse attention baselines in terms of
information compression and generation quality.

Limitations

In the current evaluation setup, we apply the same
strategy used for training to select spans of tokens
to be enclosed by <CL> and <CR> for inference-
time context compression. However, different text
pieces may display different degrees of importance
for downstream tasks. For instance, a grammatical
and semantic complete noun phrase can be more
compressible than an ungrammatical one that con-
tains only partial linguistic units. Though our in-

put transformation procedure theoretically includes
text spans of all possible linguistic structures, it
may still benefit from an elaborately designed strat-
egy/algorithm for selecting compression targets in
a given context.
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A Implementation Details

Language Modeling For language modeling ex-
periments, we train OPT-1.3B, OPT-2.7B, and
RedPajama-3B with the next token prediction ob-
jective. The loss is computed on all tokens except
for newly added <CL> and <CR> tokens. For
tokens right before <CL> and <CR>, we adjust
their ground-truth label to be tokens right after the
corresponding <CL> and <CR> tokens.

The trainable parameters for all LLMs include
two token embeddings of <CL> and <CR>, and
LoRA modules applied to all attention layers. The
rank of weight matrices of LoRA is set to 16.
The percentage of trainable parameters takes about
5% of the total parameters of the LLM. We use
AdamW (Loshchilov and Hutter, 2017) optimizer
with a 2e-5 learning rate. The batch size is set to 12
and the maximum sequence length during training
is set to 256 due to the limited computation bud-
get. The implementation is based on Huggingface
transformers (Wolf et al., 2020) library and all ex-
periments are conducted using a single RTX 3090
GPU.

Open-ended Document Generation For open-
ended document generation, we use nucleus sam-
pling with top p=0.9. Due to the randomness in-
duced by sampling, we perform 8 times nucleus
sampling for each compressed prefix and report
the average evaluation metrics adopted in the main
paper. This helps reduce variance and ensures a
more reliable evaluation result.

B Generalization Ability of KV
Compression
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Figure 3: Generalization performance of different train-
time compression ratios.

In our proposed KV Compression, an LLM is
trained on transformed data in which the percent

of tokens surrounded by sentinel tokens takes a
specified ratio of the total number of tokens. Here
we study the generalization performance of dif-
ferent train-time compression ratios and explore
the best practice. We visualize the perplexity of
RedPajama-3B trained with different compression
ratios at varying test-time compression ratios.

Figure 3 illustrates the results. We can see that
training with a higher compression ratio always re-
sults in better generalization ability across various
test-time compression ratios. The reason is that,
at a small compression ratio, language models can
sometimes exploit limited local context and can
still reliably predict the next token. In this case,
the sentinel tokens are not guaranteed to acquire
the desired context compression ability. When the
majority of context is not allowed to be attended to,
the sentinel tokens are forced to cultivate enough
compression ability in order to minimize the loss
function.

C Memory Usage with Varied
Compression Ratio
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Figure 4: Peak cached memory profiled using Pytorch
when using RedPajama-3B to produce a 100-token con-
tinuation for variable-length prefixes.

We have shown that context compression con-
fers decent improvement in system throughput, es-
pecially for moderate-sized GPUs. Here we re-
port detailed memory usage assuming a practical
scenario similar to multi-turn dialogue: the prefix
length (length of historical dialogue) gradually in-
creases, and the model is asked to output a response
of roughly 100 tokens. To maximize the through-
put of dialogue service, we assume the model is
simultaneously generating responses for multiple
instances, i.e., a batch size larger than one.

The visualized memory usage is shown in Figure
4. Context compression is able to reduce more than
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Figure 5: OPT-1B on open-ended generation on 200 sampled C4 documents. Generation quality is measured by
fluency (perplexity), n-gram matching (ROUGE-L), and semantic similarity (BERTScore).

3GB of peak cached GPU memory. In practice,
this translate to the feasibility of generating more
tokens for a single instance and enabling more in-
stances in parallel.

D Open-ended Generation Results of
OPT

Figure 5 summarizes the results of OPT-1B on
open-ended document generation. Compared to
that of Redpajama-3B (Figure 2), the generation
quality of OPT-1B is substantially lower. Com-
paring different context compression methods, KV
Compression performs uniformly better across all
three evaluation metrics.
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