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Abstract

How much private information do text em-
beddings reveal about the original text? We
investigate the problem of embedding inver-
sion, reconstructing the full text represented
in dense text embeddings. We frame the prob-
lem as controlled generation: generating text
that, when reembedded, is close to a fixed point
in latent space. We find that although a naïve
model conditioned on the embedding performs
poorly, a multi-step method that iteratively cor-
rects and re-embeds text is able to recover 92%
of 32-token text inputs exactly. We train our
model to decode text embeddings from two
state-of-the-art embedding models, and also
show that our model can recover important per-
sonal information (full names) from a dataset
of clinical notes. 1

1 Introduction

Systems that utilize large language models (LLMs)
often store auxiliary data in a vector database of
dense embeddings (Borgeaud et al., 2022; Yao
et al., 2023). Users of these systems infuse knowl-
edge into LLMs by inserting retrieved documents
into the language model’s prompt. Practition-
ers are turning to hosted vector database services
to execute embedding search efficiently at scale
(Pinecone; Qdrant; Vdaas; Weaviate; LangChain).
In these databases, the data owner only sends em-
beddings of text data (Le and Mikolov, 2014; Kiros
et al., 2015) to the third party service, and never
the text itself. The database server returns a search
result as the index of the matching document on
the client side.

Vector databases are increasingly popular, but
privacy threats within them have not been compre-
hensively explored. Can the third party service
to reproduce the initial text, given its embedding?
Neural networks are in general non-trivial or even

1Our code is available on Github:
github.com/jxmorris12/vec2text.

impossible to invert exactly. Furthermore, when
querying a neural network through the internet, we
may not have access to the model weights or gradi-
ents at all.

Still, given input-output pairs from a network,
it is often possible to approximate the network’s
inverse. Work on inversion in computer vision
(Mahendran and Vedaldi, 2014; Dosovitskiy and
Brox, 2016) has shown that it is possible to learn
to recover the input image (with some loss) given
the logits of the final layer. Preliminary work has
explored this question for text (Song and Raghu-
nathan, 2020), but only been able to recover an
approximate bag of words given embeddings from
shallow networks.

In this work, we target full reconstruction of in-
put text from its embedding. If text is recoverable,
there is a threat to privacy: a malicious user with ac-
cess to a vector database, and text-embedding pairs
from the model used to produce the data, could
learn a function that reproduces text from embed-
dings.

We frame this problem of recovering textual em-
beddings as a controlled generation problem, where
we seek to generate text such that the text is as close
as possible to a given embedding. Our method,
Vec2Text, uses the difference between a hypothesis
embedding and a ground-truth embedding to make
discrete updates to the text hypothesis.

When we embed web documents using a state-of-
the-art black-box encoder, our method can recover
32-token inputs with a near-perfect BLEU score of
97.3, and can recover 92% of the examples exactly.
We then evaluate on embeddings generated from
a variety of common retrieval corpuses from the
BEIR benchmark. Even though these texts were
not seen during training, our method is able to per-
fectly recover the inputs for a number of datapoints
across a variety of domains. We evaluate on em-
beddings of clinical notes from MIMIC and are
able to recover 89% of full names from embedded
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Figure 1: Overview of our method, Vec2Text. Given access to a target embedding e (blue) and query access to an
embedding model ϕ (blue model), the system aims to iteratively generate (yellow model) hypotheses ê (pink) to
reach the target. Example input is a taken from a recent Wikipedia article (June 2023). Vec2Text perfectly recovers
this text from its embedding after 4 rounds of correction.

notes. These results imply that text embeddings
present the same threats to privacy as the text from
which they are computed, and embeddings should
be treated with the same precautions as raw data.

2 Overview: Embedding Inversion

Text embedding models learn to map text se-
quences to embedding vectors. Embedding vec-
tors are useful because they encode some notion
of semantic similarity: inputs that are similar in
meaning should have embeddings that are close in
vector space (Mikolov et al., 2013). Embeddings
are commonly used for many tasks such as search,
clustering, and classification (Aggarwal and Zhai,
2012; Neelakantan et al., 2022; Muennighoff et al.,
2023).

Given a text sequence of tokens x ∈ Vn, a text
encoder ϕ : Vn → Rd maps x to a fixed-length
embedding vector e ∈ Rd.

