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Abstract

A persistent goal of multilingual neural ma-
chine translation (MNMT) is to continually
adapt the model to support new language pairs
or improve some current language pairs with-
out accessing the previous training data. To
achieve this, the existing methods primarily fo-
cus on preventing catastrophic forgetting by
making compromises between the original and
new language pairs, leading to sub-optimal per-
formance on both translation tasks. To mitigate
this problem, we propose a dual importance-
based model division method to divide the
model parameters into two parts and separately
model the translation of the original and new
tasks. Specifically, we first remove the parame-
ters that are negligible to the original tasks but
essential to the new tasks to obtain a pruned
model, which is responsible for the original
translation tasks. Then we expand the pruned
model with external parameters and fine-tune
the newly added parameters with new training
data. The whole fine-tuned model will be used
for the new translation tasks. Experimental re-
sults show that our method can efficiently adapt
the original model to various new translation
tasks while retaining the performance of the
original tasks. Further analyses demonstrate
that our method consistently outperforms sev-
eral strong baselines under different incremen-
tal translation scenarios. 1

1 Introduction

Multilingual neural machine translation (MNMT)
(Johnson et al., 2017; Zhang et al., 2020; Liu et al.,
2022; Goyal et al., 2022) handles multiple transla-
tion directions in a single model and recent large-
scale MNMT models, such as mBART50-nn (Tang
et al., 2020), M2M-100 (Fan et al., 2021) and
NLLB (Costa-jussà et al., 2022) have demonstrated
promising translation performance. However, a
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Figure 1: The BLEU decline of different MNMT mod-
els on the en↔xx under different pruning ratios. We
perform weight pruning with the general magnitude-
based method (See et al., 2016).

practical problem is how to efficiently extend those
MNMT models to support new languages or im-
prove some existing translation directions when the
new training data is available. Considering that the
current MNMT models are generally trained with
a large amount of data (Liu et al., 2021; Ebrahimi
and Kann, 2021), it will be extremely resource and
time-consuming to retrain the model from scratch.
Therefore, the method that can continually adapt
the previously learned model to new translation
tasks while retaining the original knowledge with-
out accessing the previous training data, i.e., con-
tinual learning, has drawn increasing research at-
tention over the past few years (Gu et al., 2022;
Zhao et al., 2022; Sun et al., 2023; Huang et al.,
2023).

The biggest challenge for continual learning is
catastrophic forgetting (French, 1993), which re-
sults in severe performance decline on the previous
tasks when adapting to new tasks. To alleviate this
problem, some works attempt to balance the perfor-
mance between the original and incremental tasks,
such as the replay-based methods (Ko et al., 2021;
Liu et al., 2021; Garcia et al., 2021) and regulariza-
tion methods (Khayrallah et al., 2018; Thompson
et al., 2019; Zhao et al., 2022). However, as the
whole parameter spaces are shared across different
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translation tasks, those methods are vulnerable to
inter-task interference, especially when the incre-
mental tasks are largely different from the original
ones. Other works (Bapna and Firat, 2019; Es-
colano et al., 2021) employ additional task-specific
parameters for new task adaptation while keeping
the parameters in the original model fixed, which
can naturally avoid the forgetting problem. How-
ever, those methods increase the model size and
the structure of the task-specific modules requires
specialized manual design.

Previous studies (Bau et al., 2019; Voita et al.,
2019; Gu et al., 2021; Liang et al., 2021) show that
some parameters in the network are not important
to the original tasks so that they can be pruned with-
out causing obvious performance degradation. As
shown in Figure 1, the current MNMT models also
have such unimportant parameters, which provides
the possibility of using those negligible parameters
to learn the knowledge of new tasks instead of intro-
ducing additional parameters. However, this model
pruning strategy focuses more on the importance
of parameters to the original tasks while neglecting
their roles in new task adaptation, which restricts
the model’s ability to learn the specific knowledge
of the incremental languages.

In this work, considering the importance of pa-
rameters on the original and new translation tasks,
we propose a dual importance-based model divi-
sion method that can efficiently adapt the origi-
nal MNMT model to various incremental language
pairs. First, we fine-tune the original MNMT model
with the new training data and propose two meth-
ods to evaluate the importance of parameters in
different tasks. Then we find the parameters that
are unimportant to the original tasks but important
to the new tasks and remove them from the origi-
nal model to obtain a pruned model. Finally, we
expand the pruned model to its original size and
fine-tune the newly added parameters with new
training data. In this way, we can better capture
the specific knowledge of incremental translation
tasks and avoid catastrophic forgetting on the orig-
inal translation tasks. Our main contributions are
summarized as follows:

• We propose a dual importance-based model
division method to improve the model’s abil-
ity to learn the knowledge of new language
pairs, which achieves competitive translation
qualities on incremental translation tasks.

• Our method can efficiently reorganize the

roles of the model parameters in incremental
learning and preserve the performance of the
previous translation tasks without accessing
the original training data.

• We conduct extensive experiments in different
incremental translation scenarios. Experimen-
tal results show that our method can be easily
applied to the pre-trained MNMT models and
improve the zero-shot translation.

2 Related Work

Replay-based Methods. The replay-based meth-
ods utilize the training data or pseudo data of the
previous tasks to replay the old knowledge while
training on new tasks (Lakew et al., 2018; Sun et al.,
2019; de Masson D’Autume et al., 2019; Liu et al.,
2021; Garcia et al., 2021). However, those meth-
ods will bring more training consumption, espe-
cially for the large-scale pre-trained MNMT model.
Moreover, the previous training data are sometimes
unavailable due to data privacy or storage limita-
tions (Feyisetan et al., 2020; Gu et al., 2022). The
noise in pseudo data will also hurt the performance
of the previous and new tasks. Compared to those
methods, our method does not need to access the
previous data, and thus it is more flexible and effi-
cient for incremental learning.

