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Abstract

This paper improves contrastive learning for
sentence embeddings from two perspectives:
handling dropout noise and addressing feature
corruption. Specifically, for the first perspec-
tive, we identify that the dropout noise from
negative pairs affects the model’s performance.
Therefore, we propose a simple yet effective
method to deal with such type of noise. Sec-
ondly, we pinpoint the rank bottleneck of cur-
rent solutions to feature corruption and pro-
pose a dimension-wise contrastive learning ob-
jective to address this issue. Both proposed
methods are generic and can be applied to any
contrastive learning based models for sentence
embeddings. Experimental results on standard
benchmarks demonstrate that combining both
proposed methods leads to a gain of 1.8 points
compared to the strong baseline SimCSE con-
figured with BERT base. Furthermore, apply-
ing the proposed method to DiffCSE, another
strong contrastive learning based baseline, re-
sults in a gain of 1.4 points.

1 Introduction

Sentence representation, which transforms sen-
tence semantic information from discrete language
space into dense vectors, is one of the most funda-
mental tasks in natural language processing, as it
serves as the central role for a wide range of down-
stream applications (e.g., information retrieval, se-
mantic comparison, question answering, and lan-
guage translation). Sentence representation has
been constantly evolving (Pennington et al., 2014;
Zhang et al., 2020; Carlsson et al., 2021), and it
achieves even stronger performance when utilizing
pre-trained language models (PLM) (Devlin et al.,
2019; Delobelle et al., 2020). Moreover, on top
of PLMs, a number of post-processing strategies
achieve even better performance. For example, Li
et al. (2020) employs a flow-based model and Su

∗The source code is available at https://github.com/
Jiahao004/SimCSE-plus-plus.

et al. (2021) applies the whitening process to flatten
a uniform distribution of representations.

More recently, remarkable advancements have
been achieved by contrastive learning (CL) on sen-
tence embeddings (Gao et al., 2021), which clev-
erly makes use of dropout randomness (Bouthillier
et al., 2015) to construct positive pairs in an unsu-
pervised way. Since then, many notable variants
have been proposed under the contrastive learn-
ing framework to intensify performance by con-
structing hard contrastive pairs (Giorgi et al., 2021;
Kim et al., 2021; Yan et al., 2021; Wu et al., 2022;
Zhang et al., 2022b; Chuang et al., 2020), intro-
ducing other CL-based objectives (Zhang et al.,
2021, 2022c; Chuang et al., 2022; Zhang et al.,
2022a; Tan et al., 2022; Xu et al., 2023) or utilizing
more sophisticated similarity metrics (Zhang et al.,
2022c).

In this paper, we improve the sentence embed-
ding models from two perspectives: dropout noise
and feature corruption. Specifically, first, we empir-
ically study the effects of dropout randomness on
positive pairs and negative pairs in the CL-based
objective. We find that modest dropout noise in
the positive pairs is beneficial to the model per-
formance whereas dropout noise in negative pairs
is harmful. We provide an explanation from the
principle of noise contrastive estimation (Gutmann
and Hyvärinen, 2012) and the role of dropout in
constructing positive pairs. Based on these find-
ings, we propose a simple yet effective strategy, off-
dropout, which turns off the dropout randomness in
negative pairs to further improve the performance.

Second, we revisit the issue of feature corrup-
tion on the sentence embedding and empirically
study the well-known solution recently proposed
by Zbontar et al. (2021); Klein and Nabi (2022)
to this problem. Surprisingly, we find that this
solution does not improve performance under the
contrastive learning framework for sentence embed-
dings. We further analyze this finding and identify
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the reason behind it as the rank bottleneck issue
in the mini-batch embedding matrix. To tackle
this issue, we propose a simple dimension-wise
contrastive learning (DCL) to break down the bot-
tleneck, which eventually enhances the baseline
performance.

As a result, by combining the proposed off-
dropout and DCL, we have advanced the SimCSE
baseline by 1.9 points. Furthermore, our repro-
duced results have shown that we advanced the
current state-of-the-art model, DiffCSE (Chuang
et al., 2022), by 1.4 points.

In general, our contribution is three-fold:

1. We, for the first time, point out that dropout
noise from negative pairs has a side effect
on model performance and propose an off-
sampling strategy to alleviate this side effect.

2. We identify the rank bottleneck in the current
solution to the feature corruption problem and
propose a novel dimension-wise CL objective
to avoid the bottleneck.

3. Experimental results on standard benchmarks
for sentence embeddings show that the combi-
nation of our proposed methods outperforms
strong baselines by a margin and achieves a
new state-of-the-art.

