AutoTrial: Prompting Language Models for Clinical Trial Design

Zifeng Wang Cao Xiao Jimeng Sun
UluC GE Healthcare UluC
Urbana, IL, USA Seattle, WA, USA Urbana, IL, USA

zifengw2@illinois.edu

Abstract

Clinical trials are critical for drug development.
Constructing the appropriate eligibility criteria
(i.e., the inclusion/exclusion criteria for patient
recruitment) is essential for the trial’s success.
Proper design of clinical trial protocols should
consider similar precedent trials and their eli-
gibility criteria to ensure sufficient patient cov-
erage. In this paper, we present a method
named AutoTrial to aid the design of clini-
cal eligibility criteria using language models.
It allows (1) controllable generation under in-
structions via a hybrid of discrete and neural
prompting, (2) scalable knowledge incorpora-
tion via in-context learning, and (3) explicit
reasoning chains to provide rationales for un-
derstanding the outputs. Experiments on over
70K clinical trials verify that AutoTrial gen-
erates high-quality criteria texts that are fluent
and coherent and with high accuracy in captur-
ing the relevant clinical concepts to the target
trial. It is noteworthy that our method, with a
much smaller parameter size, gains around 60%
winning rate against the GPT-3.5 baselines via
human evaluations.

1 Introduction

Generative large language models (LLMs) are
drawing attention due to their ability to create co-
herent and human-like text documents. Clinical
trial design documents are written at the planning
stage of the drug development process, which is
crucial for the success of the trial. However, it can
be challenging even for experienced professionals:
around 57% trial protocols have at least one sub-
stantial amendment in eligibility criteria (CSDD,
2016). The suboptimal trial design may cause in-
sufficient recruitment, severe adverse events, or
insignificant efficacy, thus inducing huge financial
losses and time waste. Each amendment will fur-
ther cause millions of dollars in loss and months of
delays.

In this paper, we propose to generate the eligi-
bility criteria for clinical trials in natural language
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using LL.Ms, with the solution focusing on the fol-
lowing aspects.

¢ Comprehending instructions. The LLM will
be prompted with key information about a trial,
such as the target conditions and treatments, and
the additional instruction to generate the criteria
for participant recruitment. This process requires
the employed LLM to comprehend the input and
adapt to the input instruction to generate precise
eligibility criteria that meet the specified objec-
tives. It also necessitates the domain knowledge
about clinical trials stored in LLMs.

* Referring to prior studies. A thorough liter-
ature search is important for human experts to
design clinical trials (Chew, 2019). Similarly, the
employed LLMs should be able to leverage the
context information, such as retrieved eligibil-
ity criteria from prior successful studies, as the
reference to generate better trial design.

* Rationalizing the generation. LLMs should
offer the rationale behind the generated criteria,
which is important for clinical experts to under-
stand and adopt the generation results in practice.

In this paper, we propose to augment clinical trial
design using LLMs, motivated by the evidence that
LLMs can act as implicit knowledge bases (Petroni
et al., 2019; Taylor et al., 2022). Our method is
equipped with instruction tuning for trial proto-
col design and explicit supervision for producing
grounding rationales. This is enabled with the fol-
lowing technical features:

* Instruction prompting for adapting expert in-
structions. Instruction tuning for granular con-
trol over the generated criteria to follow diverse
user intentions.

* Scalable and efficient knowledge expansion. A
combination of 1) external memory for a dense re-
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triever and 2) internal memory for neural prompt-
ing, which is amenable to updating the model
incrementally as new data are available.

» Explicit supervision for generating grounding
rationales. Adaption of LLMs with a reasoning
capability through a supervised paradigm, mak-
ing the generated criteria more transparent and
interpretable.

Our AutoTrial is the first model that utilizes
LLMs for automating clinical trial design. It repre-
sents an important step toward using Al to facilitate
clinical trial design. The rest of the paper is orga-
nized as follows: In §2, we review related work. In
§3, we dive into the proposed method in detail. In
§4, we present the experiment results. It is notewor-
thy that AutoTrial is proven to generate accurate
criteria (with precision 0.91, recall 0.92, F1 0.91,
and Jaccard score of 0.84 in clinical accuracy eval-
uation) while almost all baselines get less than 0.5
in these metrics. Moreover, our method reaches
around 60% winning rate against GPT-3.5 ! in trial
design tasks via human evaluation. Finally, in §5,
we conclude and discuss future work.