Regularization-based Methods. In addition to
the original training objective, the regularization-
based methods usually introduce additional penalty
terms to balance the performance on the previous
and new tasks. Khayrallah et al. (2018) and Thomp-
son et al. (2019) employ regularization terms to
constrain the change of all the parameters from
their original values. Castellucci et al. (2021) uti-
lizes the original model as the teacher to prevent
catastrophic forgetting via knowledge distillation.
Gu et al. (2022) updates the parameters within the
low forgetting risk regions with a hard constraint.
By contrast, our method only prunes the param-
eters that are not essential to the previous tasks
so that it can prevent the forgetting problem. It
also allows our method to focus on learning the
new tasks without making compromises with the
previous tasks.

Parameter Isolation-based Methods. The pa-
rameter isolation-based methods generally allocate
the model parameters to different tasks. Of this
kind, some works (Bapna and Firat, 2019; Madotto
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Figure 2: The training process of the proposed method. Our method consists of three steps: parameter importance
evaluation, model pruning and model expansion & fine-tuning.

et al., 2021; Zhu et al., 2021) add extra task-specific
parameters to the original model for new task learn-
ing. Despite retaining the performance on previous
tasks, those methods inevitably increase the num-
ber of model parameters. Other works (Liang et al.,
2021; Gu et al., 2021) prune the model based on the
parameter importance to the original tasks for do-
main adaptation. Different from those methods, our
method explores the potentiality of task-specific pa-
rameters to improve the performance and efficiency
of the new task adaptation without additional pa-
rameters.

Model Pruning. Model Pruning usually aims to
reduce the model size and has been widely used
in natural language processing tasks. Sun et al.
(2020) highlights the importance of the sparse net-
work structure. Lin et al. (2021) focuses on finding
the important parameters for each language to per-
form language-specific modeling in MNMT. Gu
et al. (2021) utilizes the unimportant parameters to
learn the in-domain knowledge. Compared to those
methods, our method considers the importance of
parameters on the previous and incremental tasks
simultaneously during the model pruning stage,
which yields better performance on new tasks while
retraining the knowledge of the previous tasks.

3 Method

In this work, we aim to prevent the catastrophic per-
formance degradation on the previous translation
tasks without accessing their training data while
adapting the model to new translation tasks effi-
ciently. The main idea of our method is that the

parameters have varying degrees of importance for
the previous and new translation tasks. Based on
this, we utilize the parameters that are not impor-
tant to the previous tasks but essential to the new
tasks to perform new task adaptation. Specifically,
our method involves the following steps as shown
in Figure 2. First, we fine-tune the original MNMT
model on the new training data to obtain a task-
specific model, and then evaluate the importance of
parameters in the original MNMT model and the
task-specific model separately. Second, we remove
the parameters that are unimportant to the original
tasks but important to the new tasks from the origi-
nal MNMT model to obtain a pruned model, and
we make it responsible for the translation of the
original tasks. The pruned model can retain the per-
formance of the original tasks since the removed
parameters are not necessary. Last, we expand the
pruned model to its original size and fine-tune the
newly added parameters to learn the new transla-
tion tasks. As those new parameters are essential
to the new tasks, they can learn the knowledge of
the new tasks more efficiently.

3.1 Importance Evaluation
The importance evaluation procedure is to search
for the negligible parameters in the original model
that can be erased and the essential parameters that
contribute more to the new task adaptation. To
achieve this, we perform importance evaluation for
the original and new translation tasks separately.

Original Task Evaluation. To evaluate the pa-
rameter importance in the original model, we adopt
the general magnitude-based approach (See et al.,
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2016) which regards the absolute value of each
parameter as its own importance:

Iv(w
o
ij) = |wo

ij |, wo
ij ∈ Wo (1)

where wo
ij denotes the i-th row and j-th column

parameter of a certain weight matrix Wo in the
original model. In this way, the smaller the absolute
value, the less important the parameter is.

New Task Evaluation. To obtain the important
parameters for the new translation tasks, we first
fine-tune the original model with the new training
data to obtain a task-specific model. Considering
that the new languages may have different scripts
from the original languages, we extend the embed-
ding layer of the original model to avoid the out-
of-vocabulary problem. The vocabulary extension
method is depicted in Appendix B. After that, we
propose two evaluation methods based on the mag-
nitude and variation of the parameters, respectively.
On the one hand, fine-tuning the original model on
the new translation tasks will amplify the magni-
tude of the important parameters and diminish that
of the unimportant parameters. Therefore, we can
simply utilize a similar magnitude-based method
to Equation (1) for the new task evaluation. On the
other hand, the variation of each parameter from the
original MNMT model to the task-specific model
can also illustrate their importance. Intuitively, the
value variations of the important parameters should
be larger than those of the unimportant parame-
ters since they capture the specific knowledge of
the new tasks. Based on this, the variation-based
evaluation method is formulated as

Ic(w
s
ij) = |ws

ij−wo
ij |, ws

ij ∈ Ws, wo
ij ∈ Wo (2)

where wo
ij and ws

ij represent the i-th row and j-th
column parameter of the weight matrices Wo and
Ws. The weight matrices Wo and Ws denote dif-
ferent parts of the original and fine-tuned specific
model, respectively.