Now consider the problem of inverting textual
embeddings: given some unknown encoder ϕ, we
seek to recover the text x given its embedding
e = ϕ(x). Text embedding models are typically
trained to encourage similarity between related in-
puts (Karpukhin et al., 2020). Thus, we can write
the problem as recovering text that has a maxi-
mally similar embedding to the ground-truth. We
can formalize the search for text x̂ with embedding
e under encoder ϕ as optimization:

x̂ = argmax
x

cos(ϕ(x), e) (1)

Assumptions of our threat model. In a practical
sense, we consider the scenario where an attacker
wants to invert a single embedding produced from
a black-box embedder ϕ. We assume that the at-
tacker has access to ϕ: given hypothesis text x̂, the
attacker can query the model for ϕ(x̂) and compute
cos(ϕ(x̂), e). When this term is 1 exactly, the at-
tacker can be sure that x̂ was the original text, i.e.
collisions are rare and can be ignored.

3 Method: Vec2Text

3.1 Base Model: Learning to Invert ϕ

Enumerating all possible sequences to compute
Equation (1) is computationally infeasible. One
way to avoid this computational constraint is by
learning a distribution of texts given embeddings.
Given a dataset of texts D = {x1, . . .}, we learn to
invert encoder ϕ by learning a distribution of texts
given embeddings, p(x | e; θ), by learning θ via
maximum likelihood:

θ = arg max
θ̂

Ex∼D[p(x | ϕ(x); θ̂)]

We drop the θ hereon for simplicity of notation.
In practice, this process involves training a condi-
tional language model to reconstruct unknown text
x given its embedding e = ϕ(x). We can view this
learning problem as amortizing the combinatorial
optimization (Equation (1)) into the weights of a
neural network. Directly learning to generate sat-
isfactory text in this manner is well-known in the
literature to be a difficult problem.
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3.2 Controlling Generation for Inversion
To improve upon this model, we propose Vec2Text
shown in Figure 1. This approach takes inspira-
tion from methods for Controlled Generation, the
task of generating text that satisfies a known con-
dition (Hu et al., 2018; John et al., 2018; Yang
and Klein, 2021). This task is similar to inversion
in that there is a observable function ϕ that deter-
mines the level of control. However, it differs in
that approaches to controlled generation (Dathathri
et al., 2020; Li et al., 2022) generally require differ-
entiating through ϕ to improve the score of some
intermediate representation. Textual inversion dif-
fers in that we can only make queries to ϕ, and
cannot compute its gradients.

Model. The method guesses an initial hypoth-
esis and iteratively refines this hypothesis by re-
embedding and correcting the hypothesis to bring
its embedding closer to e. Note that this model re-
quires computing a new embedding ê(t) = ϕ(x(t))
in order to generate each new correction x(t+1).
We define our model recursively by marginalizing
over intermediate hypotheses:

p(x(t+1) | e) =
∑

x(t)

p(x(t) | e)p(x(t+1) | e, x(t), ê(t))

ê(t) = ϕ(x(t))

with a base case of the simple learned inversion:

p(x(0) | e) = p(x(0) | e,∅, ϕ(∅))

Here, x(0) represents the initial hypothesis gener-
ation, x(1) the correction of x(0), and so on. We
train this model by first generating hypotheses x(0)

from the model in Section 3.1, computing ê(0), and
then training a model on this generated data.

This method relates to other recent work gener-
ating text through iterative editing (Lee et al., 2018;
Ghazvininejad et al., 2019). Especially relevant
is Welleck et al. (2022), which proposes to train
a text-to-text ‘self-correction’ module to improve
language model generations with feedback.

Parameterization. The backbone of our model,
p(x(t+1) | e, x(t), ê(t)), is parameterized as a stan-
dard encoder-decoder transformer (Vaswani et al.,
2017; Raffel et al., 2020) conditioned on the previ-
ous output.