2 Related Work
2.1 Large Language Models

Large language models pre-trained on web-scale
text data exhibit extraordinary emergent capabil-
ity in a diverse set of natural language processing
(NLP) tasks (Kaplan et al., 2020; Brown et al.,
2020). It was recently witnessed that LLMs can
be further tuned to align with human preferences
through instruction tuning (Chung et al., 2022;
Wang et al., 2022) and reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022;
Yuan et al., 2023; Dong et al., 2023).

Despite the remarkable capabilities of large lan-
guage models (LLMs) trained on general text cor-
pus, they often face challenges when generating
highly domain-specific tasks unless they undergo
additional tuning. Research has shown that even
a “small” 300M LM, with instruction tuning, can
outperform LLMs with over 100B parameters (Ya-
sunaga et al., 2022). This finding encourages the
efforts to develop customized expert LLMs by
performing instruction tuning on domain-specific
datasets, e.g., clinical notes and scientific publi-
cations (Singhal et al., 2022). In this work, we

"Engine gpt-3.5-turbo-0301:
openai.com/docs/models/gpt-3-5

https://platform.

are the first to develop LLMs focusing on trial de-
sign through a mixture of techniques, including
instruction tuning, evidence-grounded generation,
and supervised learning for rationale generation.

2.2 Clinical Trial Design

The clinical trial design is a new research topic for
the NLP community, and there are only a few works
related to clinical trial design, either focusing on
trial feature embedding or trial design evaluation.
For trial feature embedding, Marshall et al. (2017)
extracted text pieces that describe the key trial char-
acteristics as a summary report. More recently,
Wang and Sun (2022) developed a self-supervised
document model for dense retrieval for clinical tri-
als. For trial design evaluation, Kim et al. (2021)
manually adjusted criteria to broaden patient ac-
crual and assess the influence of criteria, while Liu
et al. (2021) utilized Shapley scores (Lundberg and
Lee, 2017) to estimate the change of hazard ratio
of the included oncology patients when removing
each criterion. Despite these efforts, no existing
work focuses on clinical trial design automation.

3 Method

AutoTrial utilizes a decoder-based architecture
for generating a target criterion based on input trial
synopsis and manual instructions. The training
process consists of two stages: pretraining and
finetuning.

* During the pretraining stage, the model is trained
on a large corpus of trial documents in order to
learn to reason through multiple steps and mimic
the retrieved input criteria exemplars.

* In the finetuning stage, the model is trained to
generate the target criterion according to the in-
put instructions. For example, an instruction
<age> that urges the model to populate the crite-
rion describing the participant’s age requirement.

It is noteworthy that the model can be extended
to new instructions and trial exemplars without
retraining. The flowchart is depicted in Fig. 1.
We will elaborate on the details of the training and
inference procedures of AutoTrial next.

3.1 Problem Setup

The generation model is represented by the func-
tion f, and generates a target criterion y. based
on input x = {xs, X¢, X, }. Here, x denotes trial
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Figure 1: The workflow of the proposed AutoTrial. Step I: pre-train on unlabeled trial documents with prompts to
mimic the multi-step reasoning. Step II: finetune the model to generate criteria under instructions. Step III: generate
diverse target criteria by instructions with large-scale sampling plus clustering and ranking.

setups, which is a concatenation of the trial title,
condition, and treatment, as the elements illustrated
by Fig. 1. x, denotes the discrete prompt describ-
ing the objective criterion, e.g., “bmi” prompts the
model to generate the criterion for body mass in-
dex of the participants. x. denotes the exemplars
retrieved from relevant trials built for the in-context
learning of LLMs. To this end, we formulate
Xe = {xt 7, xS}, which contains the reasoning
steps x., e. g a chain of criteria that leads to the
target criteria, the targeting instruction x7, e.g., the
objective to be set for recruiting patients, and the
target criterion x¢ that describes the requirement
based on the instruction.

The model is also controlled by continuous
prompt h,,, which is specific to each type of in-
struction, e.g., the targeting entity that the criterion
should contain. The model is trained to generate
criteria y with multi-step reasoning: generating
relevant criteria one by one and ultimately yield-
ing the target criterion. Therefore, the generation
process is expressed in Eq. (1),

y:f(xsaxevx’f‘ahp)- (1)

Referring to the exemplar x., the model outputs
Y =yt @ y., where y, is the reasoning steps and
Y. denotes the target criterion.

3.2 Hybrid Prompting

We opt to employ a hybrid of discrete and neural
prompting to endow the model with the ability to
generate criteria based on specific instructions.