3.2 Dual Importance-based Model Pruning

Based on the importance of parameters to the origi-
nal and new translation tasks, we determine which
parameters in the original MNMT model should be
pruned. To make the most of the model’s ability to
learn the knowledge of new tasks while preserving
the performance on the original tasks, we propose
a dual importance-based model pruning method.

Specifically, based on the importance evaluation re-
sults on the original tasks, we first select a% param-
eters with the smallest magnitude from each weight
matrix Wo to form the pruning candidate set M.
Since the parameters in M are relatively unim-
portant to the original tasks, they can be pruned
without causing catastrophic forgetting. Then we
determine which parameters in M should be fi-
nally pruned based on the importance evaluation
results on the new tasks. According to different
importance evaluation methods for the new tasks
and pruning distributions in each weight matrix,
we propose three model pruning strategies.

Uniform Magnitude-based Pruning (UMP)
adopts the magnitude-based method and sorts the
parameters in M by their magnitude in weight ma-
trix Ws, then ρ% parameters with largest magni-
tude in each weight matrix will be pruned (ρ < a).

Uniform Variation-based Pruning (UVP)
adopts a similar pruning method to UMP except
that the importance evaluation method is changed
to the variation-based one.

Blind Variation-based Pruning (BVP) also
adopts the variation-based method, but different
from UVP, it selects b% parameters with the largest
variation from each weight matrix Ws to form the
important parameter set N . Then the parameters
in the intersection set of M and N will be pruned.

Note that the pruning ratios in each weight ma-
trix are the same for the first two methods while
varying for the third method. The pruned model
will be used to generate the translation of the origi-
nal language pairs in the inference stage.

3.3 Transfer-based Model Expansion

In this step, we add new parameters to the pruned
model and expand it to the original size. Moreover,
the embedding layer of the pruned model is also ex-
tended with the embeddings of new languages sim-
ilar to the task-specific fine-tuning in Section 3.1.
Considering the potential representation gap be-
tween the newly added parameters/embeddings and
the parameters in the pruned model, we propose a
transfer-based parameter adaptation that initializes
the new parameters/embeddings with their counter-
parts in the fine-tuned task-specific model. On the
one hand, those parameters have been fitted well
with the original model during the task-specific
fine-tuning stage so that they do not suffer from
the representation gap. On the other hand, the task-
specific knowledge contained in those parameters
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will benefit the new task adaptation. We fine-tune
the expanded model on the new training data (D)
and the training objective is

L(θO, θN ) =
∑

(x,y)∈D
log p(y|x; θO, θN ) (3)

where θN denotes the trainable parameters includ-
ing the newly added parameters (θP ) and embed-
dings (θE), and θO denotes the pruned model which
is kept frozen during this training stage. In the in-
ference stage, all the parameters in the expanded
model are employed to generate the translation of
the new tasks.

4 Experiments

4.1 Datasets

To ensure the reliability of the experiments, we
first perform continual learning based on a self-
trained MNMT model and then employ the pre-
trained mBART50-nn model (Tang et al., 2020)
as the initial model to evaluate our method in the
real-world scenario. For the former, the original
MNMT model is trained on a multilingual trans-
lation dataset (WMT-9) covering 8 language pairs.
And then we select another four language pairs
for incremental learning. For the latter, we adopt
mBART50-nn as the initial MNMT model and per-
form continual learning in two translation tasks:
the language adaptation task and the language en-
hancement task. The language adaptation task aims
to enable the model to support the translation of
new languages, while the language enhancement
task aims to improve the translation performance of
some existing language pairs that are already sup-
ported by the model. The detailed descriptions of
datasets for the original and incremental languages
are in Appendix A.

4.2 Implementation Details

Baselines. The original MNMT model is trained
based on the vanilla Transformer (Vaswani et al.,
2017) architecture with multiple parallel data fol-
lowing Johnson et al. (2017). We compare our
method with various previous methods in continual
learning. The baselines are as follows:

• Scratch This method trains the initial MNMT
model on the original 8 language pairs for
continual learning and the bilingual model on
each incremental language pair from scratch.

• Replay (Sun et al., 2019) This method creates
pseudo training data for the original language
pairs and trains new models on the combina-
tion of the pseudo training data and incremen-
tal training data.

• Fine-Tuning (Luong and Manning, 2015)
This model is trained based on the original
MNMT model only with the incremental train-
ing data.

• L2-Reg (Miceli Barone et al., 2017) This
method adds an additional L2-norm regular-
ization term to the training objective.

• EWC (Kirkpatrick et al., 2017) This method
evaluates the importance of parameters with
the Fisher information matrix and adds a
penalty term to the training objective to re-
tain the original knowledge.

• LFR (Gu et al., 2022) This method updates
the parameters in the low forgetting risk re-
gions with a hard constraint. We reproduce
the LFR-OM model in the experiments.

• Adapter (Bapna and Firat, 2019) This method
freezes the whole network of the original
model and employs additional networks to
learn the knowledge of incremental language
pairs. The dimension of the projection layer
is set to 128 in the experiments.

• PTE (Gu et al., 2021) This method com-
presses the original model to learn new tasks
and introduces a distillation loss to retain the
old knowledge. We omit the knowledge distil-
lation step as the original training data is not
available in our settings.

Other baselines in the experiments based on the
mBART50-nn model are as follows:

• mBART50-nn (Tang et al., 2020) The large-
scale pre-trained MNMT model, which is the
baseline model for the language enhancement
task. Other systems are implemented based
on this model.