2 Related Work

2.1 Sentence Representation
Early studies for sentence representations leverage
the word2vec (Mikolov et al.) ideas. Semantic
information can be captured by predicting a sen-
tence from its surrounding sentences (Kiros et al.,
2015; Hill et al., 2016; Logeswaran and Lee, 2018).
Pagliardini et al. (2018) aggregates the n-gram em-
beddings using a pooling strategy, which achieves a
strong result. With the development of large-scale
pre-trained language models (Devlin et al., 2019;
Liu et al., 2020), sentence representation methods
begin to utilize PLMs’ strong language representa-
tion ability. For example, Reimers and Gurevych
(2019) employs siamese network with PLMs for
supervised sentence representation, while Li et al.
(2020) and Su et al. (2021) apply post-processing
on top of PLM’s representations.

Recent studies on sentence embeddings are
based on the strong baseline SimCSE (Gao et al.,
2021). Under the SimCSE framework, several stud-
ies focus on constructing hard contrastive pairs:

Zhang et al. (2020) utilize all the output token rep-
resentations, Yan et al. (2021) enhance dropout
augmentation, Giorgi et al. (2021) employ context
sentences and Kim et al. (2021) contrast each layer
representation within PLMs. Some studies aim to
counter the PLMs bias towards sentence represen-
tations: Carlsson et al. (2021) employ heteroge-
neous model structure, Zhou et al. (2022) filter out
noise from negatives. Others introduce more effec-
tive contrastive learning framework: Chuang et al.
(2022) introduce ELECTRA (Clark et al., 2020)
with equivariant contrastive learning (Dangovski
et al., 2021), Zhang et al. (2022c) utilize ArcFace
(Deng et al., 2019) framework.

All the previous studies on sentence embed-
dings have concentrated on developing more in-
tricate frameworks based on the SimCSE frame-
work. These advancements include creating more
efficient training samples, introducing advanced
metrics, and incorporating additional training tasks.
In contrast to these existing studies, our research
aims to enhance the contrastive learning frame-
work itself. Specifically, we address two issues:
the problem of dropout noise in the representation
and the feature corruption caused by the correlation
between different dimensions of the representation.

2.2 Contrastive Learning and NCE

The importance of contrastive learning has long
been recognized. In NLP research fields, con-
trastive learning is introduced into sentence rep-
resentations (Giorgi et al., 2021; Wu et al., 2020),
text classification (Fang et al., 2020), information
extraction (Qin et al., 2021), machine translations
(Pan et al., 2021), question answering (Karpukhin
et al., 2020) etc.

The concept of contrastive learning is based on
Noise Contrastive Estimation (NCE) (Gutmann and
Hyvärinen, 2010), which involves maximizing the
probability of target signals by comparing them
with randomly sampled noise. While NCE uses
nonlinear logistic regression to distinguish between
observed data and artificially generated noise us-
ing the log-density function, contrastive learning
utilizes InfoNCE (Oord et al., 2018) objectives to
discriminate between positive similarities and simi-
larities among negative samples within the batch.

The previous research on NCE and contrastive
learning primarily concentrates on the noise arising
from the sampling of negative examples. How-
ever, this study investigates the noise originating
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from dropout randomness and examines the impact
of dropout randomness on sentence embeddings,
considering both negative and positive examples.

2.3 Feature Corruption Issue
Feature corruption is a non-trivial problem in rep-
resentation learning, where each dimension of the
model shares high similarities with others. This is-
sue hinders the expressive capacity to convey com-
plex information effectively, as the diversity of each
dimension value is constrained by such correlation.

Several studies (Li et al., 2020; Su et al., 2021)
have attempted to address this issue by achieving a
more independent embedding space through post-
processing. However, as demonstrated in Wang
et al. (2022), these post-processing methods primar-
ily enhance performance for sentence pairs with
low similarity and fail to improve performance for
pairs with high similarity.

Recently, Zbontar et al. (2021) proposed Bar-
lowTwins as a solution for such a issue in images.
Inspired by the redundancy-reduction principle of
neuroscientist H. Barlow, BarlowTwins minimizes
redundancy between different dimensions, natu-
rally reducing similarity across each dimension.
Unlike post-processing methods, this approach
addresses the problem in an end-to-end manner.
Furthermore, a direct application of BarlowTwins
on sentence embeddings (Klein and Nabi, 2022)
achieves comparable performance to SimCSE.

