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Abstract

Reasoning over spans of tokens from differ-
ent parts of the input is essential for natural
language understanding (NLU) tasks such as
fact-checking (FC), machine reading compre-
hension (MRC) or natural language inference
(NLI). However, existing highlight-based ex-
planations primarily focus on identifying in-
dividual important tokens or interactions only
between adjacent tokens or tuples of tokens.
Most notably, there is a lack of annotations
capturing the human decision-making process
w.r.t. the necessary interactions for informed
decision-making in such tasks. To bridge this
gap, we introduce SpanEx, a multi-annotator
dataset of human span interaction explanations
for two NLU tasks: NLI and FC. We then inves-
tigate the decision-making processes of multi-
ple fine-tuned large language models in terms
of the employed connections between spans in
separate parts of the input and compare them
to the human reasoning processes. Finally, we
present a novel community detection based un-
supervised method to extract such interaction
explanations from a model’s inner workings.1

1 Introduction

Large language models (LLMs) employed for nat-
ural language understanding (NLU) tasks are in-
herently opaque. This has necessitated the de-
velopment of explanation methods to unveil their
decision-making processes. Highlight-based expla-
nations (Atanasova et al., 2020; Ding and Koehn,
2021) are common: they produce importance
scores for each token of the input, indicating its con-
tribution to the model’s prediction. In many NLU
problems, however, the correct label depends on in-
teractions between tokens from separate parts of the
input. For instance, in fact checking (FC), we verify

*The first two authors contributed equally.
1 We make the code and the dataset available at:

https://github.com/copenlu/spanex
The dataset is also available at https://

huggingface.co/datasets/copenlu/spanex
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Figure 1: Human annotations explaining interactions between
text spans on an instance from our SpanEx dataset, FEVER
part. The presence of antonym interactions (high and low-
level) between the corresponding spans in the claim and the
evidence leads to the label REFUTES.

whether the evidence supports the claim; in natu-
ral language inference (NLI), we verify whether
the premise entails the hypothesis. We conjecture
that the model explanations for such tasks should
capture these token interactions as well.

Rationale extraction methods to capture feature
interactions used by a model have been proposed
before. However, these primarily capture interac-
tions between neighboring tokens (Sikdar et al.,
2021) or between tuples of tokens at arbitrary po-
sitions in the input (Dhamdhere et al., 2020; Ye
et al., 2021). They do not necessarily consider to-
kens from distinct parts of the input, such as claim
and evidence documents, and the token tuples may
not necessarily bear meaning on their own. Cur-
rently, there is a lack of explainability techniques
that unveil interactions among spans belonging to
different parts of the input, where the spans are
comprised of semantically coherent phrases. More
importantly, the development of interaction expla-
nation techniques has not been accompanied by
studies of the human decision-making processes
employed for multi-part input tasks. Before ex-
tracting interaction explanations, we would want to
ensure that such explanations are indeed valid from
a human perspective, i.e., a competent reader could
also identify such interactions as an explicit reason
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behind their decision-making process. Moreover,
the lack of such annotations impedes the compari-
son between extracted model explanations and hu-
man decision-making. We address these research
gaps by answering three core research questions.

RQ1: What is the human decision-making pro-
cess for tasks that involve connecting spans from
different parts of the input? To study this, we col-
lect the dataset SpanEx consisting of 7071 instances
annotated for span interactions (described in §2;
see Fig. 1 for an example annotation). SpanEx is
the first dataset with human phrase-level interac-
tion explanations with explicit labels for interaction
types. Moreover, SpanEx is annotated by three an-
notators, which opens new avenues for studies of
human explanation agreement – an understudied
area in the explainability literature. Our study re-
veals that while human annotators often agree on
span interactions, they also offer complementary
reasons for a prediction, collectively providing a
more comprehensive set of reasons for a prediction.

RQ2: Do fine-tuned LLMs follow the same
decision-making as the human annotators on tasks
with multi-part inputs? SpanEx enables an investi-
gation of the alignment between LLMs and human
decision-making. We evaluate the sufficiency and
comprehensiveness of the human explanations (see
§3) for six LLMs. We find that the models rely
on interactions that are consistent with the human
decision-making process. Interestingly, the models
depend more on the interactions where the inter-
annotator agreement is high, indicating an induc-
tive bias similar to that observed in humans.

RQ3: Can one generate semantically coherent
span interaction explanations? We propose a novel
approach for generating interaction explanations
that connect textual spans from different parts of
the input (see §4). The generated explanations can
contain spans in addition to single tokens, as an
explanation consisting of groups of arbitrary tokens
would lack meaning for end users (Chen, 2021).

2 Span Interaction Dataset

2.1 Manual Annotation Task

Datasets. We collect explanations of span interac-
tions for NLI on the SNLI dataset (Bowman et al.,
2015) and for FC on the FEVER dataset (Thorne
et al., 2018). SNLI contains instances consisting of
premise-hypothesis pairs, where a model has to pre-
dict whether they are in a relationship of entailment
(the premise entails the hypothesis), contradiction

(the hypothesis contradicts the premise), or neu-
tral (neither entailment nor contradiction holds).
FEVER contains instances consisting of claim-
evidence pairs, where one has to predict whether
the evidence supports the claim, refutes the claim
or there is not enough information (NEI). From
here on, we will use ‘Entailment’ to denote both
‘entailment’ and ‘supports’ labels, ‘Contradiction’
to denote both ‘contradiction’ and ‘refutes’ labels,
and ‘Neutral’ to denote both ‘neutral’ and ‘NEI’ la-
bels. We will also use ‘Part 1’ to denote the premise
for NLE or the evidence for FC; ‘Part 2’ to denote
the hypothesis for NLI or the claim for FC.

The FC task involves retrieving evidence sen-
tences from Wikipedia articles as the initial step,
followed by label prediction. As we are interested
only in the interaction between the claim and the ev-
idence parts, we focus only on the second task and
use the evidence sentences provided as gold anno-
tations in the original FEVER dataset. For claims
with no supporting evidence sentences (NEI class),
we employ the well-performing system by Malon
(2018) to collect sentences close to the claims.2

We collect annotations for a random subset of
the test splits of both datasets. While our analysis
necessitates the collection of annotations for test
instances, we also collect annotations for a random
subset of 1100 training instances from each dataset.
The latter opens new avenues for studies including
span interactions in the training processes of LLMs.

Interaction Spans. We introduce the notion of
span interactions, where the spans are contiguous
parts of the input sufficient to bear meaning. For
an interaction, one span is selected from Part 1 and
one from Part 2 of the input. We annotate the spans
at both high and low levels.

A high-level span is the largest contiguous se-
quence of tokens that i) is not the whole part, (i.e.,
not the entire premise or hypothesis) ii) bears mean-
ing in itself, and iii) can be associated with a span
from another part using one of the defined relations.
As an example, consider the premise “Two women
are running” and the hypothesis “Two men are
walking”. The label is “contradiction”, which has
to be justified through the interactions of the con-
stituents in the sentences. We see that the subjects,
made out of noun phrases are antonyms: “two men”
(premise) and “two women” (hypothesis), and so

216.8% of the FEVER instances that contain more than one
evidence sentence for a claim are discarded as they require
interaction explanation annotations between the evidence sen-
tences themselves. We leave this for future work.
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are the predicates, made out of verb phrases: “are
running” and “are walking”. These are the largest
meaningful constituents where such relationships
can be established. Therefore, they are consid-
ered “high-level” spans. A low-level span is the
smallest meaning-bearing text span that still holds
a relation. For the given example, these would be
“man”/“woman”, “running”/“walking”.

For annotating high-level span boundaries, the
annotators were shown the constituency parse tree
as a suggestion, but it was not enforced that the
boundaries must adhere to the constituents, as the
semantic segmentation of a sentence does not al-
ways adhere to the syntactic one. Annotators first
annotated spans at high-level and if smaller spans
inside the high-level ones could still hold an inter-
action with coherent semantics, they proceeded to
annotate a low-level span interaction (see an exam-
ple from the annotation platform in Fig. 6).