3.2.1 Discrete Prompt

The discrete prompt is motivated by the prospect of
in-context learning of LLMs (Wei et al., 2022), as
the reasoning ability of LLMs can be enhanced via
the input-output exemplars e.g., the concatenation
of a series of criteria x , the target instruction x|,
and the target criteria x¢. We formulate the dlscrete
prompts with specialized tokens:

1. Trial Setup: we wrap the introduction of trial
setups, including title, disease, and treatment, using
specialized tokens like <title>, <disease>, and
<treatment>. The setup offers the basic context
of a trial.

2. In-context Exemplar: we curate the exemplar
that resembles the multi-step reasoning procedure:
the model first generates a series of intermediate
rationales that lead to the final answer. Concretely,
the exemplar x, = {x%,x7, x¢} is retrieved from
the external knowledge store and demonstrate as
the template for the model outputs. x. are many eli-
gibility criteria wrapped by <inc> or <exc> indicat-
ing inclusion or exclusion criteria. x| describes the
instruction wrapped by <statement>, e.g., tell the
model to generate a criterion describing the age re-
quirement by “<statement> age”. x¢ is the target
criterion wrapped by <target>, e.g., “<target>
age is above 18 yrs old”.

3. Textual Instruction: following the exemplar,
x, enforces the model to obey the instruction,
wrapped by <statement> such as "<statement>
gender”.
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The exemplars are stored in an external knowl-
edge store providing an open-book reference that
the model can refer to during the generation. It
is built on the training data C = {(xz,yl)}fv
that is amenable to edit, add or delete during the
course of training and generating needless of re-
training the model. We utilize a neural encoder
7T named Trial2Vec (Wang and Sun, 2022) that
encodes trial setups xs to dense embeddings, as
h, = T(x,) € R? that carry rich semantics of the
trials. Consequently, the knowledge store is given

by Eq. (2),
(K, V) = {(hs,xc) | (x,¥) € C} (2)

with the embeddings serving as the keys and the
exemplars as the values. Here, the vector-based
search engine can be implemented for efficient ex-
emplar retrieval on the fly.

3.2.2 Neural Prompt

Consider the embeded input tokens x.; =
{z1,...,5yas Hy = {hy,... b} € R we
prepend neural prompts to H; to get the prompted
input Ho; = h, ® H,;. Formally, we create a set
of instruction indices Z, the ¢-th instruction x,; is
parameterized by Eq. (3),

hp - MLP(ET [Za :])? (3)

where E,. € RIZI*¢ s the trainable embedding ma-
trix. E, [i, :] indicates looking up the i-th row of the
matrix; MLP : R% — R? projects the embedded
instruction to the same dimension as H.

The neural prompting is modular, meaning that it
can be easily modified to incorporate additional in-
structions Z’ by simply extending the index set Z =
{Z,7'} and the embedding matrix E, = {E,, E/.}
for those instructions. When the model is finetuned
on new data, we can only update the instruction
embedding E/. while the rest of the model remains
frozen. This allows the model to effectively learn
to generate based on a broader range of instructions
while minimizing the risk of catastrophic forget-
ting, i.e., the performance degradation on previous
data.

3.3 Multi-stage Training

As described in §3.1, we have a dataset contain-
ing pairs of input instructions (denoted as x,) and
corresponding criteria (denoted as y.). We extract
clinical relations from the raw criteria to formu-
late the training and testing data, e.g., extracting

the relation “NYHA € {III, IV}” from the criteria
“NYHA class is above II”’. However, the parser may
not be able to extract all relevant instructions from
all available trial documents. We hence propose to
train our method in two stages: first pretraining on
a large set of unlabeled trial documents and then
finetuning on the processed dataset of instruction-
criteria pairs. This approach allows us to make the
most of the available data and facilitate the model
performance.

Pretraining. We create a pretraining dataset

Cp?“e = {(X87 Xey Yt YC)l}z]M7 (4)

where the model f is urged to generatey = y; Py,
in Eq. (1). The inputs comprise the trial setup x;
and the exemplar x, which is also composed of
multiple criteria. Drawing the inspiration from
(Taylor et al., 2022), we decide to include prompts
and special tokens in the pretraining stage. Specifi-
cally, we explicitly emphasize the step-by-step rea-
soning task by inserting the separate tokens <inc>
and <exc> into X, and y;, and the model is super-
vised to generate the intermediate rationales and
yield the target criterion.