• mBART50-nn+LSE (Berard, 2021) This
method inserts a new language-specific em-
bedding layer (LSE) for the new languages.
we adopt it as the baseline model for the lan-
guage adaptation task and implement other
methods based on it.
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Model
Original Language Pairs Incremental Language Pairs

en→xx xx→en AVG1 en→ro ro→en en→de de→en en→ta ta→en en→ga ga→en AVG2

Scratch 18.90 23.21 21.06 23.42 31.29 24.78 30.13 9.95 14.41 12.43 12.61 19.88
Fine-Tuning 0.50 0.50 0.50 24.56 33.81 25.39 30.61 10.43 15.63 19.09 21.01 22.57

Replay 15.27 22.90 19.09 19.75 29.66 22.16 28.45 10.14 15.10 17.06 19.88 20.28
L2-Reg 14.80 23.89 19.35 21.94 31.83 17.87 27.27 8.53 16.40 12.97 20.69 19.69
EWC 16.40 23.32 19.86 22.77 32.18 19.12 27.52 8.68 16.84 13.40 21.41 20.24
LFR 17.35 23.43 20.39 22.90 32.46 18.93 27.91 9.12 16.98 13.54 21.55 20.42
Adapter 18.90 23.21 21.06 23.89 33.36 21.89 29.14 9.49 16.31 16.01 21.81 21.49
PTE 18.87 23.04 21.01 24.03 33.42 22.09 28.65 9.69 16.46 17.55 21.46 21.67

UMP 18.69 22.63 20.66 24.70 33.78 22.64 29.31 9.54 16.19 18.53 22.89 22.19
UVP 18.85 23.09 20.97 24.63 33.82 22.76 29.19 9.68 16.73 19.58 22.37 22.35
BVP 18.86 23.10 20.98 24.60 33.98 22.94 29.13 9.92 16.69 19.36 22.42 22.38

Table 1: The BLEU scores of adding a single language pair for MNMT in incremental learning. “AVG1” and
“AVG2” denote the average BLEU scores on the original language pairs and incremental language pairs, respectively.
The best BLEU scores among all the incremental learning methods are marked in bold.

Training Setup. Our translation models are built
on the Transformer using the open-source Fairseq
implementation (Ott et al., 2019)2. We employ the
same configuration of Transformer-Big (Vaswani
et al., 2017) in our experiments for fair compar-
isons. The details about model settings are in Ap-
pendix B.

Evaluation. We report the detokenized case-
sensitive BLEU offered by SacreBLEU (Post,
2018)3. We employ the best checkpoint on the val-
idation dataset for evaluation, and perform beam
search decoding with a beam size of 4 and length
penalty of 1.0.

4.3 Main Results

Adapting to a single language pair. We first
study the translation performance when adapting
the original MNMT to a single language pair. The
results are summarized in Table 1. Compared with
the Scratch model, our method achieves remark-
able performance improvement on the incremental
language pairs (up to +2.50 BLEU on average) and
the translation qualities are also competitive with
the Fine-Tuning model. Moreover, our method
prevents catastrophic forgetting on the original lan-
guage pairs. Despite prior attempts by the replay-
based and regularization-based methods to make
a balance between the original and incremental
language pairs, they still suffer from obvious per-
formance degradation on the original en→xx trans-
lation tasks. Although no pronounced degradation
has occurred in the Adapter and PTE models, they

2https://github.com/pytorch/fairseq
3Signature: BLEU+case.mixed+numrefs.1+smooth.exp+

tok.13a+version.1.5.1.

are weak in their ability to learn the knowledge of
new language pairs, leading to a performance gap
compared to the Fine-Tuning model. In contrast to
those prior continual learning methods, our method
achieves the best overall translation performance.

Adapting to multiple language pairs. We next
investigate the translation qualities when adapting
the original MNMT model to multiple language
pairs simultaneously. The results are summarized
in Table 2. In this scenario, the regularization-
based methods retain their performance on the
original language pairs at the cost of the insuf-
ficient ability to learn the incremental language
pairs, which leads to inferior performance to the
Scratch model. We also find that the performance
degradation on English-to-Irish (en→ga) transla-
tion is more severe than other language pairs. We
ascribe this to the larger linguistic difference be-
tween Irish (ga) and other languages, as Irish has
a distinct dominant word order (VSO) from other
languages (SVO or SOV). This difference may lead
to interference across languages, which increases
the difficulty of the regularization-based methods
to balance the translation performance between the
original and incremental language pairs. By con-
trast, our method can better deal with the increased
language divergence, and yield superior translation
performance to the Scratch and PTE models. As we
consider the incremental language pairs during the
parameter importance evaluation stage, our method
can capture the specific knowledge of each incre-
mental language pair more efficiently than other
methods.
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Model
Original Language Pairs Incremental Language Pairs

en→xx xx→en AVG1 en→ro ro→en en→de de→en en→ta ta→en en→ga ga→en AVG2

Scratch 18.90 23.21 21.06 23.42 31.29 24.78 30.13 9.95 14.41 12.43 12.61 19.88
Fine-Tuning 0.40 1.74 1.07 24.68 34.85 26.08 31.34 10.11 16.81 14.03 22.81 22.59

L2-Reg 16.82 23.60 20.21 16.55 25.51 14.66 25.44 6.26 14.08 2.63 9.88 14.38
EWC 16.97 23.46 20.22 17.00 26.54 18.50 26.99 6.50 14.08 2.51 9.42 15.19
LFR 17.16 23.49 20.33 18.21 28.58 16.56 26.24 6.56 14.37 4.20 12.75 15.93
PTE 18.79 22.80 20.79 23.06 32.16 20.47 27.79 8.12 15.38 12.04 20.12 19.89

UMP 18.74 22.85 20.80 23.27 33.09 21.08 28.49 8.84 16.02 12.40 21.20 20.55
UVP 18.87 23.11 20.99 23.54 32.92 21.23 28.61 9.05 15.23 12.74 20.94 20.53
BVP 18.85 23.16 21.01 23.53 32.92 21.34 28.49 8.97 15.88 12.78 21.39 20.66

Table 2: The BLEU scores of adding all eight language pairs simultaneously for MNMT in incremental learning.
The best results among all the continual learning methods are highlighted in bold.