One challenge is the need to input conditioning
embeddings e and ê(t) into a transformer encoder,

which requires a sequence of embeddings as input
with some dimension denc not necessarily equal
to the dimension d of ϕ’s embeddings. Similar to
Mokady et al. (2021), we use small MLP to project
a single embedding vector to a larger size, and
reshape to give it a sequence length as input to the
encoder. For embedding e ∈ Rd:

EmbToSeq(e) = W2 σ(W1 e)

where W1 ∈ Rd×d and W2 ∈ R(sdenc)×d for some
nonlinear activation function σ and predetermined
encoder “length” s. We use a separate MLP to
project three vectors: the ground-truth embedding
e, the hypothesis embedding ê(t), and the differ-
ence between these vectors e− ê. Given the word
embeddings of the hypothesis x(t) are {w1...wn},
the input (length 3s + n) to the encoder is as fol-
lows:

concat(EmbToSeq(e),

EmbToSeq(ê(t)),

EmbToSeq(e− ê(t)), (w1...wn))

We feed the concatenated input to the encoder and
train the full encoder-decoder model using standard
language modeling loss.

Inference. In practice we cannot tractably sum
out intermediate generations x(t), so we approxi-
mate this summation via beam search. We perform
inference from our model greedily at the token level
but implement beam search at the sequence-level
x(t). At each step of correction, we consider some
number b of possible corrections as the next step.
For each possible correction, we decode the top
b possible continuations, and then take the top b
unique continuations out of b · b potential contin-
uations by measuring their distance in embedding
space to the ground-truth embedding e.

4 Experimental Setup

Embeddings. Vec2Text is trained to invert two
state-of-the-art embedding models: GTR-base (Ni
et al., 2021), a T5-based pre-trained transformer
for text retrieval, and text-embeddings-ada-002
available via the OpenAI API. Both model fami-
lies are among the highest-performing embedders
on the MTEB text embeddings benchmark (Muen-
nighoff et al., 2023).
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method tokens pred tokens bleu tf1 exact cos
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ns
Bag-of-words (Song and Raghunathan, 2020) 32 32 0.3 51 0.0 0.70
GPT-2 Decoder (Li et al., 2023) 32 32 1.0 47 0.0 0.76
Base [0 steps] 32 32 31.9 67 0.0 0.91

(+ beam search) 32 32 34.5 67 1.0 0.92
(+ nucleus) 32 32 25.3 60 0.0 0.88

Vec2Text [1 step] 32 32 50.7 80 0.0 0.96
[20 steps] 32 32 83.9 96 40.2 0.99
[50 steps] 32 32 85.4 97 40.6 0.99
[50 steps + sbeam] 32 32 97.3 99 92.0 0.99

O
pe

nA
I

M
SM

A
R

C
O Base [0 steps] 31.8 31.8 26.2 61 0.0 0.94

Vec2Text [1 step] 31.8 31.9 44.1 77 5.2 0.96
[20 steps] 31.8 31.9 61.9 87 15.0 0.98
[50 steps] 31.8 31.9 62.3 87 14.8 0.98
[50 steps + sbeam] 31.8 31.8 83.4 96 60.9 0.99

O
pe

nA
I

M
SM

A
R

C
O Base [0 steps] 80.9 84.2 17.0 54 0.6 0.95

Vec2Text [1 step] 80.9 81.6 29.9 68 1.4 0.97
[20 steps] 80.9 79.7 43.1 78 3.2 0.99
[50 steps] 80.9 80.5 44.4 78 3.4 0.99
[50 steps + sbeam] 80.9 80.6 55.0 84 8.0 0.99

Table 1: Reconstruction score on in-domain datasets. Top section of results come from models trained to reconstruct
32 tokens of text from Wikpedia, embedded using GTR-base. Remaining results come from models trained to
reconstruct up to 32 or 128 tokens from MSMARCO, embedded using OpenAI text-embeddings-ada-002.

Datasets. We train our GTR model on 5M pas-
sages from Wikipedia articles selected from the
Natural Questions corpus (Kwiatkowski et al.,
2019) truncated to 32 tokens. We train our two
OpenAI models (Bajaj et al., 2018), both on ver-
sions of the MSMARCO corpus with maximum 32
or 128 tokens per example 2. For evaluation, we
consider the evaluation datasets from Natural Ques-
tions and MSMarco, as well as two out-of-domain
settings: the MIMIC-III database of clinical notes
(Johnson et al., 2016) in addition to the variety
of datasets available from the BEIR benchmark
(Thakur et al., 2021).