Our method is built based on decoder-based
CLM (e.g., GPT2 (Radford et al., 2019)) where
the decoder predicts y autoregressively. Denote
the learned decoding distribution as py(+), the ob-
jective is the maximum log-likelihood estimation
given by Eq. (5),

L

1
Lvig = -7 lz_;logpe(yl’}’dax)- (5

where y ; are tokens in y before the [-th token; L
is the total number of tokens in the target y.
Finetuning. After pretraining, the model is fine-
tuned on the dataset C, and taught to follow the
instruction when generating criteria. The inputs
and outputs are described in Eq. (1). In addition
to the MLE loss in Eq. (5), we apply a contrastive
loss Lcr (Su et al., 2022) to enhance the model
representation learning, as in Eq. (6),

1 L
:LX(L—l ZZ (6)

where h,, is the embedding of token y;, p is the pre-
defined margin, s(-) is the cosine similarity func-
tion. The finetuning loss combines the objectives
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Table 1: The statistics of the used trial data.

Train Valid  Test
# trials 54,703 6,079 15,195
# inclusion 153,169 17,145 42,269
# exclusion 128,310 14,581 35,247
Avg inc length 121.0 1204 1185
Avg exc length 148.3  153.0 145.2

from Egs. (5) and (6) as given by Eq. (7),
Ler = LmLE + LcL- (N

Note that the decoding distribution in the finetuning
stage is pg(y|y<i, X, hy) that differs from the one
used in the pretraining shown in Eq. (5).

3.4 Generation

Denote the vocabulary by V, we conduct top-k
sampling repeatedly to acquire diverse candidates

yr ~ po(yly<i,x,hy),s.t.y € vk (8)

where V(*s) is a subset of V' that maximizes
Zer(ks) po(yly<i,x,hy), and [VF)| = k. We
further adopt clustering and ranking to select sam-
ples from the generated candidates. We first encode
y by Trial2Vec to dense embeddings hy and ap-
ply k-means clustering with £, clusters. We then
compute the perplexity (ppl) of each output y,, and
pick the sample with the minimum ppl in each clus-
ter to form the final candidate set with k, samples.
An example of the input and output of AutoTrial
can be found in Table 5 in the appendix.

4 Experiment

We conduct extensive experiments to evaluate
AutoTrial in the following aspects:

 The overall quality in terms of criteria-level and
trial-level trial protocol generation.

* The capability of the continual update for new
trials and instructions.

* The ablation analysis for the components of the
proposed method.

4.1 Dataset

We collected clinical trial documents from Clin-
icalTrials.gov (NIH, 2023) and filtered out those
without valid interventions, diseases, or titles, as

well as those with void eligibility criteria. We ex-
tracted 75,977 clinical trials and applied Clinical
Trial Parser (FAIR, 2022) to extract 751,258 med-
ical relations from the eligibility criteria of these
trials. The train-test split is shown in Table 1. For
each trial, we sampled one criterion as the target
and several others as input exemplars, resulting in
2,528,231 unique training samples out of 400K tri-
als as the pretraining data. The validation and test
trials were excluded from the pretraining data.

4.2 Evaluation Strategy

Automatic Evaluation. To evaluate the quality of
the output criteria, which are expressed in natural
language, we employ metrics from the NLG lit-
erature, including CIDEr (Vedantam et al., 2015),
ROUGE-L (Lin, 2004), METEOR (Lavie and Agar-
wal, 2007), and BLEU (Papineni et al., 2002).
These metrics allow us to assess the fluency and
coherence of the generated criteria quantitatively.
We evaluate all the methods at the criteria level
and trial level. At the criteria level, the model
will generate each criterion separately, using the
concatenated trial setup texts and the first three
tokens of the targeting criteria as input. At the trial
level, the model will take the concatenated trial
setup texts as input and generate all of the criteria
for the trial at once.
Clinical Accuracy. To evaluate the clinical ac-
curacy of the generated criteria, we run Clinical
Trial Parser (FAIR, 2022) on the generated crite-
ria to extract the medical relations and compare
them with the relations extracted from the corre-
sponding ground-truth criteria. We evaluate the
overlapping of two relation sets by the precision,
recall, F1-score, and Jaccard similarity.
Human Evaluation. We perform a manual evalua-
tion to compare the generated clinical trial design
from our method with the generated by a general
LLM. We enlisted the expertise of domain experts
to assess and choose the superior output between
our method and the LLM’s output for a given trial
synopsis. This allowed us to collect feedback and
calculate the winning rate.

4.3 Implementations

To the best of our knowledge, there were no exist-
ing algorithms for automatic trial design generation.
We thus propose to compare AutoTrial with dif-
ferent NLG models: finetuning (FT), prefix-tuning
(PT) (Li and Liang, 2021), retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020), and contrastive
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Table 2: Automatic evaluation of eligibility criteria generation results on the test set on the trial-level, i.e., compare
the concatenated inclusion/exclusion criteria of a trial with the corresponding groundtruth. B1 is short for BLEU-1.