5 Analysis

5.1 Ablation Studies

Effects of Different Pruning Ratios. To better
balance the translation performance on the orig-
inal and incremental translation tasks, we quan-
tify the trade-off between the pruning ratio and the
translation performance. The results are depicted
in Figure 3. We also plot the PTE model in the
figure for comprehensive comparisons. For each
method, the performance on the original language
pairs degrades with the increase of the pruning ra-
tio, while the results on the incremental language
pairs are quite reversed. Specifically, the proposed
three pruning methods consistently outperform the
PTE model on the incremental language pairs un-
der the same pruning ratios. Moreover, the UVP
and BVP models can achieve better results with a
smaller pruning ratio of 6% than the PTE model of
18%. These results demonstrate that training the in-
cremental language pairs with their corresponding
important parameters can improve the efficiency
of continual learning, which makes it possible to
adapt the original model to more new translation
tasks. The UVP and BVP models can better re-
tain the performance on the original language pairs
while the UMP model suffers from more apparent
performance degradation. Considering the overall
performance under different settings, we employ
the BVP model for the following experiments.

Effects of Dual importance-based Pruning. We
study the dual-importance pruning strategy with
our BVP method under the pruning ratio of 6%. As
shown in Table 3, when pruning only based on the
old task importance, the model can maintain its per-
formance on the original language pairs. However,
it is weak in the ability of capturing the specific
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Figure 3: Comparisons of PTE, UMP, UVP and BVP
under different pruning ratios.

Method en→xx xx→en en↔ro en↔de en↔ta en↔ga

Old 18.87 23.04 28.73 25.37 13.08 19.51
New 0.03 0.04 29.36 26.98 13.07 20.96
BVP 18.86 23.10 29.29 26.04 13.31 20.89

Table 3: Ablation study on dual importance-based prun-
ing. “Old” and “New” indicate the model pruning meth-
ods are only based on the parameter importance on the
old task and new task, respectively.

knowledge of new language pairs, leading to infe-
rior performance to our BVP model. In contrast,
when pruning only based on the new task impor-
tance, although the model performs slightly better
than BVP on some new language pairs, it fails
on the original language pairs. We find that most
(>98%) pruned parameters in this method are also
important to the old language pairs. Therefore, the
performance on original language pairs decreases
apparently if those parameters are pruned. Our
BVP model achieves the best overall performance
across all language pairs, showing the necessity of
the dual-importance.

Effects of Different Initialization methods. We
implement three initialization methods to investi-
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Model en↔xx en→yy xx→yy

Scratch 21.06 17.65 –
Fine-Tuning 2.25 19.51 5.18
L2-Reg 17.27 14.46 3.54
EWC 18.45 15.93 3.67
LFR 18.72 16.69 3.84
PTE 20.98 18.12 6.16
Ours(BVP) 20.98 18.85 6.67

Table 4: The BLEU results on zero-shot translation. “xx”
represent the 8 original languages and “yy” represent
the 4 incremental languages in Table 9. The best results
among all the continual learning methods are in bold.

gate the effects of different parameter initialization
methods in the model expansion stage. The results
indicate that initializing the newly added param-
eters with their counterparts in the task-specific
fine-tuned model enables the BVP model to at-
tain optimal translation performance with minimal
training time for incremental learning. The de-
tailed comparisons and analyses are provided in
Appendix C.

5.2 Results on Zero-shot Translation

To investigate the transfer ability of our method,
we further conduct zero-shot translation from the
original languages to the incremental languages.
To make the most of the ability to learn the knowl-
edge of the incremental languages, we adapt the
original MNMT model to only one incremental
language each time. We adopt the Flores (Goyal
et al., 2022) test sets for evaluation and the results
are summarized in Table 4. For the regularization-
based methods, the translation quality on the incre-
mental language pairs and zero-shot language pairs
lags far behind that of the Fine-tuning model. The
results indicate that the constraint on the param-
eters limits the transfer ability of those methods,
leading to inferior performance on zero-shot trans-
lation. Compared with the PTE model, our method
achieves better zero-shot translation performance
since we can capture the specific knowledge of the
new languages more efficiently.