Interactions. We introduce three types of inter-
actions: ‘Synonym’, ‘Hypernym’, and ‘Antonym’.
A span is a ‘synonym’ for another one when both
denote the same concept, e.g., “two young children”
and “two kids”. ‘Antonym’ denotes the opposite,
e.g., “one tan girl” and “a boy”. ‘Hypernym’ indi-
cates superordinate interactions, e.g., “a couple” is
a hypernym of “two married people” as people can
be a couple without getting married but the reverse
is not true. While ‘Synonym’ and ‘Antonym’ in-
teractions are symmetric, ‘Hypernym’ interactions
have a directional aspect, hence, we use two dis-
tinct types: ‘Hypernym-P2-P1’ and ‘Hypernym-P1-
P2’ depending on whether the hypernym appears
within Part 1 or Part 2.

The interaction types defined above are well sit-
uated in previous work. The ideal approach to NLI
and FC would be to translate Part 1 and Part 2 into
formal meaning representations such as first-order
logic, but often such full semantic interpretation is
unnecessary as pointed by MacCartney and Man-
ning (2014). Consequently, the authors developed
a calculus of natural logic based on an inventory of
entailment relations between phrases - entailment
labels can be inferred based on these relations in-
stead of producing a full semantic parse. Similarly,
Yanaka et al. (2019) used the concept of upward
and downward entailment.

It can be easily seen that for the Contradiction
label, there has to be at least one Antonym inter-
action: a span must appear in Part 2 that directly
contradicts a span in Part 1. This interaction is

the same as the “negation” and “alternation” rela-
tions in MacCartney and Manning (2014). For the
Entailment label, there should be Synonym interac-
tions (“equivalence" in MacCartney and Manning
(2014)), or Part 1 should be more specific. For
example, consider an instance with Part 1 as “All
workers joined for a French dinner.” and Part 2
as “All workers joined for a dinner.”. “French din-
ner” is a true description of “dinner” (but not the
other way) because “dinner” is more generic, so
Part 1 entails Part 2. In other words, this upward
(Yanaka et al., 2019) or forward (MacCartney and
Manning, 2014) entailment (“French dinner” →
“dinner”) should only happen from Part 2 to Part
1 - for our case, a Hypernym-P2-P1 interaction
should exist. This also implies that a Hypernym-
P1-P2 interaction (downward (Yanaka et al., 2019)
or backward (MacCartney and Manning, 2014) en-
tailment) would make the label Neutral. However,
one can also create a neutral hypothesis by creating
text that has no synonym, hypernym, or antonym
relation with a premise span. As described below,
these are called Dangler-SYS-P2 interactions (“in-
dependence” relations in MacCartney and Manning
(2014)) in our setup. In summary, Antonym inter-
actions are important for the Contradiction labels,
Hypernym-P2-P1 and Synonyms are important for
the Entailment label, and Hypernym-P1-P2 and
Dangler-SYS-P2 are important for the Neutral la-
bel. The same interactions are used for FEVER as
the SNLI labels can be easily mapped to them.

To reduce the annotation load, we asked the an-
notators not to annotate synonyms (both at low and
high levels) where there is a surface-level match
(e.g., ‘King’ appearing in both the claim and the
evidence in the example on Fig. 1). We automat-
ically add them to the final version of the dataset
(Synonym-SYS interaction).3 We also add spans
that have not been annotated by an annotator as
Dangler-SYS-P1 and Dangler-SYS-P2 interactions,
depending on their location in Part 1 or Part 2.
These are spans that cannot be matched with any
span in the other part. They are particularly impor-
tant if found in Part 2 as they reveal spans that are
not supported/entailed by spans in Part 1, leading
to the Neutral class.

3To reduce false positive surface matches, we removed
those where both spans include only stopwords. In addition,
we took care of false negative surface matches as we found that
the original datasets have few instances with morphological
errors (e.g., spelling mistakes, and missing apostrophes). We
instructed annotators to include those in their annotations.
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Dataset Entailment Neutral Contradiction Total

SNLI 1298 1287 1280 3865
FEVER 945 1270 991 3206

Table 1: Overview of the number of annotated instances from
SNLI and FEVER in our SpanEx dataset per instance label –
“Entailment”, “Neutral”, “Contradiction”.

Annotation Task. Each annotator is provided
with an instance from FEVER or SNLI, together
with its gold label. The gold label is provided so
the annotators can find span interactions in accor-
dance with the label at hand. For example, Syn-
onym interactions can be found in instances of all
labels. Instances of the Entailment class should
have all spans in Part 2 be entailed by spans in Part
1. Hence, all tokens of Part 2 should be part of a
Synonym or a Hypernym-P2-P1 interaction with
tokens in Part 1. Antonym interactions can be anno-
tated only in instances with label Contradiction and
at least one Antonym interaction has to be anno-
tated for those. In instances with label Neutral, at
least one Hypernym-P1-P2 interaction or a dangler
in Part 2 has to be found. The above rules are also
used for quality control of the annotations where
instances that do not contain the necessary or al-
lowed interactions are returned for correction. For
detailed annotation guidelines see App. B.

Each instance was annotated by three profes-
sional annotators4 with university education and
fluent English language skills, one being a native
English speaker. The annotators were trained on
200 instances from each dataset, with two feed-
back sessions, before annotating the main batch.
The annotations were done using the brat tool5 (see
example screenshots in App., Fig.6).

2.2 Dataset Analysis

Table 1 shows the instance distribution across la-
bels in SpanEx. In total, the dataset consists of 7071
instances, roughly equally distributed between the
two tasks and in turn the three labels each. Table 2
gives an overview of the annotated span interac-
tions. Interestingly, we find a higher frequency of
annotations for high-level interactions than for low-
level ones. This is because spans smaller than the
annotated high-level ones are not always semanti-
cally coherent. At the high level, the number of
Synonym interactions is the highest because they
can appear in instances of any label. At the low

4https://www.data-bee.net/
5https://brat.nlplab.org/

Interaction SNLI FEVER
Low High Low High

Synonym 2719 8408 1033 19785
Hypernym-P1-P2 1594 2711 127 572
Hypernym-P2-P1 2633 6351 1337 2724
Antonym 3941 4407 3325 3029
Synonym-SYS 17872 1866 37109 9939
Dangler-SYS-P1 4186 10151 10922 14374
Dangler-SYS-P2 7225 2542 5517 4211

Table 2: Annotated interactions for SNLI and FEVER test
splits in SpanEx, for low- and high-level spans. Table 6 in
App. presents a detailed breakdown by instance label.

level, the Antonym interaction annotations are the
most frequent. We conjecture this is because there
are no exact matches or danglers we can annotate
automatically for this relation.

Table 3 presents the length of the interaction
spans. At high-level, the span length varies from
2.49 to 6.48 tokens on average. For high-level in-
teractions, the Antonym interaction requires the
longest spans, while the Synonym interaction –
the shortest. We see that the spans usually have
a length of one token at the low level.

Finally, Table 4 presents information about the
inter-annotator agreement (IAA) in annotating the
spans and interactions for SpanEx. When consid-
ering exact matches of span tuples constituting an
interaction annotated by the different annotators,
we observe numerous instances where the span tu-
ples annotated by one annotator do not match with
those of other annotators (#Span Agree = 1) due
to small differences in tokens included. Therefore,
we also compute Relaxed Span Match agreement,
where we consider span tuples as matching if both
the Part 1 span and the span Part 2 have at least one
matching token. With the relaxed matching, we
find that most spans are annotated by three annota-
tors at the high level and at least by two at the low
level. We conjecture that the Relaxed Span Match-
ing is less applicable at the low level, where the
annotated span interactions of the different anno-
tators are rather complementary. Finally, the IAA
for the span interaction type is significant – up to
91.89 Fleiss’ κ for low-level FEVER annotations.
The IAA for span interaction type resulting from
the Relaxed Spans Match remains high, indicating
that a large number of the matched interactions are
indeed the same spans but with minor token differ-
ences. Table 7 in the Appendix presents a more
detailed breakdown of the IAA.