Trial level - Inclusion Trial level - Exclusion
Method/Scores Bl METEOR ROUGE-L CIDEr | Bl METEOR ROUGE-L CIDEr
GPT2-FT 9.2 23.6 7.5 0.10 7.2 8.3 2.7 0.02
GPT2-RAG 16.4 25.2 9.9 0.09 9.7 194 7.4 0.09
GPT2-PT 20.0 19.2 22.8 0.17 16.5 15.0 12.6 0.14
GPT2-SimCTG 9.8 24.8 10.6 0.11 94 114 55 0.06
T5-FT 21.9 29.8 18.3 0.18 13.2 13.9 8.0 0.07
T5-RAG 22.7 28.9 16.7 0.15 14.9 11.8 7.5 0.06
T5-PT 432 21.0 23.3 0.09 17.8 23.4 11.1 0.19
T5-SimCTG 22.1 30.3 17.6 0.17 15.8 13.1 7.7 0.06
AutoTrial 58.7 40.8 40.6 0.24 | 54.4 36.3 35.3 0.33

Table 3: Automatic evaluation of eligibility criteria generation results on the test set on the criteria-level, i.e.,
compare the generated inclusion/exclusion criteria with the groundtruth one by one. B1 is short for BLEU-1.

Criteria level - Inclusion
Method/Scores Bl

METEOR ROUGE-L CIDEr | Bl

GPT2-FT 9.0 18.1 27.0
GPT2-RAG 19.9 17.7 28.0
GPT2-PT 10.1 13.9 18.3
GPT2-SimCTG 323 16.6 323
T5-FT 12.8 6.8 9.4
T5-RAG 14.7 11.3 14.2
T5-PT 223 9.8 15.8
T5-SimCTG 20.3 11.5 11.6
AutoTrial 39.7 24.3 35.3

Criteria level - Exclusion

METEOR ROUGE-L CIDEr
0.54 18.2 16.4 214 0.47
0.50 13.8 17.3 22.1 0.52
0.23 14.1 12.3 10.9 0.13
0.68 | 29.1 14.5 23.0 0.68
0.11 11.2 3.9 5.1 0.04
0.30 12.1 53 6.8 0.09
0.26 10.4 15.5 9.3 0.18
0.33 12.4 10.3 10.5 0.17
0.79 | 38.4 24.2 30.0 0.68

learning + contrastive search (SimCTG) (Su et al.,
2022). We choose GPT2 (Radford et al., 2019) and
T5 (Raffel et al., 2020) as the backbones. We also
compare with GPT-3.5 to verify if general LLMs
can generate reasonable eligibility criteria (Ouyang
etal., 2022) !,

For our method, we leverage GPT-2 (Radford
et al., 2019) as the backbone model. We set the
maximum context length as 1,024. In the pertaining
stage, we train the backbone model with a batch
size of 64, learning rate Se-5, weight decay le-4,
and 5 epochs. In the instruction tuning stage, we
train the model with a batch size of 16, learning
rate 5e-5, weight decay le-5, and 10 epochs.

4.4 Exp 1: Generation Quality

Text quality. Table 2 shows the automatic evalu-
ation scores with the evaluation done at the trial
level. The results show that AutoTrial demon-
strates superior performance over the baselines in
all four metrics (BLEU-1, METEOR, ROUGE-L,
and CIDEr) for both inclusion and exclusion crite-
ria. We can draw similar conclusions from Table 3,
with the evaluation at the criteria level.

One notable finding is that the performance for

inclusion criteria generation is generally better than
for exclusion criteria generation. We conjecture
that inclusion criteria are presented prior to exclu-
sion criteria in the training data, which may lead
to the truncation of the latter due to the model’s
maximum acceptable length. Besides, errors may
accumulate when generating criteria in an autore-
gressive manner. AutoTrial mitigates the order
issue credited to the hybrid prompting.

Clinical accuracy. We present the clinical accu-
racy evaluation results in Table 4. As aligned with
the automatic evaluation results, AutoTrial per-
forms better at criteria generation, with a bigger
performance gap. For example, AutoTrial is the
only method that yields recall above 0.5 (w/ 0.91),
F1 above 0.6 (w/ 0.91), and Jaccard scores above
0.4 (w/ 0.84) in inclusion criteria generation. It
wins over baselines with a prominent margin in
exclusion criteria generation. These results demon-
strate that our method can generate criteria accu-
rately aligned with the provided instructions.

We also observe that most methods obtain decent
precision and AutoTrial has the best performance.
It implies a low hallucination rate in our method’s
generated text because most generated relations
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Table 4: Clinical accuracy evaluation results of eligibil-
ity criteria generation results on the test set. P, R, F1, Jac
are short for precision, recall, F1 score, micro-Jaccard
score, respectively.