5.3 Sequential Language Adaptation

In this scenario, we enable the original MNMT
model to adapt to the incremental language pairs in
a sequential manner. We first train the model with
the en↔ro data and then with the en↔ta data. For
each method, we extend the embedding layer of
the previous model and update the specific hyper-

Model en↔xx en↔ro en↔ta

Scratch 21.06(−0.00) 27.36(−0.00) 12.18
Fine-Tuning 0.31(−0.19) 0.34(−28.85) 12.86
L2-Reg 19.17(−0.18) 26.52(−0.37) 11.90
EWC 19.39(−0.47) 26.59(−0.89) 12.17
LFR 19.37(−1.02) 26.81(−0.87) 12.27
PTE 20.89(−0.17) 28.42(−0.31) 12.59
Ours(BVP) 20.90(−0.08) 29.18(−0.11) 13.05

Table 5: The BLEU results of the sequential language
incremental learning. The value in brackets represents
the performance decline before and after training with
the en↔ta data. The best results among all the continual
learning methods are in bold.

parameters before training on the new language
pairs. For the L2-Reg and EWC methods, we em-
ploy the model trained with the en↔ro data as the
new initial model to compute the regularization
loss when continually training the en↔ta task. Be-
sides, we also recompute the Fisher information
matrix and update the low forgetting risk regions
for the EWC and LFR methods, respectively. For
our methods, we evaluate the importance of pa-
rameters on en↔ta and prune the parameters that
are important to en↔ta task but unimportant to
all the previous tasks including en↔ro translation.
The results are summarized in Table 5. The Fine-
Tuning method still encounters the catastrophic for-
getting problem so that its performance on en↔ro
degrades sharply after training with the en↔ta data.
Although the regularization-based methods achieve
relatively better overall performance, they also suf-
fer from performance degradation to different de-
grees. In contrast to those methods, our method
only has a slight decline in the previous tasks and
outperforms other continual learning methods on
all the translation tasks in this scenario.

5.4 Results on Pre-trained MNMT models

We further employ the pre-trained mBART50-nn
model (Tang et al., 2020) as the original MNMT
model and conduct two incremental learning tasks
in the scenario that is closer to the real world.

Language adaptation task. In this scenario, we
adapt the model to support the Greek↔English
(el↔en) and Slovak↔English (sk↔en). Follow-
ing Gu et al. (2022), we conduct experiments based
on the mBART50-nn+LSE model (Berard, 2021)
and report the tokenized BLEU in Table 6. Com-
pared with all the previous continual learning meth-
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Model
Original Language Pairs Incremental Language Pairs

AVG
xx→en en→xx AVG1 el→en en→el sk→en en→sk AVG2

mBART50-nn+LSE 26.73 21.66 24.20 27.32 16.20 36.28 28.85 27.16 25.68
Fine-Tuning 20.40 1.88 11.14 30.88 27.80 35.32 33.69 31.92 21.53
L2-Reg 27.32 18.78 23.05 28.05 19.99 36.17 30.86 28.77 25.91
EWC 27.02 18.41 22.72 27.73 20.27 36.27 30.96 28.80 25.76
LFR 27.12 20.16 23.64 28.47 20.43 36.30 31.04 29.06 26.34
Ours(BVP) 26.58 21.58 24.08 29.62 25.64 34.80 32.29 30.59 27.34

Table 6: The BLEU scores of the language adaptation task. “AVG1” and “AVG2” denote the average BLEU
on the original and incremental language pairs, respectively. “AVG” is the overall performance computed by
(AVG1+AVG2)/2. We report the tokenized BLEU following Gu et al. (2022). The best scores among all the
continual learning methods are highlighted in bold.

Model
Original Language Pairs Incremental Language Pairs

AVG
xx→en en→xx AVG1 de→fr fr→de zh→vi vi→zh AVG2

mBART50-nn 24.88 15.63 20.26 15.88 10.17 13.35 6.48 11.47 15.87
Fine-Tuning 0.96 2.79 1.88 29.88 28.57 30.02 30.37 29.71 15.80
L2-Reg 20.55 15.48 18.02 29.05 23.75 23.69 25.86 25.59 21.81
EWC 22.40 15.54 18.97 29.22 23.41 23.89 26.02 25.64 22.30
LFR 22.68 15.45 19.07 30.71 24.30 24.61 26.37 26.50 22.79
Ours(BVP) 24.78 15.56 20.17 32.59 26.55 28.89 29.86 29.47 24.82

Table 7: The BLEU scores of the language enhancement task. The best results among all the continual learning
methods are highlighted in bold.

ods, our method achieves better overall translation
performance on the original and incremental tasks.
Specifically, our method narrows the performance
gap between the previous continual learning mod-
els and the Fine-Tuning model on the incremental
language pairs, especially for the en→el direction.
These results show that our method can also effi-
ciently adapt to the new language even if it is quite
different from the previous languages.

Language enhancement task. As mBART50-nn
is trained on the English-centric data, the trans-
lation quality of non-English language pairs gen-
erally lags far behind that of the English-centric
language pairs. To this end, we aim to improve
the translation performance on two non-English
language pairs: German↔French (de↔fr) and
Chinese↔Vietnamese (zh↔vi). The results are
summarized in Table 7. The regularization-based
methods suffer from performance degradation in
the xx→en directions, which is different from that
in the language adaptation task. We ascribe this to
the different training data distributions, where half
of the training set uses English as the target during
the pre-training stage, while the English sentences

are not available during the incremental learning
stage, weakening the ability of the model to trans-
late into English. In contrast to the regularization-
based methods, our method still retains the perfor-
mance on the original language pairs and achieves
better translation results on the incremental lan-
guage pairs.

6 Conclusion

In this paper, we propose a dual importance-based
model division method in continual learning for
MNMT, which is based on the importance of pa-
rameters to the original and incremental translation
tasks. We search for the parameters that are unim-
portant to the previous tasks but essential to the
incremental tasks and utilize those parameters for
new task adaptation. Experimental results show
that our method can efficiently adapt the original
MNMT model to various incremental translation
tasks and consistently outperforms several previ-
ous continual learning methods. Further analyses
demonstrate that our method can also be applied
to the pre-trained MNMT model and benefit the
zero-shot translation.