12712

https://www.data-bee.net/
https://brat.nlplab.org/


Interaction SNLI FEVER
Low High Low High

Synonym 1.06 2.80 1.13 2.49
Hypernym-P1-P2 1.12 4.48 1.23 4.19
Hypernym-P2-P1 1.12 3.77 1.29 6.21
Antonym 1.09 4.43 1.42 6.48
Synonym-SYS 1.0 1.0 1.0 1.0
Dangler-SYS-P1 3.35 7.32 3.68 10.72
Dangler-SYS-P2 3.85 9.48 4.56 19.20

Table 3: Span token length per interaction type for SNLI and
FEVER test splits in SpanEx for low and high-level spans.

# Anno-
tators

Span
Level

Exact Spans Match Relaxed Spans Match
# Inter-
actions

Interaction
type Fleiss’ κ

# Inter-
ations

Interaction
type Fleiss’ κ

SNLI

1
Low 4046 - 3073 -
High 6889 - 989 -

2
Low 2560 - 2427 -
High 3050 - 2065 -

3
Low 831 86.45 1334 68.96
High 3225 84.56 5617 72.22

FEVER

1
Low 2396 - 2099 -
High 6715 - 1788 -

2
Low 972 - 1064 -
High 2743 - 1584 -

3
Low 589 91.89 1581 87.52
High 4730 70.93 7142 74.65

Table 4: Annotator agreement for SpanEx‘̇# Annotators’ indi-
cates the number of annotators that have annotated the interac-
tion. We either do an exact or relaxed match of the spans (see
§2.2). ‘# Interactions’ indicates the number of interactions
that have been annotated by each corresponding number of
annotators. ‘Interaction type Fleiss κ’ indicates the IAA for
interactions annotated by all three annotators.

3 Model and Human Explanations
Agreement

In §2, we discussed how the annotators modeled
the spans and their interactions that led to the classi-
fication decision. We next investigate if fine-tuned
LLMs use the same decision-making process by
comparing the human annotations with two base-
lines. The Random Phrase baseline randomly
samples both spans of the interaction from each
of the two parts of the input. The Part Phrase
baseline selects one span from the human annota-
tions, and samples the other one at random from the
remaining part. If the models follow the same rea-
soning as the annotators, the human explanations
will have a significantly higher score than the base-
lines. However, if the annotated interactions are
not important for the model, or only one part of the
input is sufficient, we will see no such difference.

3.1 Evaluation Protocol
Following Chen et al. (2021), we use Area Over the
Perturbation Curve (AOPC) and Post-hoc Accu-
racy (PHA) to evaluate how faithful model and hu-
man explanations are to a model’s inner-workings.
AOPC and PHA measure the utility of an expla-
nation ei for instance xi by first removing/adding
the most important k spans from xi as per ei. This
results in a perturbed instance xr,ki / xa,ki :

xr,k
i ={xi,j /∈top(ei,k)} (1)

xa,k
i ={xi,j∈top(ei,k)} (2)

where top(ei, k) is a function selecting a set of the
top k most important spans according to ei.

Area Over the Perturbation Curve. Following
instance perturbation, AOPC measures the util-
ity of the explanation as the difference between
the probability for the originally predicted class
yi given the original instance xi and the probabil-
ity for the originally predicted class yi given the
perturbed instance xr,ki / xa,ki :

r(xi,ei,k)=p(ŷi|xi)−p(ŷi|xr,k
i ) (3)

a(xi,ei,k)=p(ŷi|xi)−p(ŷi|xa,k
i ) (4)

The function r estimates the effect of removing
k most important spans from xi. Intuitively, it
measures the comprehensiveness (AOPC-Comp)
of the top-k most important spans. If the list of
most important spans is comprehensive, it should
significantly decrease the predicted probability for
the originally predicted class ŷi when removed.
Alternatively, the function a estimates the effect
of preserving only the k most important spans
in the instance xi. It measures the sufficiency
(AOPC-Suff) of the most important k spans in
preserving the probability for the originally pre-
dicted class ŷi. Finally, AOPC measures the over-
all utility of the explanation by iteratively increas-
ing the number k ∈ [0,K] of occluded or inserted
spans. The results for the separate k values are
summarised by a single measure that estimates the
area over the curve defined by the results for each
< k, r/a(xi, ei, k) > pair.

Post-hoc Accuracy. Post-hoc accuracy selects
one or multiple values for k, and computes the
preserved accuracy of a model for the perturbed
instances in the dataset – X′ = {xa,ki }. This results
in a top− k-accuracy score (or curve in the case of
multiple k values) for one explanation method.

Adaptation for Span Interactions. A better
explanation will have a higher AOPC-Comp and
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PHA score and a lower AOPC-Suff score. How-
ever, the annotations do not have an importance
score for each span interaction. Hence, the span
pairs cannot be ranked, and, in turn, a top-k estima-
tion is not possible. This naturally creates longer
explanations, i.e., a higher number of tokens are
perturbed. As AOPC and PHA scores are posi-
tively correlated with the number of changed to-
kens, the baselines can not be fairly compared with
the human explanations. Therefore, we normal-
ize the scores by the number of perturbed tokens.
Moreover, in the baseline explanations, both the
number of span pairs and the number of tokens in
each span are sampled from the same distributions
as in the annotations.

3.2 Experiments, Results & Discussions

Both NLI and FC are multi-class classification
tasks. We use linear classifiers on top of pre-
trained LLM encoders and fine-tune the models.
Six models of the BERT family (Devlin et al.,
2019; Liu et al., 2019) varying in model size,
tokenization, and pre-training objectives are
used: BERTbase-cased, BERTbase-uncased,
BERTlarge-cased, BERTlarge-uncased,
RoBERTabase, and RoBERTalarge. For
each model type, we train three models with
standard training configurations but a different
number of epochs and minimize the Cross-Entropy
loss. As the models show little difference in the
test data, we choose the best-performing model
from each type for the subsequent experiments.

AOPC-Comp results (Fig. 2). We merge the
Synonym-System and Synonym categories as the
annotators would have labeled them the same. In
general, high-level interactions have lower scores
than low-level ones. This is expected as they
are more semantically coherent but they may con-
tain extraneous tokens. The models find the rel-
evant low-level annotated interactions, i.e., the
ones correlated with human reasoning, more im-
portant than: the Random Phrase baseline in all
cases; the Part Phrase baseline in all but one case
(SNLI-Entailment); and non-relevant interactions
in 66% (46 ) of the cases. Humans would, e.g.,
find the Antonym interactions most important for
the Contradiction instances, and so do the models.
Similarly, for the Neutral ones, the most impor-
tant interaction found by the models is Hypernym-
P1-P2. Moreover, for SNLI, the Dangler-SYS-
P2 interactions in the Neutral instances are more

important than the baselines too. An exception
is the Entailment class, where we would expect
both Hypernym-P2-P1 and Synonym interactions
to have higher scores than the baselines and the
other interactions, but the Part Phrase baseline has
a higher score for both of them. The Hypernym in-
teractions show a large variance as we average over
both models and annotators. For the high-level
interactions, a similar trend can be observed for
the Contradiction and Neutral instances in SNLI.
However, for FEVER, we do not observe this; in
fact, the baseline scores are mostly higher than the
relevant interactions. We hypothesize that the high-
level span annotations in the FEVER instances have
significantly more extraneous information and pos-
sibly can be heuristically shortened in future work.6

Evaluation summary of all metrics. Explain-
ability evaluation metrics often disagree with each
other (Atanasova et al., 2020). Therefore, in Ta-
ble 5, we summarize (see App. §C for details)
how different metrics vary in terms of ranking the
relevant interactions. Ideally, the most relevant
interactions should be ranked the highest by the
AOPC-Comp and PHA scores, and the lowest by
the AOPC-Suff scores. For example, for the Entail-
ment instances in SNLI, the low-level Synonym or
Hypernym-P2-P1 interactions are found the most
important by PHA (indicated by green ). None of
these interactions is the most important according
to the AOPC-Comp metric, but it finds at least one
of them to be the second most important ( yellow ).
AOPC-Suff, on the other hand, finds them to be the
least important ( green ) as expected. In summary,
in 64% cases, the relevant interactions are found
to be the most (by AOPC-Comp or PHA, or least,
by AOPC-Suff) important, in 31% cases they are
in the upper (lower) 50th percentile of all interac-
tions, and in 5% cases they are not found relevant.
AOPC-Comp and AOPC-Suff provide comple-
mentary evaluations, and they both align well: they
differ strongly (indicated by red vs green in the
same rows in Table 5) in 4% cases, and moderately
in 13% cases (yellow vs green).