Type Method/Score P R Fl  Jac
GPT2-FT 0.74 035 047 031
GPT2-RAG 0.81 041 054 0.37
GPT2-PT 0.75 045 056 0.39
GPT2-SimCTG 0.89 0.40 0.56 0.38

Inclusion | T5-FT 0.77 0.10 0.17 0.09
T5-RAG 0.82 0.13 022 0.12
T5-PT 0.74 0.17 027 0.16
T5-SimCTG 0.68 0.04 0.08 0.04
AutoTrial 091 092 091 0.84
GPT2-FT 0.69 021 033 0.20
GPT2-RAG 059 0.26 036 0.22
GPT2-PT 036 025 030 0.17
GPT2-SimCTG 0.80 0.23 0.36 0.22

Exclusion | T5-FT 0.24 003 0.06 0.03
T5-RAG 0.24 003 0.05 0.03
T5-PT 0.18 025 021 0.12
T5-SimCTG 0.16 0.01 0.02 0.01
AutoTrial 085 0.89 0.87 0.76

Human Eval: Inclusion Criteria Human Eval: Exclusion Criteria
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Figure 2: Human evaluations of the winning rate of
AutoTrial against GPT-3.5 when GPT-3.5 does zero-
shot generation (no exemplar), 1-shot, and 5-shot in-
context learning.

are also concretely mentioned in the groundtruth
eligibility criteria. However, the baselines perform
much worse regarding the recall and Jaccard scores.
It indicates that AutoTrial is advantageous in the
high coverage of targeting clinical relations in the
generated criteria.

Human Evaluation. The human evaluation re-
sults are available in Fig. 2, where we identify that
our method significantly outperforms the GPT-3.5
baselines, i.e., in over 60% cases, the output cri-
teria from AutoTrial are considered better than
the from GPT-3.5. This again emphasizes the op-
portunity of developing expert LLMs that surpass
general LLMs at much less cost. It is also interest-
ing that 5-shot GPT-3.5 is worse than the 1-shot
and zero-shot ones. We conjecture that GPT-3.5
is impacted by the context that contains irrelevant
exemplars when generating for the targeting trials.
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Figure 3: In-depth analysis of generation quality across
100 trial groups divided by the targeting disease. Base-
lines are based on GPT-2.

4.5 Exp 2: In-depth Analysis

Performance Divergence. We divided the raw test
trials by their target diseases, leading to 100 non-
overlapping sets, with each set sharing the same
target disease. We then evaluated the generated
texts within each subset. We created box plots of
the obtained scores (evaluated on the combination
of inclusion and exclusion criteria) in Fig. 3.

Our results indicate that AutoTrial exhibits su-
perior performance across all metrics. It achieves
the highest median performance and has a more
stable score distribution, with both a high upper
bound and lower bound for all metrics. Among
the baseline methods, SImCTG performs the best
on three metrics, with the exception of METEOR.
However, it should be noted that its worst-case per-
formance was typically much lower than that of
most other methods. We also zoom in to show
the performances of trials targeting the top eight
most frequent diseases/conditions in Fig. 6, where
AutoTrial consistently wins over all baselines.

Qualitative Analysis. We present several qualita-
tive results of our model in Table 5. The model
inputs have two parts: manual input and automati-
cally built input, where the manual input is concate-
nated with the automatic input and passed to the
model. Users set up the basic trial information and
can opt to offer different instructions for generating
criteria. As observed in the first four rows of Table
5, the outputs vary when provided with different
instructions for the same trial. Furthermore, it can
be observed that the generated outputs are fluent,
coherent, and closely resemble the referential man-
ually written criteria.
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Figure 4: Comparison between two variants of

AutoTrial: Re-train and Incremental. The Re-train
variant is trained on all subsets, while the Incremental
variant updates its knowledge only on new subsets. The
scatter plot also includes the performance of four base-
lines, which are trained on all data.

4.6 Exp 3: Incremental Learning

One major merit of AutoTrial is to continually up-
date its internal and external memory without the
need of retraining on all collected data. To demon-
strate the capability of AutoTrial in continuously
updating its knowledge, we designed two vari-
ants of our method: Re-train and Incremental.
These variants were trained on four subsets of the
raw training set: {C1, Ca,Cs3,Cy4}, with the instruc-
tion types being equally assigned and mutually ex-
clusive in each subset. The models encountered
the subsets sequentially, with the Re-train model
learning by combining all previously seen subsets,
e.g., it would be trained and evaluated on {C;,Ca}
when C; is revealed. In essence, Re-train is the
theoretic upper bound for all incremental learning
methods. In contrast, the Incremental model is
also evaluated on {C1, C2} but it would be trained
on Cs only when it is revealed. Additionally, during
training, the Incremental model only updates the
neural prompting while freezing all other parame-
ters.