In contrast to previous research that simply ap-
plies the BarlowTwins objective to the SimCSE
framework, our study investigates the rank bottle-
neck issue of BarlowTwins in the context of sen-
tence representation. We tackle this issue and im-
prove the model’s performance accordingly.

3 Improving Dropout Noise in CL

SimCSE framework plays a central role in recent
sentence embedding strategies. It is a simple con-
trastive learning framework that learns by identify-
ing positive pairs among in-batch negatives. Specif-
ically, for a given sentence xi, let f(·) denotes a
pre-trained language model, and it is used to gener-
ate two views (z1i , z

2
i ) of the identical sentences xi

via different dropout patterns:

z1i = f(xi; ξ
1
i )

z2i = f(xi; ξ
2
i )

(1)

where ξ1i and ξ2i denote two samples from the
dropout random variable ξ (Srivastava et al., 2014).

SimCSE (Gao et al., 2021) aims to maximize the
agreement between positive pairs 〈z1i , z2i 〉 and min-
imize the N − 1 in-batch negatives 〈z1i , z2j 〉 using
the InfoNCE objective (Oord et al., 2018):

`iInfo = − log
es(z

1
i ,z

2
i )

es(z
1
i ,z

2
i ) +

∑N
j=1,j 6=i e

s(z1i ,z
2
j )

(2)

Here, s(·, ·) is the similarity measure between two
inputs (i.e., cos_sim(·, ·)/τ , where τ is the tem-
perature). In Equation (2), 〈z1i , z2j 〉 is a negative
pair, and the dropout random variable ξ is used as
an augmentation function for positive pairs, i.e.,
〈z1i , z2i 〉.

3.1 Dropout Noise in Negative Estimation
Empirical study on dropout noise In PLMs
such as BERT, it is shown that dropout plays an
important role in training because of the regular-
ization effect. In CL-based sentence embeddings,
the training objective Eq. (2) involves 2×N BERT
structures, and thus the role of dropout in Eq. (2)
might be more complex. This motivates us to study
the effect of dropout.

As presented in Eq. (1), dropout is determined
by the random variable ξ and thus z1i (or z2i )
(i ∈ [1, N ]) contains some noise due to the ran-
dom variable ξ. To study the effect of dropout
noise, we respectively add more noise (+Noise) or
reduce some noise (-Noise) to z1i (or z2i ) and then
study their final performance.

Specifically, to introduce more noise to z1i (or
z2i ), we add a small Gaussian noise as follows:

z1,+i = f(xi; ξ
1
i ) + g1

z2,+i = f(xi; ξ
2
i ) + g2

Where g1 and g2 are Gaussian with the mean 0 and
variance 0.1. On the other hand, according to the
Central Limit Theorem (Fischer), the K sample
average converges to its expectation with 1/K of
the original variance 1. Therefore, to reduce the
noise from z1i (or z2i ), we could simply use the
following mean sampling:

z1,-i =
1

K

K∑

k=1

f(xi; ξ
1,k
i )

z2,-i =
1

K

K∑

k=1

f(xi; ξ
2,k
i )

1K = 10 in this paper.
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

Pos.
+Noise 68.59 82.57 73.26 80.79 76.72 75.56 69.24 75.25
-Noise 55.22 71.78 60.55 70.79 72.95 64.58 63.00 65.55

Neg.
+Noise 65.13 82.45 71.69 79.67 77.73 75.03 70.04 74.53
-Noise 70.25 83.73 75.61 82.25 78.77 77.58 71.26 77.06

Table 1: Performance on STS benchmark with adding/reducing noise in positive and negative pairs.

where ξ1,ki and ξ2,ki are independently sampled
from the dropout variable ξ, and thus z1,-i contains
less noise than z1i .

Experimental results and findings Since
Eq. (2) contains positive pair 〈z1i , z2i 〉 and negative
pair 〈z1i , z2j 〉, we individually conduct experiments
to estimate the impact of the noise in positive and
negative pairs. Respectively, SimCSE+Pos+Noise
is achieved by replacing the positive pair
s(z1i , z

2
i ) by s(z1,+i , z2,+i ) in Eq. (2), and Sim-

CSE+Neg+Noise is achieved by replacing the
negative pair s(z1i , z

2
j ) by s(z1,+i , z2,+j ) in Eq. (2).

Similary, SimCSE+Pos-Noise applies s(z1,-i , z2,-i )
as the replacement of positive pair s(z1i , z

2
i ) and

SimCSE+Neg-Noise uses s(z1,-i , z2,-j ) to replace
negative pair s(z1i , z

2
j ).