Baseline. As a baseline, we train the base model
p(x(0) | e) to recover text with no correction steps.
We also evaluate the bag of words model from
Song and Raghunathan (2020). To balance for the
increased number of queries allotted to the cor-
rection models, we also consider taking the top-N
predictions made from the unconditional model via
beam search and nucleus sampling (p = 0.9) and
reranking via cosine similarity.

2By 2023 pricing of $0.0001 per 1000 tokens, embedding
5 million documents of 70 tokens each costs $35.

Metrics. We use two types of metrics to measure
the progress and the accuracy of reconstructed text.
First we consider our main goal of text reconstruc-
tion. To measure this we use word-match metrics
including: BLEU score (Papineni et al., 2002), a
measure of n-gram similarities between the true
and reconstructed text; Token F1, the multi-class
F1 score between the set of predicted tokens and
the set of true tokens; Exact-match, the percent-
age of reconstructed outputs that perfectly match
the ground-truth. We also report the similarity on
the internal inversion metric in terms of recovering
the vector embedding in latent space. We use co-
sine similarity between the true embedding and the
embedding of reconstructed text according to ϕ.

Models and Inference. We initialize our models
from the T5-base checkpoint (Raffel et al., 2020).
Including the projection head, each model has ap-
proximately 235M parameters. We set the projec-
tion sequence length s = 16 for all experiments,
as preliminary experiments show diminishing re-
turns by increasing this number further. We per-
form inference on all models using greedy token-
level decoding. When running multiple steps of
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dataset tokens method bleu token F1

quora 15.7
Base 36.2 73.8

Vec2Text 95.5 98.6

signal1m 23.7
Base 13.2 49.5

Vec2Text 80.7 92.5

msmarco 72.1
Base 15.5 54.1

Vec2Text 59.6 86.1

climate-fever 73.4
Base 12.8 49.3

Vec2Text 44.9 82.6

fever 73.4
Base 12.6 49.2

Vec2Text 45.1 82.7

dbpedia-entity 91.3
Base 15.4 50.3

Vec2Text 48.0 77.9

nq 94.7
Base 11.0 47.1

Vec2Text 32.7 72.7

hotpotqa 94.8
Base 15.4 50.1

Vec2Text 46.6 78.7

fiqa 103.8
Base 6.6 44.1

Vec2Text 21.5 63.6

webis-touche2020 105.2
Base 6.6 41.5

Vec2Text 19.6 69.7

cqadupstack 106.4
Base 7.1 41.5

Vec2Text 23.3 64.3

arguana 113.5
Base 6.8 44.1

Vec2Text 23.4 66.3

scidocs 125.3
Base 5.9 38.5

Vec2Text 17.7 57.6

trec-covid 125.4
Base 5.6 36.3

Vec2Text 19.3 58.6

robust04 127.3
Base 4.9 34.4

Vec2Text 15.5 54.5

bioasq 127.4
Base 5.3 35.7

Vec2Text 22.8 59.5

scifact 127.4
Base 4.9 35.2

Vec2Text 16.6 56.6

nfcorpus 127.7
Base 6.2 39.6

Vec2Text 25.8 64.8

trec-news 128.0
Base 4.9 34.8

Vec2Text 14.5 51.5

Table 2: Out-of-domain reconstruction performance
measured on datasets from the BEIR benchmark. We
sort datasets in order of average length in order to em-
phasize the effect of sequence length on task difficulty.

sequence-level beam search, we only take a new
generation if it is closer than the previous step in
cosine similarity to the ground-truth embedding.

We use unconditional models to seed the initial
hypothesis for our iterative models. We examine
the effect of using a different initial hypothesis in
Section 7.

We use the Adam optimizer and learning rate of

2 ∗ 10−4 with warmup and linear decay. We train
models for 100 epochs. We use batch size of 128
and train all models on 4 NVIDIA A6000 GPUs.
Under these conditions, training our slowest model
takes about two days.

5 Results

5.1 Reconstruction: In-Domain

Table 1 contains in-domain results. Our method
outperforms the baselines on all metrics. More
rounds is monotonically helpful, although we see
diminishing returns – we are able to recover 77%
of BLEU score in just 5 rounds of correction, al-
though running for 50 rounds indeed achieves a
higher reconstruction performance. We find that
running sequence-level beam search (sbeam) over
the iterative reconstruction is particularly helpful
for finding exact matches of reconstructions, in-
creasing the exact match score by 2 to 6 times
across the three settings. In a relative sense, the
model has more trouble exactly recovering longer
texts, but still is able to get many of the words.