Do all models follow the human decision-
making process? We analyze this in Fig. 3
by comparing the AOPC-Comp scores for the
three most relevant low-level interactions for three
classes: Antonyms for Contradiction, Synonyms

6In Figure 2, the Part-Phrase baseline uses the random
tokens from Part 2. App. figures 9, 10, and 11 show the results
when the random tokens are chosen from Part 1. The trends
we observe there are similar.
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Figure 2: AOPC-Comp scores averaged (error bars: standard deviation) over annotators and models. A higher AOPC value for
relevant interaction (e.g., Antonym for Contradiction) indicates better human-model explanation alignment.

Dataset Level AOPC-
Comp

AOPC-
Suff PHA

SNLI-
Contradict

Low 1/6 6/6 3/6
High 1/8 8/8 2/8

SNLI-
Entailment

Low 2/4 4/4 1/4
High 5/6 6/6 1/6

SNLI-
Neutral

Low 1/5 5/5 1/5
High 1/7 7/7 1/7

FEVER-
Refutes

Low 1/6 5/6 5/6
High 3/8 5/8 3/8

FEVER-
Supports

Low 1/4 4/4 1/4
High 3/6 6/6 2/6

FEVER-
NEI

Low 1/5 5/5 1/5
High 2/7 1/7 1/7

Table 5: The rank of the most relevant interactions according
to different metrics. The colors green , yellow , and red
indicate whether one of the most relevant interactions for a
label is the first (AOPC-Comp and PHA, last for AOPC-
Suff), in the top 50%, or the bottom 50% (reverse for AOPC-
Suff) of all interactions.

for Entailment, and Hypernym-P1-P2 interactions
for Neutral. For SNLI, we do not see a sig-
nificant difference, but the BERTbase-cased and
BERTlarge-cased models pay the least attention to
the relevant interactions in the FEVER Refute and
NEI instances. These two models have good F1-
scores on the entire test dataset (86.2% and 87.2%,
respectively) but very low scores on our annotation
instances – 68.9% and 46.8% – whereas all oth-
ers have > 83% (except 81.1% for RoBERTabase,
which again has a poor AOPC-Comp score for
the NEI instances). This further shows that our

method of modeling the human decision process
has a strong correlation with the models’ reasoning.
Similarly, we investigate whether the models de-
pend more on the interactions where the annotators
agree. As before, we compute AOPC-Comp on the
most relevant interactions but split them into: inter-
actions where a) all three annotators agree, b) two
annotators agree and c) all disagree. Fig. 4 shows
that IAA has a strong correlation with the AOPC
scores, indicating again that the models have the
same inductive biases as humans.

4 Extracting Interactive Explanations

An explanation method should output interac-
tion pairs of sets of tokens from the parts of
the input pE = {⟨{xpart1i }, {xpart2j }, v⟩|i ∈
[1, |part1|], j ∈ [1, |part2|]}, where each pair is
further assigned a significance value v depending
on its influence on the prediction of the model.

Interactions between features, e.g., tokens, in
ML models are most commonly learned with an
attention mechanism (Vaswani et al., 2017). Hence,
we generate a directed bipartite interaction graph
GI = (V, E) with tokens from two parts of the input.
The weights for the edges come from the attention
matrix. We keep only the attention weights be-
tween tokens that belong to different parts of the in-
put, thus, creating two vertex partitions. While we
create the interaction graph using attention weights,
it can be built using other explanation techniques
producing token interaction scores.

We use the top layer attention scores as they
dictate how the final representation before the clas-
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Figure 3: AOPC-Comp scores for different models in the most relevant interactions.
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Figure 4: AOPC-Comp scores for the most relevant interactions split by inter-annotator agreement.

sification layer is generated. This still leaves us
with three choices: a) aggregating the attention ma-
trices from different heads; b) producing a multi-
dimensional interaction graph (Tang et al., 2010)
where each head will present a different type of
interaction; and c) finding the most important head
for the classification task. Attention heads should
not be aggregated as they are designed to provide
different views of the data and capture different se-
mantic and syntactic relations (Rogers et al., 2020).
Therefore, we choose to find the most important
head using the two methods described next, and we
leave the multi-graph approach for future work.

Classifier Weight. All our models use a lin-
ear classifier (W, (n × m), m is the number of
classes on top of an n-dimensional CLS vector de-
noted as c.7 For an input instance x with predicted
class index k, the logit score for k is a dot product
of w (W T

k ) and c, i.e, sk =
∑n

i=1wici. For all
ci > 0, the higher is wi, the higher is sk, and con-
versely, for all ci < 0, a higher value of wi makes a
higher negative contribution. In summary, the logit
score is proportional to

∑n
i=1 sign(ci).wi. We can

write the CLS vector as [c1 ⊕ c2.. ⊕ ca] and w
as [w1 ⊕ w2.. ⊕ wa] where a is the number of
attention heads and ⊕ denotes concatenation. Then
sk can be written as

∑a
j=1wjcj. The wj with the

7We use boldface upper case for matrices and boldface
lower case for vectors.

highest
∑l

i=1 sign(cj,i).wj,i (l = n//a, i.e., the
dimension of each attention head) makes the high-
est contribution towards the classification and j is
chosen as the most important attention head.

In another approach, Scalar Mix, we freeze the
parameters of the encoders and train new mod-
els with a set of parameters [λ1..λa] on top of
the frozen CLS representations. The resulting lin-
ear classifier (W′, (l × m)) in this model uses
the scalar mixed (Peters et al., 2018) CLS vec-
tor

∑a
i=1 λici. argmaxi(λi) determines the most

important attention head.

We use community structure detection algo-
rithms (Fang et al., 2020) on GI to find groups of
nodes (tokens) with dense inter-group and sparse
intra-group connections. These algorithms are
computationally optimized for large social (Gu
et al., 2019) and biological networks (Yanrui et al.,
2015) and hence overcome the limitation of exist-
ing perturbation and simplification-based explana-
tions that rely on the occlusion of groups of input
tokens, which leads to a combinatorial explosion
when considering span interactions. We use the
Louvain algorithm (Blondel et al. (2008), see App.
§D) which has been used in directed graphs such
as ours. The bipartite nature of GI ensures that the
explanation tokens are from two parts of the input,
which are then combined to produce spans based
on their positions. Finally, a list of span pairs is
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Figure 5: Top-3 evaluation scores for Louvain community
detection over two types of attention graphs, along with the
Part Phrase and Random Phrase baselines. AOPC-Comp &
PHA: higher is better, AOPC-Suff: lower is better.

generated by a cartesian product of the generated
spans. The score for each span pair is the sum of
the edge weights between the nodes in them. The
ranked list of span pairs constitutes the explanation.

Results. We evaluate the explanations with the
same metrics as before (see §3.1) but use the ‘top-k’
versions. Fig. 5 shows the top-3 AOPC-Comp,
AOPC-Suff, and PHA scores for the proposed
methods and the baselines (App. §E, Table 10
shows top-1 and top-5 results and some generated
explanations). The PHA scores are significantly
higher in the proposed methods vs. the baselines,
and the AOPC-Suff scores are lower (as expected)
but not greatly so. The baselines do much better
in terms of AOPC-Comp, which means that the
explanations produced by our methods are often
sufficient, but not always comprehensive.