Table 1 shows that increasing the noise level
for both positive and negative embeddings may de-
generate the performance while reducing the noise
level for negative embeddings is helpful for model
performance. In summary, we can obtain the fol-
lowing findings: 1) having modest noise in positive
pairs is necessary to make CL successful and re-
ducing noise in positive pairs is harmful to the
performance; 2) the model performance is related
to the noise level of negative pairs: more noise de-
grades the performance while less noise improves
the performance.

Theoretical Explanation Contrastive learning
compares the similarity of positive examples with
negative ones. This idea is based on Noise Con-
trastive Estimation (NCE) (Gutmann and Hyväri-
nen, 2010), where the positive similarity score is
the target signal that NCE tries to maximize, while
the negative similarity score is the corresponding
noise signal.

The InfoNCE loss in Eq. (2) follows Noise Con-
trastive Estimation (NCE) (Gutmann and Hyväri-
nen, 2010). It shows that the model converges
faster and performs better when the sample size

is large, as theoretically analyzed in Gutmann and
Hyvärinen (2012). In this sense, reducing the noise
in embeddings is achieved by mean pooling from
multiple embeddings which implicitly increases the
sample size with respect to the random variable ξ
and potentially leads to improved performance, i.e.,
replacing z1i and z2i by z1,−i and z2,−i involving K
samples (in both positive pairs and negative pairs
within Eq. (2)) through mean sampling may obtain
better performance.

However, enlarging the sample size affects pos-
itive and negative pairs differently. As shown in
Table 1, reducing noise in positive pairs through
mean sampling results in unsatisfactory perfor-
mance, while it improves performance in negative
pairs. The main reason is that, under the SimCSE
framework, the positive pairs require diversity as
informative pairs for contrastive learning, which is
reduced by mean sampling. Otherwise, the train-
ing signal in Eq. (2) may become trivial if there is
no diversity between z1i and z2i for a positive pair,
because s(z1i , z

2
i ) > s(z1i , z

2
j ) when z1i = z2i and

i 6= j. In summary, diversity is crucial for posi-
tive pairs, while minimizing noise is beneficial for
negative pairs to achieve better performance.

3.2 Our Solution: Off-Dropout Sampling

Mean sampling significantly reduces the variance
and yields better performance. However, K times
average sampling requires a time complexity over-
head of O(KN).

To address this overhead, we propose off-
dropout sampling, which turns off the dropout
when sampling negative example representations.
Off-dropout sampling produces representations
with zero variance. At a high level, off-dropout
sampling is empirically equivalent to the mean of
infinite times resampling, as demonstrated by Hin-
ton et al. (2012), which is also known as weight
scaling inference rule (Goodfellow et al., 2016).
Therefore, off-dropout sampling provides unbiased
estimation of representation with zero variance, and
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the sampling overhead is equal to that of default
random sampling. Consequently, the InfoNCE ob-
jective for off-dropout sampling is:

`off-Info = − log
es(z

1
i ,z

2
i )

es(z
1
i ,z

2
i ) +m

∑N
j=1,j 6=i e

s(zi,zj)

(3)

where s(zi, zj) represents the similarity between
negative pairs, and zi, zj represents the represen-
tations sampled without dropout. m is a trade-off
factor between positive and negative examples.

It should be noticed that reducing the noise in
negatives is very different from hyperparameter tun-
ing: In principle, we investigate the sample size and
thereby justify if the current sentence embedding
methods satisfy the large sample size requirement
from the NCE principle; In practice, tuning the
dropout rate changes the distribution of dropout
patterns, which violates the principle of controlling
variables. Therefore, our strategy to reduce the
noise in negatives is fundamentally different from
parameter tuning in both principle and practice.

4 Mitigating Feature Corruption

Feature Corruption Issue Feature corruption 2

(Chen and He, 2021) illustrates the issue that each
dimension of the output representation has high
similarity with the other dimensions. Such correla-
tion between dimensions reduces the model’s rep-
resentation capability and undermines downstream
performance (Zbontar et al., 2021; Klein and Nabi,
2022).

4.1 Existing Solution
Zbontar et al. (2021) proposes BarlowTwins as
an additive regulation to tackle such an issue,
which is a dimension decorrelation objective. Bar-
lowTwins tackles feature corruption by minimiz-
ing the redundancy between each dimension and
aims to produce dimensional-independent represen-
tations. Formally, given a cross-correlation matrix
C ∈ RD×D, its objective is:

`BT = −
∑

c

(1− Ccc)
2 + λBT

∑

c

∑

d6=c

C2
cd

Ccd =

∑
i z

1
i,cz

2
i,d√∑

i(z
1
i,c)

2
√∑

i(z
2
i,d)2

(4)

2Feature corruption issue is also known as “fea-
ture/representation degeneration/collapse” problem, which
originates from contrastive learning research in computer vi-
sion.