12019



Limitations

In this work, we attempt to extend an existing
MNMT model to support new languages and im-
prove the translation of some language pairs. In
addition to the advantages, our method has the fol-
lowing limitations.

(1) Insufficient model capacity. In order to sup-
port new translation tasks while keeping the model
size fixed, we only utilize a small number of pa-
rameters in the original MNMT model for new task
adaptation. When adapting to multiple translation
tasks simultaneously, the translation performance
on the incremental translation tasks still lags behind
that of the Fine-Tuning model due to the limited
modeling capacity. In the future, we will improve
the translation on the new tasks with a better trans-
fer method while not increasing the number of pa-
rameters.

(2) Single direction of knowledge transfer. Our
method is essentially a parameter isolation-based
model in which the parameters contribute differ-
ently to different translation tasks. We utilize all the
parameters for the translation of new tasks while
for the original tasks, we only use the parameters
in the pruned model. Therefore, the knowledge can
be easily transferred from the original language
pairs to the new language pairs. However, the orig-
inal language pairs can hardly acquire knowledge
from the new language pairs. In the future, we will
explore methods that can facilitate the knowledge
transfer to the original languages to further improve
the translation performance on the original tasks.
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A Dataset Details

A.1 WMT-9

Original Language Pairs. We select 8 English-
centric language pairs of different data sizes from
the WMT benchmark to train the original MNMT
model that covers 16 translation directions and 9
languages. Specifically, the original language pairs
cover languages with different amounts of training
data: high-resource (>10M): Russian, Spanish and
Japanese; medium-resource (1M~10M): Finnish
and Pashto; and low-resource (<1M): Lithuanian,
Hindi and Hausa. Moreover, those languages be-
long to different language branches and vary in
several linguistic characteristics such as writing sys-
tem and dominant word order, which increases the
language diversity in the original MNMT model.

Incremental Language Pairs. We select another
four language pairs for incremental learning con-
sidering that the incremental languages are usually
non-high resource in the real-world translation sce-
nario. The four languages include: Romanian (low-
resource), which is highly related to the original
language Spanish with the same language branch
Romance, and shares the same script and word
order; German (medium-resource), which is sim-
ilar to the original languages in script and word
order, but comes from a different language branch;
Tamil (low-resource), which is not related to any
original languages and has different scripts; Irish
(low-resource), has a completely different word or-
der from all the original languages despite using
the shared script of Latin characters.

The characteristics of each language are summa-
rized in Table 8 and the detailed statistics of the
training dataset are shown in Table 9.

A.2 mBART50

We perform incremental learning based on the pre-
trained mBART50-nn model for two translation
scenarios. The detailed statistics of the training
dataset are shown in Table 10.

Language Adaptation Task. In this transla-
tion scenario, we adapt the model to support
the English↔Greek (en↔el) and English↔Slovak
(en↔sk) translation directions following Gu et al.
(2022). We use the data from OPUS-100 (Zhang
et al., 2020) for model training and the valida-
tion/test sets from Flores (Goyal et al., 2022) for
checkpoint selection and model evaluation.

Code Language Genus Script Order

es Spanish Romance Latin SVO
ru Russian Slavic Cyrillic SVO
ja Japanese Japanese Kanji SOV
fi Finnish Finnic Latin SVO
ps Pashto Iranian Arabic SOV
lt Lithuanian Baltic Latin SVO
hi Hindi Indic Devanagari SOV
ha Hausa West Chadic Latin SVO

ro Romanian Romance Latin SVO
de German Germanic Latin SVO
ta Tamil Dravidian Tamil SOV
ga Irish Celtic Latin VSO

Table 8: The characteristics of languages in our experi-
ment. The top half part represents the original languages
while the bottom half part represents the incremental
languages.

Language Enhancement Task. In this transla-
tion scenario, we aim to enhance the translation
performance of mBART50-nn on German↔French
(de↔fr) and Chinese↔Vietnamese (zh↔vi) direc-
tions. The training data are from WMT224 and
CCMatrix5 for de↔fr and zh↔vi, respectively. We
also use the validation/test sets from Flores (Goyal
et al., 2022) for checkpoint selection and evalua-
tion.

B Implementation Details

Vocabulary Extension. For the experiments on
WMT-9, we apply byte pair encoding (BPE) al-
gorithm (Sennrich et al., 2016) using Sentence-
Piece (Kudo and Richardson, 2018)6 to preprocess
the sentences of original language pairs with a joint
multilingual vocabulary of 64K. For each incre-
mental language, we train a distinct vocabulary of
32K and combine it with the original multilingual
dictionary by removing the overlapped tokens. We
utilize the combined vocabulary for incremental
learning to avoid the out-of-vocabulary problem.
As all the methods in our experiments are built on
the same extended vocabulary, we do not take these
extra parameters into account when comparing the
newly added parameters across different methods
in this paper.