5 Related Work

Existing work mainly explores interactions be-
tween tuples of tokens. Tsang et al. (2020) pro-
pose a method to detect grouped pairwise token
interactions, where the only interactions occur be-
tween tokens in the same group. Hao et al. (2021)
creates attention attribution scores using integrated
gradient (IG) over attention matrices and then con-
structs self-attention attribution trees. The latter is
extended by Ye et al. (2021) to multiple layers.

Several approaches also extend highlight-based
explanations to detect interactions between tuples
of tokens. One line of work (Tsai et al., 2023;
Sundararajan et al., 2020; Grabisch and Roubens,
1999), introduces axioms and methods to obtain
interaction Shapley scores. Janizek et al. (2021)
extend IG by assuming that the IG value for a dif-
ferentiable model is itself a differentiable function,
thus, can be applied to itself. Masoomi et al. (2022)
extend univariate explanations to produce bivariate
Shapley value explanations. Additionally, Chen
et al. (2021) find groups of correlated tokens from
different input parts, but the tokens are found at ar-
bitrary positions and the produced explanations are
not necessarily semantically coherent. In contrast,
we investigate interactions between token spans
that bear sufficient meaning and are semantically
coherent and thus plausible to end users.

Finally, there is a stream of work on explainabil-
ity methods for constructing hierarchical interac-
tion explanations. Sikdar et al. (2021) compute
importance scores in a bottom-up manner starting
from the individual embedding dimensions, work-
ing its way up to tokens, words, phrases, and fi-
nally the sentence. Zhang et al. (2021) build inter-
pretable interaction trees, where the interaction is
again defined based on Shapley values. While these
methods produce spans of tokens that are part of
an interaction, the hierarchical nature of the expla-
nation limits the interactions only to neighboring
spans. In contrast, we are interested in spans that
can appear in the different parts of the input for
NLU tasks and are not necessarily neighboring.

6 Conclusion

We introduce SpanEx, a multi-annotator explana-
tion dataset that captures the interactions between
semantically coherent spans from different inputs
in pairwise NLU tasks, here, NLI and FC. SpanEx
maps the implicit human decision-making process
for these tasks to explicit lexical units and their
interactions, opening up new research directions
in explainability. Using this dataset, we show that
fine-tuned LLMs share the human inductive bias
as evidenced by their relatively higher scores on
established explainability metrics compared to ran-
dom baselines. We also propose novel community
detection-based methods to extract such explana-
tions with modest success. We hope this work will
pave the way for further research in the nascent
area of interaction explanations.
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Limitations

In this work, we study explanations of span inter-
actions for explaining decisions for NLU tasks. To
accomplish this, we have introduced a dataset of
human annotations of span interactions for two ex-
isting datasets for NLU tasks – fact checking and
natural language inference. It is worth noting that
there are other NLU tasks such as question answer-
ing that necessitate reasoning involving interactions
among multiple parts of the input. These tasks may
involve different types of interactions, which could
be investigated in future work. Furthermore, our
dataset consists of interactions between spans from
two separate parts of the input. Interactions of more
than two spans and from more than two parts of the
input are also possible for example in fact check-
ing where interactions between several evidence
sentences are possible as well.

In our model analysis, we studied the most pop-
ular bidirectional Transformer models. With our
dataset and the performed analysis, we have set
the ground and only scratched the surface of the
prospects to inspect the inner workings of a multi-
tude of different architectures for span interactions,
such as auto-regressive Transformer models. The
implementation can be easily adapted to perform
the following studies in future work.

We have introduced an unsupervised community
detection approach for explaining interactions be-
tween spans of text, which serves as a foundational
step for future research in interactive explanations.
However, it is crucial to address the limitations
of these initial advancements. Firstly, the explana-
tions produced by the community detection method
may consist of spans that lack semantic coherence,
as the start or end of a span might not align pre-
cisely with the tokens of an exact phrase. Ensur-
ing better semantic coherence within the generated
spans is an important aspect to consider for further
improvement. Secondly, the current approach does
not provide explanations at both the high and low
levels, in accordance with the human annotations.
Expanding the approach to incorporate explana-
tions at both levels would enhance its completeness
and alignment with human annotations. Finally,
the method does not explicitly indicate the type
of span interaction, such as Antonym, Synonym,
or Hypernym. Incorporating the identification of
span interaction types would provide valuable in-
formation and improve the interpretability of the
generated explanations.

Ethics Statement

The primary objective of our work is to offer span
interactive explanations for NLU tasks. The ex-
planations provided by our unsupervised commu-
nity detection method can be utilized by both ma-
chine learning practitioners and non-expert users.
It is important to acknowledge the potential risks
associated with overreliance on our span interac-
tive explanations as the sole explanation method.
Other explanation types, such as free-text expla-
nations (Camburu et al., 2018; Wang et al., 2020;
Rajani et al., 2019) can offer complementary in-
formation, but their faithfulness could be hard to
estimate (Atanasova et al., 2023). Despite these
limitations, we believe that our work is an impor-
tant stepping stone in the area of interactive expla-
nation generation.
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Interaction Entail Neutral Contradict Total

SNLI Low-Level
Synonym 1537 735 447 2719
Hypernym-h-to-p 1770 446 417 2633
Hypernym-p-to-h 0 1529 65 1594
Antonym 0 0 3941 3941
Synonym-SYSTEM 7807 5773 4292 17872
Dangler-SYSTEM-HYPOTHESIS 1913 2375 2937 7225
Dangler-SYSTEM-PREMISE 4186 2705 4511 11402

SNLI High-Level
Synonym 3964 2490 1954 8408
Hypernym-h-to-p 3887 1392 1072 6351
Hypernym-p-to-h 0 2526 185 2711
Antonym 0 0 4407 4407
Synonym-SYSTEM 404 1004 458 1866
Dangler-SYSTEM-HYPOTHESIS 81 1903 558 2542
Dangler-SYSTEM-PREMISE 3234 3733 3184 10151

FEVER Low-Level
Synonym 651 141 241 1033
Hypernym-p-to-h 0 117 10 127
Hypernym-h-to-p 1123 112 102 1337
Antonym 0 0 3323 3325
Synonym-SYSTEM 13549 11482 12078 37109
Dangler-SYSTEM-Claim 2020 1118 2379 5517
Dangler-SYSTEM-Evidence 4490 1811 4621 10922

FEVER High-Level
Synonym 6680 7081 6024 19785
Hypernym-p-to-h 0 554 18 572
Hypernym-h-to-p 2259 339 126 2724
Antonym 0 0 3027 3029
Synonym-SYSTEM 2130 5882 1927 9939
Dangler-SYSTEM-Claim 9 4082 120 4211
Dangler-SYSTEM-Evidence 3942 6418 4014 14374

Table 6: Overview of the number of annotated interactions in
our SpanEx dataset per instance label.

A Detailed Overview of SpanEx

Table 6 presents a detailed overview of the an-
notated interactions. Table 7 presents a detailed
overview of the annotated spans.

B Annotation Guidelines

Fig. 6 presents a screenshot from the annotation
platform with three example annotations.

B.1 General Description of the NLI Task

You will be provided with <label | premise | hypoth-
esis >, where premise and hypothesis are sentences,
which can have one of the three possible labels:
entailment, neutral, and contradiction, depending
on whether the hypothesis entails the premise. The
premise is a caption of an image. The hypothesis
was written given the premise, but not the image.

1. Entailment: the hypothesis is definitely a true
description of the image: “Two dogs are run-
ning through a field.”, “There are animals out-
doors.”

2. Neutral: the hypothesis might be a true de-
scription of the image: “Two dogs are running
through a field”, “Some puppies are running
to catch a stick.” – the dogs are not necessarily
puppies.

3. Contradiction: the hypothesis is definitely a
false description of the image: “Two dogs are
running through a field.”, “The pets are sitting
on a couch.” – it’s impossible for the dogs to
be both running and sitting.

B.2 General Description of the Fact Checking
Task

You will be provided with <label | evidence | claim
>. The evidence comes from Wikipedia pages and
the title of the page is prepended to the sentence
(e.g. [source: Islamabad]). The pair can have one
of the three possible labels: supports, refutes, not
enough info.