Where D is the total number of dimensions
(D=768 for base model), c, d are dimension in-
dices, and z1i,c, z

2
i,d are corresponding dimension

values of the representation of the i-th sentence
from a mini-batch of size N . However, such an
objective does not yield gains over SimCSE when
applied to sentence embeddings in STS tasks (Klein
and Nabi, 2022).

4.2 Rank Bottleneck for BarlowTwins

BarlowTwins aims to achieve orthogonalization
of all dimensions in the representation by maxi-
mizing the diagonal elements of the correlation
matrix, denoted as C = (Ccd), while minimizing
the non-diagonal elements. In linear algebra, a
parametrized matrix can be optimized to become
an orthogonal matrix if there exists a parameter that
ensures the matrix is of full rank. However, both
theoretically and empirically, we observe that C is
far from being a full-rank matrix, meaning its rank
is close to D.

From a theoretical standpoint, if the denominator
of Ccd remains constant for any c and d, C can be
expressed as the product of a matrix with dimen-
sions D ×N and another matrix with dimensions
N ×D. In this case, we can demonstrate that the
rank of C is at most min(N,D). However, in the
conventional settings of SimCSE, N is 64 and D
is 768. 3 Consequently, the rank of C is at most N ,
where N � D for any parameter.

From an empirical perspective, we randomly
sample a batch of 64 sentences and compute the
rank of their cross-correlation matrix. We observe
that the rank of the SimCSE correlation matrix is
64. Consequently, it is impossible to optimize a
rank 64 matrix to become a rank 768 identity ma-
trix using the BarlowTwins objective. The rank of
the correlation matrix poses a bottleneck for the
BarlowTwins objective, making it difficult to opti-
mize C to become a full-rank matrix. Therefore,
there is a rank bottleneck issue when optimizing the
BarlowTwins objective. This might explain why
BarlowTwins does not perform well when applied
on top of SimCSE, as demonstrated in Table 2.

Empirical Justification of the Rank Bottleneck
To verify the rank bottleneck hypothesis, one can
adjust the batch size or reduce the total number of
representation dimensions. However, increasing

3Note that the batch size of 64 is the default setting in Sim-
CSE, which achieved the best performance in both SimCSE
original paper and our preliminary experiments.
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Objectives STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+BarlowTwins (D=768) 50.59 70.07 58.48 68.98 68.23 64.94 67.07 64.05

+100 artificial z 66.19 77.62 67.67 75.17 73.34 72.37 67.26 71.37
+300 artificial z 69.29 78.80 69.03 77.47 75.27 74.18 70.88 73.56
+704 artificial z 70.52 81.86 73.72 81.17 76.95 77.21 71.10 76.08

Table 2: SimCSE performance with BarlowTwins additive objectives. We pad each mini-batch (batch size 64)
embedding matrix with a group of artificial representations sampled from standard Gaussian distribution.

the batch size will alter the number of in-batch
negatives, while reducing the representation di-
mensions will exacerbate the dimension bottleneck
problem. Both methods will modify the default
settings of SimCSE and consequently affect its per-
formance.

To address this, we conduct a straightforward ex-
periment without altering the SimCSE framework
settings. We maintain the original SimCSE set-
tings but introduceM artificial embeddings to each
mini-batch embedding matrix when calculating the
BarlowTwins loss value. Thus, contrastive learning
at the data level is still performed on N batch size
embeddings, while dimension-wise decorrelation
is applied to the padded embedding matrix of size
N + M . Consequently, we increase the rank of
the correlation matrix by M without modifying
SimCSE.

We employ this approach to train the model, and
the results are presented in Table 2. The table il-
lustrates that the performance of the BarlowTwins
objective improves as the number of padding arti-
ficial embeddings increases. By introducing these
artificial embeddings, we successfully overcome
the rank bottleneck issue of the correlation matrix.