5.2 Reconstruction: Out-of-Domain

We evaluate our model on 15 datasets from the
BEIR benchmark and display results in Table 2.
Quora, the shortest dataset in BEIR, is the easiest
to reconstruct, and our model is able to exactly re-
cover 66% of examples. Our model adapts well
to different-length inputs, generally producing re-
constructions with average length error of fewer
than 3 tokens. In general, reconstruction accuracy
inversely correlates with example length (discussed
more in Section 7). On all datasets, we are able to
recover sequences with Token F1 of at least 41 and
cosine similarity to the true embedding of at least
0.95.

5.3 Case study: MIMIC

As a specific threat domain, we consider MIMIC-
III clinical notes (Johnson et al., 2016). Because
the original release of MIMIC is completely deiden-
tified, we instead use the “pseudo re-identified” ver-
sion from Lehman et al. (2021) where fake names
have been inserted in the place of the deidentified
ones.

Each note is truncated to 32 tokens and the notes
are filtered so that they each contain at least one
name. We measure the typical statistics of our
method as well as three new ones: the percentage
of first names, last names, and complete names
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method first last full bleu tf1 exact cos

Base 40.0 27.8 10.8 4.9 33.1 0. 0.78
Vec2Text 94.2 95.3 89.2 55.6 80.8 26.0 0.98

0.0 0.2 0.4 0.6 0.8 1.0
Detailed description

Diagnostic procedure
Medication

Disease disorder
Sign symptom

Biological structure
Lab value

Therapeutic procedure
Nonbiological location

Clinical event
MIMIC-III Entity reconstruction rate

Table 3: Performance of our method on reconstructing
GTR-embedded clinical notes from MIMIC III (Johnson
et al., 2016).

that are recovered. Results are shown in Table 3.
Vec2Text is able to recover 94% of first names,
95% of last names, and 89% of full names (first,
last format) while recovering 26% of the docu-
ments exactly.

For the recovered clinical notes from Section 5.3,
we extract entities from each true and recovered
note using a clinical entity extractor (Raza et al.,
2022). We plot the recovery percentage in 3 (bot-
tom) with the average entity recovery shown as
a dashed line. Our model is most accurate at re-
constructing entities of the type “Clinical Event”,
which include generic medical words like ‘arrived’,
‘progress’, and ‘transferred’. Our model is least
accurate in the “Detailed Description” category,
which includes specific medical terminology like
‘posterior’ and ‘hypoxic’, as well as multi-word
events like ‘invasive ventilation - stop 4:00 pm’.

Although we are able to recover 26% of 32-
token notes exactly, the notes that were not exactly
recovered are semantically close to the original.
Our model generally matches the syntax of notes,
even when some entities are slightly garbled; for
example, given the following sentence from a doc-
tor’s note “Rhona Arntson npn/- # resp: infant re-
mains orally intubated on imv / r fi” our model
predicts “Rhona Arpson nrft:# infant remains intu-
bated orally on resp. imv. m/n fi”.

6 Defending against inversion attacks

Is it easy for users of text embedding models pro-
tect their embeddings from inversion attacks? We
consider a basic defense scenario as a sanity check.
To implement our defense, the user addes a level of
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Figure 2: Retrieval performance and reconstruction ac-
curacy across varying levels of noise injection.

Gaussian noise directly to each embedding with
the goal of effectively defending against inver-
sion attacks while preserving utility in the nearest-
neightbor retrieval setting. We analyze the trade-off
between retrieval performance and reconstruction
accuracy under varying levels of noise.

Formally, we define a new embedding model as:

ϕnoisy(x) = ϕ(x) + λ · ϵ, ϵ ∼ N(0, 1)

where λ is a hyperparameter controlling the amount
of noise injected.

We simulate this scenario with ϕ as GTR-base
using our self-corrective model with 10 steps of
correction, given the noisy embedder ϕnoisy. To
measure retrieval performance, we take the mean
NDCG@10 (a metric of retrieval performance;
higher is better) across 15 different retrieval tasks
from the BEIR benchmark, evaluated across vary-
ing levels of noise.