We present the results in Fig. 4.  The
Incremental model demonstrates the capability of
mitigating catastrophic forgetting when extended to
new data. However, the gap between the two vari-
ants expands over time. The Incremental model
decays to the level of the best baseline after be-
ing updated on the fourth subset when the total
number of instructions is 4 x more than in the first
subset. We hence suggest incrementally updating
AutoTrial until the new instructions reach around
3x more than the last fully retrained checkpoint to
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Figure 5: Ablation experiments of AutoTrial when
removing one module. AT: the original version; w/o
MSR: without the multi-step reasoning supervision; w/o
RAG: without the retrieval-augmented generation; w/o
Prompt: without the neural prompting.

reach a trade-off between utility and cost.

4.7 Exp 4: Ablation Study

We conducted an ablation study (shown in Fig. 5)
to compare the original version of AutoTrial with
its variants when removing certain components:
the multi-step reasoning supervision (w/o MSR),
the retrieval-augmented generation (w/o RAG), and
the neural prompting (w/o Prompt). The results
show that both RAG and Prompt have a significant
impact on the final performance. MSR performs
similarly on inclusion criteria compared to the orig-
inal version but has worse results on exclusion cri-
teria. Despite this, MSR is ultimately retained in
the final model as it produces more balanced re-
sults among inclusion and exclusion criteria and
also provides insight into the model’s reasoning
path, making it more interpretable.

5 Conclusion

In summary, this paper presents AutoTrial that
uses language models to aid in the design of clini-
cal trial protocols. Our method is able to generate
high-quality criteria texts that are fluent, coherent,
and clinically accurate, by using a combination
of controllable generation, scalable knowledge in-
corporation, and multi-step reasoning. This can
potentially reduce the risk of clinical trial failure by
ensuring that trials are properly designed and have
sufficient power to evaluate proposed therapies.

Limitations

The proposed method, AutoTrial, is a valuable
tool for designing clinical trials by providing con-
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trollable generation under instructions, scalable
knowledge incorporation, and multi-step reasoning.
However, it is important to note that one limitation
of the method is that it is dependent on the qual-
ity of data used to train the language model. If
the clinical trial database used to train the model
contains biases or inaccuracies, these limitations
may be present in the generated criteria texts. To
ensure the quality of the generated criteria texts, it
is crucial to use high-quality, accurate, and up-to-
date data to train the language model, which can
be achieved by regularly updating the clinical trial
databases used for training.

Additionally, the method may not be able to ac-
count for unexpected or rare side effects or issues
that may occur during the trial, which may impact
the safety and efficacy of the proposed treatment.
It is important to note that AutoTrial should be
considered a supportive tool for designing clinical
trials and the final decision should always be made
by human clinicians. The tool can aid in identifying
relevant trials and generating high-quality criteria
texts, but ultimately, it is the responsibility of the
clinician to evaluate the overall design and safety
of the trial, taking into account the unique charac-
teristics and needs of the trial population. The tool
should be used as an aid in the design process, but
not as a replacement for the expertise and judgment
of human clinicians.
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Figure 6: The generation quality across the trials targeting to the top-8 most frequent diseases/conditions.
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Table 5: Qualitative generation results of AutoTrial for criteria generation under instructions. Manual Input:
the context textual inputs offered by users, where trial setups x are shared for the same trial and instructions x,
are specific to each criteria; Automatically Built Input: the reference criteria automatically retrieved and built as
the input x. for AutoTrial; Output: results generated by AutoTrial; Groundtruth: the corresponding criteria
written by human clinicians in the original trial documents. The Manual Input and Automatically Built Input will
be concatenated as the final input. yellow highlights the instruction tokens; | green highlights the setup tokens;

blue highlights the reference tokens; red highlights the rarget tokens. Reference texts are truncated in the middle

due to the limited space.