4.3 Our Solution: Dimension-Wise
Contrastive Learning

Previous experiments have confirmed the existence
of the rank bottleneck issue in the BarlowTwins ob-
jective and have addressed this problem by padding
artificial embeddings. However, optimizing param-
eters with a large number of artificial embeddings
reduces training efficiency. Therefore, we propose
a Dimension-wise Contrastive Learning (DCL) ob-
jective that naturally avoids the rank bottleneck
issue. The DCL objective is defined as follows:

`DCL = −
D∑

c=1

log
es(z

1
·,c,z

2
·,c)

∑D
d=1 e

s(z1·,c,z2·,d)
(5)

The term s(z1·,c, z
2
·,d) calculates the cross-

dimension similarity between the c-th and d-th
dimensions. We use dot product with batch
normalization to measure similarity:

s(z1·,c, z
2
·,d) =

∑

i

z̃1i,cz̃
2
i,d/τDCL

z̃i,c =
zi,c − z̄c
σzc

Here, z̄c = 1
N

∑
i zi,c, σ

2
zc = 1

N−1
∑

i(zi,c − z̄c)2.
The DCL objective represents dimension-wise

contrastive learning. It improves upon the Bar-
lowTwins objective in several ways: 1) Intuitively,
Eq. 5 is a relative optimization that can be more eas-
ily optimized compared to the absolute regression
objective (Gutmann and Hyvärinen, 2012); 2) This
relative optimization avoids the rank bottleneck is-
sue by only requiring the dimension to be relatively
more “self-similar" compared to other dimensions,
instead of necessitating a full-rank identity matrix
as the only optimal solution.

By combining both proposed strategies with a
trade-off factor λ, the final objective function for
improving contrastive learning for sentence embed-
dings is as follows:

` = `off-info + λ`DCL (6)

5 Experiments

5.1 Setups
Baselines We compare with several sentence
representation methods on STS tasks, which in-
cludes GloVe embeddings (Pennington et al., 2014),
Skip-thought (Kiros et al., 2015), BERT embed-
dings with pooling aggregation (Devlin et al.,
2019), BERT-Flow(Li et al., 2020), and BERT-
Whitening(Su et al., 2021).

We also compare with several recently proposed
contrastive learning based sentence representation
method, for instance, ISBERT (Zhang et al., 2020),
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe(avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase -flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase -whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERTbase 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
ConSERTbase 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SCD-BERTbase 66.94 78.03 69.89 78.73 76.23 76.30 73.18 74.19
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
*SimCSE++-BERTbase 73.66 82.36 75.86 83.09 79.76 79.71 71.91 78.05

*+Off-Info 69.39 82.42 75.91 82.92 78.82 78.86 71.62 77.13
*+DCL 70.15 83.46 74.91 81.95 79.83 79.39 72.14 77.40

ConSERTlarge 70.69 82.96 74.13 82.78 76.66 77.53 70.37 76.45
SimCSE-BERTlarge 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
*SimCSE++-BERTlarge 72.37 85.37 78.68 84.69 79.57 80.37 74.05 79.30

SBERTbase 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SimCSE-SBERTbase 69.41 80.76 74.37 82.61 77.64 79.92 76.62 77.33
*SimCSE++-SBERTbase 72.92 83.45 77.19 83.46 79.38 81.54 76.79 79.25

SBERTlarge 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SimCSE-SBERTlarge 76.16 83.77 77.27 84.33 79.73 81.67 77.25 80.03
*SimCSE++-SBERTlarge 76.66 84.76 78.53 84.37 79.66 82.37 78.09 80.63

Table 3: Main results on Semantic Textual Similarity benchmark dataset performance (Spearman correlation, “all"
setting). Our proposed methods are marked with “*". The highest numbers among models with the same pre-
trained encoder are highlighted. Off-dropout, DCL sampling and their combination - SimCSE++ - outperforms the
baseline SimCSE with p < 0.005.

CT-BERT (Carlsson et al., 2021), ConSERT (Yan
et al., 2021), together with the current mainstream
SimCSE (Gao et al., 2021) and SOTA DiffCSE
(Chuang et al., 2022).

Dataset We use the default one million randomly
sampled sentences from English Wikipedia for un-
supervised training, as previous studies (Gao et al.,
2021; Chuang et al., 2022; Zhang et al., 2022c;
Wu et al., 2022) are all conducted on this corpus.
We do not conduct any data selection or sampling
strategy during the training.

Evaluation We evaluate our model on 7 sentence
semantic textual similarity (STS) tasks, which in-
cludes STS tasks 2012-2016 (Agirre et al., 2012),
STS Benchmark (Cer et al., 2017), and SICK-
Relatedness (Marelli et al., 2014). We follow Sim-
CSE (Gao et al., 2021) settings of MLP layers, and
employ MLP on top of [CLS] token representa-
tion for training while removing MLP for evalua-
tion. We evaluate the model for every 125 updating
steps based on the STS-B development set, without
any gradient accumulation. And evaluate the best

checkpoint at the final evaluation on test sets.