We graph the average retrieval performance in
Figure 2 (see A.2 for complete tables of results).
At a noise level of λ = 10−1, we see retrieval per-
formance is preserved, while BLEU score drops
by 10%. At a noise level of 0.01, retrieval perfor-
mance is barely degraded (2%) while reconstruc-
tion performance plummets to 13% of the original
BLEU. Adding any additional noise severely im-
pacts both retrieval performance and reconstruction
accuracy. These results indicate that adding a small
amount of Gaussian noise may be a straightforward
way to defend against naive inversion attacks, al-
though it is possible that training with noise could
in theory help Vec2Text recover more accurately
from ϕnoisy. Note that low reconstruction BLEU
score is not necessarily indicative that coarser infer-
ences, such as clinical area or treatment regimen,
cannot be made from embeddings.
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Figure 3: Recovery performance across multiple rounds
of self-correction comparing models with access to ϕ vs
text-only (32 tokens per sequence).

7 Analysis

How much does the model rely on feedback from
ϕ? Figure 3 shows an ablation study of the im-
portance of feedback, i.e. performing corrections
with and without embedding the most recent hy-
pothesis. The model trained with feedback (i.e. ad-
ditional conditioning on ϕ(x(t)) is able to make a
more accurate first correction and gets better BLEU
score with more rounds. The model trained with
no feedback can still edit the text but does not
receive more information about the geometry of
the embedding space, and quickly plateaus. The
most startling comparison is in terms of the number
of exact matches: after 50 rounds of greedy self-
correction, our model with feedback gets 52.0%
of examples correct (after only 1.5% initially);
the model trained without feedback only perfectly
matches 4.2% of examples after 50 rounds.

During training, the model only learns to cor-
rect a single hypothesis to the ground-truth sample.
Given new text at test time, our model is able to
correct the same text multiple times, “pushing” the
text from 0.9 embedding similarity to 1.0. We plot
the closeness of the first hypothesis to the ground-
truth in the training data for the length-32 model
in Figure 4. We see that during training the model
learns to correct hypotheses across a wide range
of closenesses, implying that corrections should
not go ‘out-of-distribution’ as they approach the
ground-truth.

How informative are embeddings for textual re-
covery? We graph BLEU score vs. cosine simi-
larity from a selection of of reconstructed text in-
puts in Figure 5. We observe a strong correlation
between the two metrics. Notably, there are very
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Figure 4: Distribution of cos(e, ϕ(x(0))) over training
data. The mean training output from the GTR base
model has a cosine similarity of 0.924 with the true
embedding.

few generated samples with high cosine similarity
but low BLEU score. This implies that better fol-
lowing embedding geometry will further improves
systems. Theoretically some embeddings might
be impossible to recover. Prior work (Song et al.,
2020; Morris, 2020) has shown that two different
sequences can ‘collide’ in text embedding space,
having similar embeddings even without any word
overlap. However, our experiments found no ev-
idence that collisions are a problem; they either
do not exist or our model learns during training to
avoid outputting them. Improved systems should
be able to recover longer text.

Does having a strong base model matter? We
ablate the impact of initialization by evaluating our
32-token Wikipedia model at different initializa-
tions of x(0), as shown in Section 7. After running
for 20 steps of correction, our model is able to re-
cover from an unhelpful initialization, even when
the initialization is a random sequence of tokens.
This suggests that the model is able to ignore bad
hypotheses and focus on the true embedding when
the hypothesis is not helpful.

8 Related work

Inverting deep embeddings. The task of invert-
ing textual embeddings is closely related to re-
search on inverting deep visual representations in
computer vision (Mahendran and Vedaldi, 2014;
Dosovitskiy and Brox, 2016; Teterwak et al., 2021;
Bordes et al., 2021), which show that a high amount
of visual detail remains in the logit vector of an im-
age classifier, and attempt to reconstruct input im-
ages from this vector. There is also a line of work
reverse-engineering the content of certain text em-
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Input Nabo Gass (25 August, 1954 in Ebingen, Germany) is a German painter and glass artist.