to Evaluate the Pharmacokinetics and
Pharmacodynamics of DBPR108 Tablets
in Type 2 Diabetes Mellitus Patients
<disease> Type 2 Diabetes Mellitus
<treatment> DBPR10S tablets

hbalc < 10% who have been diagnosed
with t2dm at least 8 weeks ... <exc> se-
vere gastrointestinal diseases: active ul-
cer, gastrointestinal or rectal bleeding,
active inflammatory bowel syndrome,
biliary duct obstruction, active gastritis
that is not controlled by medication, etc.
</ref>

and IV) </excs>

Manual Input Automatically Built Input Output Groundtruth

<instr> <bmi> </instr>  <title> A | <ref>| <inc> subjects with bmi of 20- | <incs> <inc> Body | Body mass index (BMI)
Single-dose and Multiple-dose Study | 45 kg/m?2 ... <exc> severe gastrointesti- | mass index 19 to | within the range of 19-35
to Evaluate the Pharmacokinetics and | nal diseases: active ulcer, gastrointestinal | 35 kg/m2, inclusive kg/m2 (inclusive), BMI
Pharmacodynamics of DBPR108 Tablets | or rectal bleeding, active inflammatory | </incs> = weight (kg) / height?
in Type 2 Diabetes Mellitus Patients | bowel syndrome, biliary duct obstruc- (m?)

<disease> Type 2 Diabetes Mellitus | tion, active gastritis that is not controlled

<treatment> DBPR108 tablets by medication, etc. | </ref>

<instr> <nyha> </instr> | <title> A | |[<ref> <inc> subjects with bmi of 20- | <excs> <exc> Heart | Serious  dysrhythmias,
Single-dose and Multiple-dose Study | 45 kg/m2 <inc> subjects with 7% < | failure (NYHA class III | obvious left ventricu-

lar dysfunction, New
York Heart Association
(NYHA) functional class
1T or IV

<instr> <sbp> </instr>  <title> A

Single-dose and Multiple-dose Study
to Evaluate the Pharmacokinetics and
Pharmacodynamics of DBPR108 Tablets
in Type 2 Diabetes Mellitus Patients
<disease> Type 2 Diabetes Mellitus
<treatment> DBPR108 tablets

<ref> <inc> subjects with bmi of 20-
45 kg/m2 ... <exc> severe gastrointesti-
nal diseases: active ulcer, gastrointestinal
or rectal bleeding, active inflammatory
bowel syndrome, biliary duct obstruc-
tion, active gastritis that is not controlled
by medication, etc. | </ref>

<excs> <exc> Subject
has hypotension (systolic
blood pressure < 90
mmHg) or hypertension
(systolic blood pressure
> 140 mmHg or dias-
tolic blood pressure >
90 mmHg) at screening
</excs>

Uncontrolled hyperten-
sion, systolic pressure
>160 mmHg or diastolic
pressure >100 mmHg

<instr> <cqt> </instr> <title> A
Single-dose and Multiple-dose Study
to Evaluate the Pharmacokinetics and
Pharmacodynamics of DBPR108 Tablets
in Type 2 Diabetes Mellitus Patients
<disease> Type 2 Diabetes Mellitus
<treatment> DBPR108 tablets

<ref> <inc> subjects with bmi of 20-
45 kg/m?2 ... <exc> severe gastrointesti-
nal diseases: active ulcer, gastrointestinal
or rectal bleeding, active inflammatory
bowel syndrome, biliary duct obstruc-
tion, active gastritis that is not controlled
by medication, etc. | </ref>

<excs> <exc> Patients

who had QTc interval >
450 ms in males or > 470
ms in females </excs>

Patients who have the
second or third degree
atrioventricular  block,
long Q-T syndrome, or
QTc>500 ms without
cardiac pacemaker

<instr> <life_expectancy> </instr>

<title> Gefitinib Combined With
Chemotherapy or Antiangiogensis in Pa-
tients With Bim Deletion or Low EGFR
Mutation Abundance <disease> Non-
small-cell Lung Cancer  <treatment>
Gefitinib, pemetrexed or gemcitabine
plus carboplatin, bevacizumab

<ref> <inc> female patients with repro-

ductive potential must have a negative
serum pregnancy test within 72 hours
prior to start of study medication. all
female patients of childbearing poten-
tial, and all male patients, ... <exc>
known brain metastases (in case of clin-
ical signs or symptoms of brain metas-
tases radiological evaluation is manda-
tory). | </ref>

<incs><inc> Life ex-
pectancy > 12 weeks
</incs>

Life expectancy of at
least 12 weeks

<instr> <age> </instr> | <title> Nutri-
ent Synergy in Beef and Stimulation of
Protein Synthesis in Elderly <disease>
Healthy |<treatment> 3 ounces of
cooked, 85% lean ground beef, 20 grams
beef protein isolate

<ref> <inc> bmi 18.5 - 29.9 kg/m2 ...

<exc> self-reported malabsorption (e.g.
difficulty digesting or absorbing nutri-
ents from food, potentially leading to
bloating, cramping or gas) </ref>

<incs> <inc> Aged 60
years or older </incs>

Age 60 years or older
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