Implement Details We conduct the experiments
using pre-trained checkpoints from BERTbase and
BERTlarge (Devlin et al., 2019) with Huggingface
Transformer (Wolf et al., 2020) framework. Be-
sides, to illustrate the compatibility of SBERT, fol-
lowing Zhang et al. (2022c) settings, we also em-
ploy SBERT (Reimers and Gurevych, 2019) on
NLI (Conneau et al., 2017; Reimers and Gurevych,
2019) variant checkpoints for experiments.

During the training, the contrastive temperature
τ is the same as SimCSE to be 0.05. And the
trading-off ratio m is set as 0.9. For DCL, we
set temperature τDCL as 5 and loss coefficient λ
as 0.1. We train the model for one epoch with a
learning rate 3e−5 for base model and 8e−6 for
the large model with the same batch size 64 and
sequence length 32. The model is optimized by
Adam (Kingma and Ba, 2014) optimizer with de-
fault settings without gradient accumulation.
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Objectives STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERTbase (first-last avg.) 39.69 59.37 49.67 66.03 66.19 53.88 62.06 56.70
+whitening(wiki) 45.64 64.38 56.57 70.35 68.64 60.32 63.42 61.33
+DCL(wiki,τDCL=0.05) 52.96 73.85 62.80 72.12 71.25 68.15 68.36 67.07
+flow (NLI) 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+whitening(NLI) 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+DCL(NLI, τDCL=0.05) 59.25 74.04 63.91 75.85 72.46 70.67 67.05 69.03

SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+whitening 59.27 76.68 67.22 74.86 73.85 68.43 69.22 69.93
+flow 61.33 78.54 69.87 77.47 76.02 71.73 70.70 72.24

DiffCSE (Chuang et al., 2022) 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
DiffCSE (reproduced)1 69.41 82.47 74.52 82.82 80.06 79.39 72.05 77.25

*+SimCSE++ 72.68 83.40 76.76 83.66 80.57 80.94 72.82 78.69

Table 4: Block 1: DCL compared with post-processing methods. NLI is used without labels; Block 2: Post-
processing methods on top of SimCSE lead to unsatisfying performance; Block 3: SimCSE++ is robust to the
non-SimCSE framework. 1: Using officially released source code, and our method improves its performance with
p < 0.005.

5.2 Main Results

The evaluation results are shown in Table 3,
SimCSE++ outperforms the previous approaches.
Compared with its baselines, our methods advance
the average Spearman correlation coefficient from
76.25% to 78.05%, and its large variant raises
the average Spearman correlation score further to
79.30%. SimCSE++ also improves the SBERT
variants’ performances. Compared with SimCSE,
SimCSE++ achieves 79.25% and 80.63% on base
and large variants, which shows an even stronger
representation ability.

We also explore the contribution of DCL objec-
tive and off-dropout sampling in Table 3. It shows
that the off-dropout sampling strategy alone is able
to improve the sentence semantic representation
to 77.13% Spearman correlation score, and DCL
objective with normal dropout augmented negative
contrastive term achieves 77.40%.

5.3 Ablation Study

We investigate the effect of the hyperparame-
ters on the whole system on the STS-B devel-
opment set of BERTbase model in Table 5. We
search m in the range {0.5, 0.8, 0.9, 1, 1.1, 1.2}.
The optimal value is 0.9. We search the ag-
gregation weight λ for DCL within the range
{0.02, 0.05, 0.1, 0.2, 0.5, 1}, and the optimum
value is 0.1. We carry out the DCL temperature
search in ranging in {1, 2, 5, 10, 20, 50}, and opti-
mal DCL temperature is 5.

Following Gao et al. (2021), we also plot `align-
`uniform joint plot at Appendix A. Further, we con-

m 0.5 0.8 0.9 1 1.1 1.2
STS-B dev 68.55 81.61 83.77 79.11 79.99 71.49

λ 0.02 0.05 0.1 0.2 0.5 1
STS-B dev 82.60 83.25 83.77 82.36 80.79 77.79

τDCL 1 2 5 10 20 50
STS-B dev 82.16 82.43 83.77 83.56 83.37 81.76

Table 5: Searching for weight term m, DCL objective
weight λ and DCL temperature τDCL on STS-B devel-
opment set.

Model Training Time

SimCSE-BERTbase 1h 50 min
*SimCSE++-BERTbase 1h 59 min

Table 6: 1 epoch training time for SimCSE and our pro-
posed SimCSE++

duct the qualitative comparison on sentence re-
trieval tasks in Appendix B to further illustrate our
improvement.