Round 1 (0.85): Nabo Gass (11 August 1974 in Erlangen, Germany) is an artist. ✗
Round 2 (0.99): Nabo Gass (b. 18 August 1954 in Egeland, Germany) is a German painter and glass artist. ✗
Round 3 (0.99): Nabo Gass (25 August 1954 in Ebingen, Germany) is a German painter and glass artist. ✗
Round 4 (1.00): Nabo Gass (25 August, 1954 in Ebingen, Germany) is a German painter and glass artist. ✓

Table 4: Example of our corrective model working in multiple rounds. Left column shows the correction number,
from Round 1 (initial hypothesis) to Round 4 (correct guess). The number in parenthesis is the cosine similarity
between the guess’s embedding and the embedding of the ground-truth sequence (first row).

Initialization token f1 cos exact

Random tokens 0.95 0.99 50.0
"the " * 32 0.95 0.99 49.8
"there’s no reverse on a motorcycle,
as my friend found out quite
dramatically the other day" 0.96 0.99 52.0

Base model p(x(0) | e) 0.96 0.99 51.6

Table 5: Ablation: Reconstruction score on Wikipedia
data (32 tokens) given various initializations. Our self-
correction model is able to faithfully recover the original
text with greater than 80 BLEU score, even with a poor
initialization. Models run for 20 steps of correction.

0.85 0.90 0.95 1.00
Cosine similarity

20

40

60

80

100

BL
EU

Figure 5: Cosine similarity vs BLEU score on 1000
reconstructed embeddings from Natural Questions text.

beddings: Ram et al. (2023) analyze the contents
of text embeddings by projecting embeddings into
the model’s vocabulary space to produce a distri-
bution of relevant tokens. Adolphs et al. (2022)
train a single-step query decoder to predict the text
of queries from their embeddings and use the de-
coder to produce more data to train a new retrieval
model. We focus directly on text reconstruction
and its implications for privacy, and propose an
iterative method that works for paragraph-length
documents, not just sentence-length queries.

Privacy leakage from embeddings. Research
has raised the question of information leakage from
dense embeddings. In vision, Vec2Face (Duong

et al., 2020) shows that faces can be reconstructed
from their deep embeddings. Similar questions
have been asked about text data: Lehman et al.
(2021) attempt to recover sensitive information
such as names from representations obtained from
a model pre-trained on clinical notes, but fail to
recover exact text. Kim et al. (2022) propose a
privacy-preserving similarity mechanism for text
embeddings and consider a shallow bag-of-words
inversion model. Abdalla et al. (2020) analyze
the privacy leaks in training word embeddings on
medical data and are able to recover full names in
the training data from learned word embeddings.
Dziedzic et al. (2023) note that stealing sentence en-
coders by distilling through API queries works well
and is difficult for API providers to prevent. Song
and Raghunathan (2020) considered the problem
of recovering text sequences from embeddings, but
only attempted to recover bags of words from the
embeddings of a shallow encoder model. Li et al.
(2023) investigate the privacy leakage of embed-
dings by training a decoder with a text embedding
as the first embedding fed to the decoder. Com-
pared to these works, we consider the significantly
more involved problem of developing a method to
recover the full ordered text sequence from more
realistic state-of-the-art text retrieval models.

Gradient leakage. There are parallels between
the use of vector databases to store embeddings
and the practice of federated learning, where users
share gradients with one another in order to jointly
train a model. Our work on analyzing the pri-
vacy leakage of text embeddings is analogous to
research on gradient leakage, which has shown that
certain input data can be reverse-engineered from
the model’s gradients during training (Melis et al.,
2018; Zhu et al., 2019; Zhao et al., 2020; Geiping
et al., 2020). Zhu et al. (2019) even shows that they
can recover text inputs of a masked language model
by backpropagating to the input layer to match the
gradient. However, such techniques do not apply
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to textual inversion: the gradient of the model is
relatively high-resolution; we consider the more
difficult problem of recovering the full input text
given only a single dense embedding vector.

Text autoencoders. Past research has explored
natural language processing learning models that
map vectors to sentences (Bowman et al., 2016).
These include some retrieval models that are
trained with a shallow decoder to reconstruct the
text or bag-of-words from the encoder-outputted
embedding (Xiao et al., 2022; Shen et al., 2023;
Wang et al., 2023). Unlike these, we invert embed-
dings from a frozen, pre-trained encoder.