B.3 Overall Description of the Labeling Task

You will be provided with 1) the premise/evidence
and the hypothesis/claim and 2) the label for the
pair. You will have to find corresponding spans
in the premise and the hypothesis and annotate
the interaction between them. Our goal is to see
how humans determine NLI or FC labels using
the interactions between the parts of the premise
and hypothesis. There can be different types of
interactions, which we define further down below.
You will have to find these parts (spans) and label
these interaction types.8

B.4 Interaction types

Two corresponding spans – α ∈ premise and β ∈
hypothesis can have one of the following interac-
tions:

1. Synonym – α denotes the same as β. Example:
pretty and attractive.

2. Antonym – α denotes the opposite of β. Ex-
ample: dead and alive; parent and child.

3. Hypernym – α is superordinate to β In other
words, β is more specific than α which can
also be due to new details introduced in α. Ex-
ample: an animal is a hypernym of mammal;
red is a hypernym of scarlet; to cut is a hyper-
nym of to trim and to slice; ’wash their hands’
is a hypernym of ’wash their hands in a sink’.

4. Hypernym-h-to-p – α is in the hypothesis, β
is in the premise

8We use ’premise’ to denote both premise (NLI) and ev-
idence (FC), we use ’hypothesis’ to denote both hypothesis
(NLI) and claim (FC).
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Dataset Num. Ann. Synonym Antonym Hypernym-p-to-h Hypernym-h-to-p Total

SNLI-Low 1 661 1413 919 1053 4046
SNLI-High 1 1614 1953 1429 1893 6889
SNLI-Low 2 640 808 369 743 2560
SNLI-High 2 1035 631 425 959 3050
SNLI-Low 3 354 329 23 125 831
SNLI-High 3 1648 420 179 978 3225
SNLI-Low 1+2+3 1655 2550 1311 1921 7447
SNLI-High 1+2+3 4297 3004 2033 3830 13164
SNLI-Low+High 1+2+3 5952 5554 3344 5751 20601
FEVER-Low 1 397 1181 100 718 2396
FEVER-High 1 2991 1622 443 1659 6715
FEVER-Low 2 232 483 15 242 972
FEVER-High 2 1898 414 63 368 2743
FEVER-Low 3 102 406 2 79 589
FEVER-High 3 4412 195 5 118 4730
FEVER-Low 1+2+3 731 2070 117 1039 3957
FEVER-High 1+2+3 9301 2231 511 2145 14188
FEVER-Low+High 1+2+3 10032 4301 628 3184 18145

Table 7: Number of annotations by type (Synonym, Antonym, Hypernym-P1-P2, Hypernym-P2-P1) and by the number of
annotators (1, 2, 3, 1+2+3) that have annotated it.

5. Hypernym-p-to-h – α is in the premise, β is
in the hypothesis

Note: there can be spans in either part of the
instance that do not have a corresponding span in
the other part, for short danglers. You can leave
these without annotations.

Note: there can be spans with danglers at low-
level, with a danglers contained both in premise and
hypothesis. In this case, at high-level annotate the
two corresponding spans as both Hypernym-h-to-p
and Hypernym-p-to-h.

B.5 How labels define which interactions can
be used

Entailment/supports: (mainly synonyms, but
premise can be more specific)

• Have synonym interactions;

• Can have danglers (additional information) in
the premise;

• Can have Hypernym-h-to-p interactions
(more-specific premise).

Neutral/not enough info: (hypothesis has more
info/is more specific)

• Have at least one Hypernym-p-to-h OR at
least one dangler (when there are only syn-
onym interactions between the premise and
the hypothesis) in the hypothesis;

• Can have synonyms, danglers in the premise,
Hypernym-h-to-p.

Contradiction/refutes:

• Have at least one antonym interaction;

• Can have hypernym, synonym, dangler inter-
actions;

B.6 High-Level Text Spans
Annotate interactions between high-level match-
ing text spans in the premise and the hypothesis.
Choose a text span α in the premise that can be
mapped to a text span β in the hypothesis by one
of the interactions: synonym, antonym, hypernym.
If there’s no corresponding high-level span, mark
them as Dangler. The spans should be selected at
the highest level of the syntax tree, i.e. longest
possible chunks that can hold one such interaction.
Annotate the two text spans α and β as premise
and hypothesis. Connect the chunks in the interac-
tion with an arrow. For antonyms and synonyms,
which are symmetric interactions, you can draw
the interaction arrow starting from the hypothesis.
For hypernyms, if the hypernym is located in the
premise, start drawing the arrow from the premise,
otherwise – from the hypothesis. Annotate the type
of the interaction.

Note: If the high-level surface forms match, they
still need to be annotated. At high-level span an-
notation, do not annotate only the dangling parts
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Figure 6: Screenshot of the annotation tool.

(those that do not have a corresponding span in the
other text part).

Note FEVER: For the FEVER dataset, anno-
tate interactions to the evidence document’s title
prepended to the evidence in square brackets [].
Treat the evidence title and the evidence text as one
textual part, i.e. there should be no interactions be-
tween the evidence title and the evidence text, but
only between the evidence title and the claim and
the evidence text and the claim. In such cases, for
the same named entity in the claim there will be in-
teractions both to the evidence and to the evidence
title.

Note: Annotate all possible interactions of one
span to spans in the other part of the text. For
example, if one entity can have a corresponding
span in the evidence and in the title, annotate both.
These include pronouns as well, e.g. Example 9
in Examples FEVER below – ’Sabbir Khan’ in
the claim has an interaction to both ’Sabbir Khan’
in the document title and to ’he’ in the document
itself.

Note: If two spans refer to the same object/entity
but with different surface forms, assign a synonym
interaction between them, e.g. Example 4 in Ex-
amples FEVER – ’Oscar Isaac’ is related to ’Oscar

Hernandez’ and to ’Oscar Isaac Hernandez’. Note:
Always make sure that the annotated relations are
coherent with the label provided for the instance.

B.7 Low-level Text Spans

Annotate interactions between low-level match-
ing text spans, inside the high-level spans, in the
premise and the hypothesis. Choose a text span α in
the premise that can be mapped to a text span β in
the hypothesis by one of the interactions: synonym,
antonym, hypernym. The spans should be selected
at the lowest possible level of the syntax tree, i.e.
shortest possible chunks that can hold one such
interaction. Do not annotate exact surface forms as
synonyms, e.g. in the high-level synonym interac-
tion "while holding to go packages" in the premise
and "while holding to go packages" in the hypoth-
esis, do not annotate the matching separate words
as synonyms. Annotate as synonyms only spans
that do not match in surface form. In high-level hy-
pernym interactions, if additional details are being
added in either part, leave these parts unannotated
at the low level. E.g., ’holding to go packages’
and ’holding packages’, there is an additional mod-
ifier ’to go’ added to the premise, making it more
specific, thus contributing for Hypernym-h-to-p in-
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teraction. Do not annotate articles. Annotate the
two text spans α and β as pleaf and hleaf. Con-
nect the chunks in the interaction with an arrow as
above. Annotate the type of the interaction.

Note: It is possible the high-level and low-level
spans overlap in one part of the input. In such cases,
annotate it both as high-level and low-level (leaf)
span.

C Detailed Results for Human and Model
Explanation

Table 8 shows the most (least for AOPC-Suff) im-
portant interactions according to different metrics
and the rank of the most relevant (according to
humans) interactions. The colors green , yellow

and red indicate whether the most relevant interac-
tion is the first (last for AOPC-Suff), in top (bottom
for AOPC-Suff) 50% or bottom (AOPC-Suff) 50%
of all interactions. Table 8 is a summary of Table 9
and Table 5 in §2 is a summary of Table 8. AOPC-
Suff and PHA scores for different interactions are
shown in Fig. 7 and Fig. 8, respectively.

D Louvain Community Detection

In an unweighted undirected graph, if the number
of communities is known apriori, the minimum cut
approach tells us to divide the vertices such that
the number of edges between the partitions is min-
imized. However, that number is often unknown,
and without any such constraint, this minimization
would simply produce the entire graph as a single
community which is not desirable.