Comparing with post-processing We compare
the single DCL objective with widely applied
post-processing methods (i.e. whitening and flow
model). Table 4 shows that the DCL objective out-
performs all the post-processing methods.

Robustness to other framework In Table 4, we
introduce our method into the DiffCSE framework
using officially released source code with our pro-
posed methods. As a result, we further advance
DiffCSE baseline by 1.4 points based on our repro-
duced results.
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Runtime Efficiency We compare the training
time between SimCSE and our proposed Sim-
CSE++. It shows that, the off-dropout sampling,
and DCL do not introduce noticeable running
time overhead compared to the SimCSE baseline.
Moreover, we observe that both SimCSE and our
proposed SimCSE++ converge to their optimum
within the first 5k training steps, which is around
30 minutes of training. Consequently, the overhead
of our modification is negligible.

6 Conclusion

In this paper, we improve CL-based sentence em-
beddings in dropout noise and feature corruption.
The main findings are: 1) having modest dropout
noise is successful for positive pairs and reduc-
ing dropout noise from positive pairs is harmful
whereas reducing dropout noise from negative pairs
is beneficial; 2) the well-known solution to fea-
ture corruption does not lead to gains on sentence
embedding due to the rank bottleneck issue. Ac-
cordingly, we propose off-dropout to eliminate
the dropout randomness from negative pairs and
dimension-wise CL objective to break the bottle-
neck to alleviate feature corruption, both of which
outperform strong baselines by a margin.

Ethical Considerations

This study focuses on the representation of sen-
tences, the objective of which is to achieve better
performance on general domain sentence similarity
tasks. Therefore, the training corpus and bench-
mark datasets are open source and do not contain
any personally sensitive information; And we em-
ploy widely applied pre-trained language models
with commonly used contrastive learning strategies,
thereby having no impact on the political, social,
or natural environment.

Limitations

The limitations consist of two aspects: for dropout
noise, a novel sampling strategy for positive pairs
is left unexplored; for DCL, it could be improved
by applying more advanced data-wise contrastive
learning strategies.
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Unsup-SimCSE SimCSE++
Query1: An animal is biting a persons finger.

#1 A dog is biting a twig. A dog bites someone ’s finger.
#2 A dog bites someone ’s finger. A dog is biting a twig.
#3 Small black dog biting on a person ’s finger. Small black dog biting on a person ’s finger.
#4 A dog is biting a mop. The dog is biting a stick.
#5 A dog biting a man ’s rear A dog biting at its own rear.
Query2: A man plays the violin.

#1 A woman plays the violin. A man playing the violin.
#2 A man plays the violin on stage. A man plays the violin on stage.
#3 A man playing the violin. A woman plays the violin.
#4 A musician playing his violin. A sitting man playing the violin.
#5 A man plays a violin while smiling. A musician playing his violin.

Table 7: Retrieved top-5 examples by SimCSE and SimCSE++ from Flickr30k (150k sentences).

A Alignment and Uniformity

As illustrated by Wang and Isola (2020), models
have both good alignment and uniformity and usu-
ally achieve better performance. Alignment is a
measure for representation consistency of the same
input instance:

`align = E
(x1,x2)∼ppos

‖f(x1)− f(x2)‖2 (7)

Since we adopt dropout as augmentation, i.e. x =
x+ and the only difference is the dropout pattern
ε1 and ε2. And ppos indicate the positive pairs are
sampled from positive datasets. Uniformity is a
measure for representation distribution on repre-
sentation space, which is defined by:

`uniform = log E
x,y

i.i.d∼ pdata

e−2‖f(x)−f(y)‖
2

(8)

Where pdata denotes whole data distribution, and x
and y are instance randomly sampled from dataset.
Fig 1 shows the `align-`uniform joint plot, following
Gao et al. (2021).

B Qualitative Comparison

We also conduct the retrieval comparison between
SimCSE++ and its baseline SimCSE on Flickr30k
dataset (Young et al., 2014). We use 150k cap-
tions from Flickr30k for images and take any ran-
dom sentence as query to retrieve similar sentences
(based on cosine similarity measure). Examples is
shown in Table 7. We find that the retrieved sen-
tences from SimCSE++ is of higher quality com-
pared to those retrieved from SimCSE: SimCSE++
retrieves better top-1 sentences with most similar
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Figure 1: `align-`uniform plot of base model.

semantic information for Query@1, and preserves
the correct gender information on third person pro-
noun in #1 for Query@2.
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