9 Conclusion

We propose Vec2Text, a multi-step method that
iteratively corrects and re-embeds text based on
a fixed point in latent space. Our approach can
recover 92% of 32-token text inputs from their em-
beddings exactly, demonstrating that text embed-
dings reveal much of the original text. The model
also demonstrates the ability to extract critical clini-
cal information from clinical notes, highlighting its
implications for data privacy in sensitive domains
like medicine.

Our findings indicate a sort of equivalence be-
tween embeddings and raw data, in that both leak
similar amounts of sensitive information. This
equivalence puts a heavy burden on anonymization
requirements for dense embeddings: embeddings
should be treated as highly sensitive private data
and protected, technically and perhaps legally, in
the same way as one would protect raw text.

10 Limitations

Adaptive attacks and defenses. We consider the
setting where an adversary applies noise to newly
generated embeddings, but the reconstruction mod-
ules were trained from un-noised embeddings. Fu-
ture work might consider reconstruction attacks or
defenses that are adaptive to the type of attack or
defense being used.

Search thoroughness. Our search is limited; in
this work we do not test beyond searching for 50
rounds or with a sequence beam width higher than
8. However, Vec2Text gets monotonically better
with more searching. Future work could find even
more exact matches by searching for more rounds
with a higher beam width, or by implementing

more sophisticated search algorithms on top of our
corrective module.

Scalability to long text. Our method is shown to
recover most sequences exactly up to 32 tokens and
some information up to 128 tokens, but we have not
investigated the limits of inversion beyond embed-
dings of this length. Popular embedding models
support embedding text content on the order of
thousands of tokens, and embedding longer texts
is common practice (Thakur et al., 2021). Future
work might explore the potential and difficulties of
inverting embeddings of these longer texts.

Access to embedding model. Our threat model
assumes that an adversary has black-box access
to the model used to generate the embeddings in
the compromised database. In the real world, this
is realistic because practitioners so often rely on
the same few large models. However, Vec2Text
requires making a query to the black-box embed-
ding model for each step of refinement. Future
work might explore training an imitation embed-
ding model which could be queried at inference
time to save queries to the true embedder.
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A Appendix

A.1 Additional analysis

How does word frequency affect model correct-
ness? fig. 6 shows the number of correct predic-
tions (orange) and incorrect predictions (blue) for
ground-truth words, plotted across word frequency
in the training data. Our model generally predicts
words better that are more frequent in the training
data, although it is still able to predict correctly a
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Figure 6: Correctness on evaluation samples from ArXiv
data.

number of words that were not seen during train-
ing3. Peaks between 104 and 105 come from the
characters (, −, and ), which appear frequently in
the training data, but are still often guessed incor-
rectly in the reconstructions.

A.2 Full defense results
Results on each dataset from BEIR under vary-
ing levels of Gaussian noise are shown in Ap-
pendix A.2. The model is GTR-base. Note that
the inputs are limited to 32tokens, far shorter than
the average length for some corpuses, which is why
baseline (λ = 0) NDCG@10 numbers are lower
than typically reported. We included the full results
(visualized in Figure 2) as Appendix A.2.

3We hypothesize this is because all test tokens were present
in the training data, and the model is able to reconstruct unseen
words from seen tokens.
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λ arguana bioasq climate-fever dbpedia-entity fiqa msmarco nfcorpus nq quora robust04 scidocs scifact signal1m trec-covid trec-news webis-touche2020

0 0.328 0.115 0.136 0.306 0.208 0.647 0.239 0.306 0.879 0.205 0.095 0.247 0.261 0.376 0.245 0.233
0.001 0.329 0.115 0.135 0.307 0.208 0.647 0.239 0.306 0.879 0.204 0.096 0.246 0.261 0.381 0.246 0.233
0.01 0.324 0.113 0.132 0.301 0.205 0.633 0.234 0.298 0.875 0.192 0.092 0.235 0.259 0.378 0.234 0.225
0.1 0.005 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.003 0.000 0.002 0.006 0.001 0.005 0.001 0.000
1.0 0.001 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Table 6: BEIR performance (NDCG@10) for GTR-base at varying levels of noise (32 tokens).

λ NDCG@10 BLEU

0.000 0.302 80.372
0.001 0.302 72.347
0.010 0.296 10.334
0.100 0.002 0.148
1.000 0.001 0.080

Table 7: Retrieval performance and reconstruction performance across varying noise levels λ.
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