An effective way to partition a network into com-
munities is not just characterized by having a low
number of connections between a set of vertices
but rather determined by a lower number of inter-
community (equivalently, higher number of intra-
community) connections than what would be ex-
pected. The concept that the genuine community
structure in a network aligns with a statistically
unexpected distribution of connections can be mea-
sured through a metric called modularity (Newman
and Girvan, 2004). Modularity, with a scaling fac-
tor, represents the difference between the number
of edges within groups and the expected number of
edges in a comparable network where connections
are randomly distributed.

Louvain Community Detection algorithm (Blon-
del et al., 2008) uses modularity optimization to
generate communities in directed graphs such as
ours. The algorithm starts with each node in its

Level Metric Top
Relation

Relevant
relation rank

SNLI-Contradiction

Low
AOPC Comp Antonym 1/6
AOPC Suff Antonym 6/6

PHA Dangler-System-P1 3/6

High
AOPC Comp Antonym 1/8
AOPC Suff Antonym 8/8

PHA Dangler-System-P2 2/8

SNLI-Entailment

Low
AOPC Comp Dangler-System-P2 2/4
AOPC Suff Synonym 4/4

PHA Synonym 1/4

High
AOPC Comp Part-phrase 5/6
AOPC Suff Hypernym-P2-P1 6/6

PHA Hypernym-P2-P1 1/6

SNLI-Neutral

Low
AOPC Comp Hypernym-P1-P2 1/5
AOPC Suff Hypernym-P1-P2 5/5

PHA Dangler-System-P2 1/5

High
AOPC Comp Hypernym-P1-P2 1/7
AOPC Suff Hypernym-P1-P2 7/7

PHA Dangler-System-P2 1/7

Fever-Refutes

Low
AOPC Comp Antonym 1/6
AOPC Suff Hypernym-P1-P2 5/6

PHA Hypernym-P1-P2 5/6

High
AOPC Comp Part-phrase 3/8
AOPC Suff Hypernym-P1-P2 5/8

PHA Dangler-System-P2 3/8

Fever-Supports

Low
AOPC Comp Hypernym-P2-P1 1/4
AOPC Suff Synonym 4/4

PHA Synonym 1/4

High
AOPC Comp Part-phrase 3/6
AOPC Suff Synonym 6/6

PHA Dangler-System-P2 2/6

Fever-NEI

Low
AOPC Comp Hypernym-P1-P2 1/5
AOPC Suff Dangler-System-P1 5/5

PHA Dangler-System-P2 1/5

High
AOPC Comp Part-phrase 2/7
AOPC Suff Random-phrase 5/7

PHA Dangler-System-P2 1/7

Table 8: Most (least for AOPC-Suff) important relations
according to different metrics and the rank of the most relevant
(according to humans) relations. The colors green , yellow

and red indicate whether the most relevant relation is the
first, in top (bottom for AOPC-Suff) 50% or bottom (top for
AOPC-Suff) 50% of all relations.
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Figure 7: AOPC-Suff scores for different interactions: averaged (error bars: standard deviation) over annotators and models. A
lower AOPC value for relevant interaction (Antonym for Contradiction) indicates better human-model explanation alignment.

SNLI-PHA Fever-PHA
0.00

0.02

0.04

0.06

0.08

me
an

Fever-Refutes, SNLI-Contradiction, Low

SNLI-PHA Fever-PHA

me
an

Fever-Supports, SNLI-Entailment, Low

SNLI-PHA Fever-PHA

me
an

Fever-NEI, SNLI-Neutral, Low

SNLI-PHA Fever-PHA

0.0

0.1

0.2

0.3

me
an

Fever-Refutes, SNLI-Contradiction, High

SNLI-PHA Fever-PHA

me
an

Fever-Supports, SNLI-Entailment, High

SNLI-PHA Fever-PHA

me
an

Fever-NEI, SNLI-Neutral, High

Antonym
Dangler-SYSTEM-P2

Dangler-SYSTEM-P1
Hypernym-P2-P1

Hypernym-P1-P2
Synonym

part-phrase random-phrase

Figure 8: PHA scores for different interactions: averaged (error bars: standard deviation) over annotators and models. A higher
PHA value for relevant interaction (Antonym for Contradiction) indicates better human-model explanation alignment.
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Figure 9: AOPC-Comp scores for different interactions: averaged (error bars: standard deviation) over annotators and models.
A higher AOPC value for relevant interaction (Antonym for Contradiction) indicates better human-model explanation alignment.
For the Part Phrase baseline, the random tokens are chosen from Part 1.
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Figure 10: AOPC-Suff scores for different interactions: averaged (error bars: standard deviation) over annotators and models.
A lower AOPC value for relevant interaction (Antonym for Contradiction) indicates better human-model explanation alignment.
For the Part Phrase baseline, the random tokens are chosen from Part 1.
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Dataset Label Relation Level AOPC Comp AOPC Suff PHA

mean std mean std mean std
0 FEVER NEI Dangler-System-P2 High 0.003 0.004 0.01 0.005 0.317 0.057
1 FEVER NEI Dangler-System-P2 Low 0.013 0.006 0.005 0.005 0.023 0.005
2 FEVER NEI Dangler-System-P1 High 0.004 0.004 0.005 0.002 0.11 0.013
3 FEVER NEI Dangler-System-P1 Low 0.011 0.005 0.004 0.004 0.023 0.004
4 FEVER NEI Hypernym-P2-P1 High 0.007 0.005 0.01 0.007 0.02 0.007
5 FEVER NEI Hypernym-P2-P1 Low 0.04 0.041 0.006 0.006 0.016 0.009
6 FEVER NEI Hypernym-P1-P2 High 0.018 0.009 0.007 0.004 0.027 0.005
7 FEVER NEI Hypernym-P1-P2 Low 0.11 0.078 0.007 0.006 0.018 0.007
8 FEVER NEI Part-phrase High 0.019 0.011 0.005 0.006 0.021 0.007
9 FEVER NEI Random-phrase High 0.015 0.007 0.004 0.006 0.021 0.006
10 FEVER NEI Synonym High 0.006 0.002 0.008 0.006 0.023 0.006
11 FEVER NEI Synonym Low 0.007 0.003 0.008 0.007 0.021 0.007
12 FEVER Refutes Antonym High 0.045 0.018 0.015 0.004 0.021 0.004
13 FEVER Refutes Antonym Low 0.173 0.051 0.015 0.004 0.01 0.004
14 FEVER Refutes Dangler-System-P2 High 0.011 0.006 0.045 0.022 0.103 0.051
15 FEVER Refutes Dangler-System-P2 Low 0.043 0.015 0.018 0.005 0.014 0.005
16 FEVER Refutes Dangler-System-P1 High 0.024 0.008 0.027 0.01 0.029 0.01
17 FEVER Refutes Dangler-System-P1 Low 0.049 0.017 0.017 0.005 0.016 0.005
18 FEVER Refutes Hypernym-P2-P1 High 0.025 0.011 0.016 0.004 0.012 0.006
19 FEVER Refutes Hypernym-P2-P1 Low 0.087 0.055 0.016 0.004 0.007 0.004
20 FEVER Refutes Hypernym-P1-P2 High 0.033 0.062 0.011 0.011 0.014 0.009
21 FEVER Refutes Hypernym-P1-P2 Low 0.115 0.16 0.007 0.007 0.017 0.008
22 FEVER Refutes Part-phrase High 0.08 0.019 0.015 0.005 0.009 0.005
23 FEVER Refutes Random-phrase High 0.065 0.015 0.015 0.005 0.009 0.005
24 FEVER Refutes Synonym High 0.039 0.011 0.018 0.006 0.011 0.007
25 FEVER Refutes Synonym Low 0.039 0.009 0.02 0.006 0.012 0.006
26 FEVER Supports Dangler-System-P2 High 0.023 0.016 0.097 0.09 0.097 0.143
27 FEVER Supports Dangler-System-P2 Low 0.061 0.015 0.021 0.007 0.011 0.007
28 FEVER Supports Dangler-System-P1 High 0.033 0.011 0.038 0.013 0.019 0.012
29 FEVER Supports Dangler-System-P1 Low 0.069 0.02 0.022 0.006 0.011 0.006
30 FEVER Supports Hypernym-P2-P1 High 0.06 0.022 0.017 0.009 0.022 0.009
31 FEVER Supports Hypernym-P2-P1 Low 0.123 0.039 0.016 0.006 0.01 0.007
32 FEVER Supports Part-phrase High 0.095 0.004 0.018 0.007 0.008 0.007
33 FEVER Supports Random-phrase High 0.07 0.008 0.019 0.007 0.008 0.007
34 FEVER Supports Synonym High 0.047 0.009 0.017 0.007 0.018 0.007
35 FEVER Supports Synonym Low 0.061 0.013 0.016 0.006 0.02 0.006
36 SNLI Contradiction Antonym High 0.088 0.009 0.008 0.004 0.109 0.018
37 SNLI Contradiction Antonym Low 0.215 0.018 0.014 0.009 0.04 0.011
38 SNLI Contradiction Dangler-System-P2 High 0.025 0.008 0.069 0.008 0.13 0.01
39 SNLI Contradiction Dangler-System-P2 Low 0.05 0.009 0.028 0.007 0.054 0.02
40 SNLI Contradiction Dangler-System-P1 High 0.042 0.013 0.031 0.005 0.106 0.008
41 SNLI Contradiction Dangler-System-P1 Low 0.064 0.01 0.024 0.004 0.064 0.017
42 SNLI Contradiction Hypernym-P2-P1 High 0.01 0.002 0.052 0.003 0.007 0.004
43 SNLI Contradiction Hypernym-P2-P1 Low 0.019 0.007 0.038 0.004 0.007 0.005
44 SNLI Contradiction Hypernym-P1-P2 High 0.011 0.005 0.043 0.005 0.012 0.005
45 SNLI Contradiction Hypernym-P1-P2 Low 0.02 0.062 0.048 0.026 0.008 0.008
46 SNLI Contradiction Part-phrase High 0.049 0.006 0.037 0.005 0.021 0.008
47 SNLI Contradiction Random-phrase High 0.043 0.004 0.036 0.005 0.023 0.007
48 SNLI Contradiction Synonym High 0.008 0.003 0.053 0.003 0.004 0.003
49 SNLI Contradiction Synonym Low 0.009 0.001 0.057 0.003 0.004 0.003
50 SNLI Entailment Dangler-System-P2 High 0.053 0.008 0.082 0.031 0.143 0.038
51 SNLI Entailment Dangler-System-P2 Low 0.074 0.006 0.03 0.003 0.052 0.009
52 SNLI Entailment Dangler-System-P1 High 0.046 0.01 0.093 0.006 0.034 0.007
53 SNLI Entailment Dangler-System-P1 Low 0.046 0.011 0.043 0.004 0.039 0.009
54 SNLI Entailment Hypernym-P2-P1 High 0.031 0.008 0.01 0.003 0.149 0.019
55 SNLI Entailment Hypernym-P2-P1 Low 0.058 0.012 0.018 0.006 0.039 0.008
56 SNLI Entailment Part-phrase High 0.076 0.015 0.029 0.005 0.036 0.01
57 SNLI Entailment Random-phrase High 0.042 0.008 0.032 0.005 0.031 0.01
58 SNLI Entailment Synonym High 0.029 0.009 0.013 0.005 0.103 0.007
59 SNLI Entailment Synonym Low 0.043 0.006 0.011 0.004 0.084 0.004
60 SNLI Neutral Dangler-System-P2 High 0.029 0.013 0.028 0.008 0.256 0.033
61 SNLI Neutral Dangler-System-P2 Low 0.049 0.009 0.023 0.007 0.047 0.009
62 SNLI Neutral Dangler-System-P1 High 0.036 0.01 0.029 0.007 0.183 0.045
63 SNLI Neutral Dangler-System-P1 Low 0.04 0.012 0.024 0.008 0.045 0.01
64 SNLI Neutral Hypernym-P2-P1 High 0.015 0.005 0.034 0.006 0.026 0.009
65 SNLI Neutral Hypernym-P2-P1 Low 0.024 0.011 0.026 0.006 0.02 0.009
66 SNLI Neutral Hypernym-P1-P2 High 0.06 0.012 0.015 0.007 0.079 0.008
67 SNLI Neutral Hypernym-P1-P2 Low 0.105 0.018 0.019 0.008 0.032 0.009
68 SNLI Neutral Part-phrase High 0.036 0.005 0.028 0.009 0.026 0.012
69 SNLI Neutral Random-phrase High 0.032 0.004 0.028 0.009 0.029 0.013
70 SNLI Neutral Synonym High 0.016 0.005 0.037 0.008 0.022 0.011
71 SNLI Neutral Synonym Low 0.019 0.005 0.042 0.006 0.021 0.008

Table 9: AOPC comprehensiveness, AOPC sufficiency and PHA scores for FEVER and SNLI across different labels, relations,
and levels.

community and iteratively moves them to the neigh-
boring communities if that contributes to a positive
modularity gain. The modularity gain of moving a

node i into a community C can be summarized as
∆Q =

ki,in
m − kouti ·Σin

tot+kini ·Σout
tot

m2 where kouti , kini
are the outer and inner weighted degrees of node
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Figure 11: PHA scores for different interactions: averaged (error bars: standard deviation) over annotators and models. A
higher PHA value for relevant interaction (Antonym for Contradiction) indicates better human-model explanation alignment.
For the Part Phrase baseline, the random tokens are chosen from the Part 1.

i, Σin
tot, Σ

out
tot are the sum of in-going and out-going

links incident to nodes in C. The algorithm termi-
nates when no such gain can be achieved.

E Explanation Extraction Results

Top-1 and Top-3 evaluation results are shown in
Fig. 12 and Fig. 13, respectively. See Table 10 for
some examples of top-1 explanations generated by
our method. Fever-AOPC-comp SNLI-AOPC-comp
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Figure 12: Top-1 evaluation scores for Louvain community
detection over two types of attention graphs, along with the
Part Phrase and Random Phrase baselines. AOPC-Comp &
PHA: higher is better, AOPC-Suff: lower is better.
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Label Part 1 Part 2 Top-1 explanation Comment

Contradiction One tan girl with a
wool hat is running
and leaning over an
object, while another
person in a wool hat is
sitting on the ground.

A boy runs into a wall (One tan girl, a boy) correct, a tan girl is an
antonym to a boy

A young family
enjoys feeling ocean
waves lap at their feet.

A family is out at a
restaurant.

(feeling, is) incorrect, these are not
antonym relations.

Entailment A young family
enjoys feeling ocean
waves lap at their feet.

A family is at the
beach.

(ocean waves, beach) correct, ocean waves
indicate beach, i.e., a
synonym relation

A couple walk hand in
hand down a street.

A couple is walking
together.

(hand, together) incorrect, there is no
relation.

Neutral A couple walk hand in
hand down a street.

The couple is married. (A couple, married) correct, hypernym-P1-
P2 as “a couple” does
not necessarily imply
married, but the re-
verse is true,

One tan girl with a
wool hat is running
and leaning over an
object, while another
person in a wool hat is
sitting on the ground.

A man watches his
daughter leap

(girl, daughter) Correct, hypernym-
P1-P2 as “girl” does
not necessarily imply
daughter, but the
reverse is true.

One tan girl with a
wool hat is running
and leaning over an
object, while another
person in a wool hat is
sitting on the ground.

A man watches his
daughter leap

(while, watches) Incorrect, there is no
relation.

Table 10: Example top-1 explanations generated on SNLI by the Classifer-Weight method.
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Figure 13: Top-5 evaluation scores for Louvain community
detection over two types of attention graphs, along with the
Part Phrase and Random Phrase baselines. AOPC-Comp &
PHA: higher is better, AOPC-Suff: lower is better.
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