For the experiments based on mBART50-nn, all
the sentences are preprocessed using the Sentence-
Piece model provided by XLM-R (Conneau et al.,
2020). For the language adaptation task, we insert

4https://www.statmt.org/wmt22
5https://data.statmt.org/cc-matrix
6https://github.com/google/sentencepiece
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Language Pair Data Source # Samples

Train Valid Test Train Valid Test

en-ru WMT19 WMT13 WMT19 38,492,126 3000 2000
en-es WMT13 WMT13 WMT13 15,182,374 3003 3000
en-ja WMT21 WMT20 WMT21 18,012,559 993 1005
en-fi WMT19 WMT18 WMT19 6,587,448 3000 1996
en-ps WMT20 WMT20 WMT20 1,155,944 2698 2719
en-lt WMT19 WMT19 WMT19 635,146 3000 1000
en-hi WMT14 WMT14 WMT14 313,748 520 2507
en-ha WMT21 WMT21 WMT21 752,357 2000 997

en-ro WMT16 WMT16 WMT16 610,320 1999 1999
en-de WMT14 WMT13 WMT14 4,508,785 3000 3003
en-ta WMT20 WMT20 WMT20 660,818 1989 997
en-ga OPUS-100 Flores Flores 289,524 997 1012

Table 9: The statistics of train, valid and test data for the original language pairs and incremental language pairs in
WMT-9.

Language Pair Data Source # Samples

Train Valid Test Train Valid Test

en-el OPUS-100 Flores Flores 1M 997 1012
en-sk OPUS-100 Flores Flores 1M 997 1012

de-fr WMT22 Flores Flores 18.11M 997 1012
zh-vi CCMatrix Flores Flores 8.05M 997 1012

Table 10: The statistics of train, valid and test data used in continual learning based on mBART50-nn. The top half
part represents the incremental language pairs in the language adaptation task while the bottom half part represents
the incremental language pairs in the language enhancement task.

a new language-specific embedding layer (LSE)
to the original mBART50-nn model to implement
the mBART50-nn+LSE model (Berard, 2021) as
the baseline model following Gu et al. (2022). For
the language enhancement task, we do not need
to extend the embedding layer since the languages
involved are supported by mBART50-nn.

Model settings for experiments on WMT-9
dataset. All the models follow the configuration
of Transformer-Big (Vaswani et al., 2017), which
consists of 6 stacked encoder/decoder layers and
16 attention heads. The model size dmodel and
feed-forward dimension dffn are set to 1024 and
4096, respectively. For model training, we use
the temperature-based sampling strategy to bal-
ance the training data distribution with a temper-
ature of T = 5 (Arivazhagan et al., 2019), and
use share-all-embeddings in Fairseq to save pa-
rameters. All the model parameters are optimized
using Adam optimizer (Kingma and Ba, 2014)
(β1 = 0.9, β2 = 0.98) with label smoothing of
0.1. The learning rate is scheduled as Vaswani et al.
(2017) with a warm-up step of 4000 and a peak
learning rate of 0.0005. We train all the MNMT

models on 8 Nvidia RTX A6000 GPUs with a batch
of 4096 and adopt the early stop (patience is 10)
strategy. For the task-specific fine-tuning in the
importance evaluation stage, we fix all the layer
normalization layers and the embedding layers in
the original MNMT model since we find that it
brings better results. For model pruning, we also
do not prune the layer normalization layers and
embedding layers in the encoder and decoder.

Model settings for experiments based on
mBART50-nn. The mBART50-nn model con-
sists of 12 stacked encoder/decoder layers and 16
attention heads. The model size dmodel and feed-
forward dimension dffn are set to 1024 and 4096,
respectively. Other model configurations are the
same as those in the experiments on WMT-9.

Pruning ratio settings. Based on the results in
Figure 1, in order to retain the performance on the
original tasks, the hyper-parameter a% is set to
25% in all the experiments. For the BVP method,
we tune the hyper-parameter b% in the range of
B = [5%, 25%, 50%, 75%] on each incremental
language pair. The final pruning ratios are summa-
rized in Table 12. For the PTE, UMP and UVP
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ID Method Embedding (θE) Parameters (θP ) en↔ro en↔de en↔ta en↔ga AVG

(1) Random-Random Random Random 0.13 0.04 0.05 0.04 0.06
(2) Transfer-Random Transfer Random 0.23 0.12 0.05 0.06 0.07
(3) Random-Transfer Random Transfer 29.16 26.27 13.16 18.48 21.76
(4) Copy-Copy Copy Copy 29.25 25.97 13.27 18.13 21.68
(5) Transfer-Transfer Transfer Transfer 29.29 26.04 13.31 18.36 21.75

Table 11: The performance on the incremental language pairs under different initialization methods.

0

6

12

18

24

en-ro

random-random transfer-random random-transfer copy-copy transfer-transfer

0

10

20

30

40

en-de
0

6

12

18

24

en-ta
0

7.5

15

22.5

30

en-ga

Tr
ai

ni
ng

 T
im

e 
(

 S
)

×1
03

Figure 4: The training time of the BVP model with different parameter initialization methods in incremental learning
for MNMT.

Language Pair 5% 25% 50% 75%

en↔ro 1.2 6.1 12.3 18.6
en↔de 1.2 6.0 12.2 18.5
en↔ta 1.2 6.1 12.3 18.6
en↔ga 1.3 6.4 12.6 18.8

Table 12: The pruning ratios ρ% of each language pair
along with different hyper-parameter b%. The hyper-
parameter a% is set to 25%.

methods, we keep the hyper-parameter ρ% the
same as the pruning ratio of the BVP method for
fair comparisons. In our experiments, the hyper-
parameter b% is set to 50% when adapting the orig-
inal MNMT model to multiple language pairs si-
multaneously (Table 2 in Section 4.3). Otherwise,
b% is set to 25% in other experiments.

C More Results

Effects of different initialization methods

As illustrated in Section 3.3, when adapting to the
incremental tasks, we add new parameters to the
pruned model to expand the model to its original
size and extend the embedding layer of the original
MNMT model to avoid the out-of-vocabulary prob-
lem. In this experiment, we investigate the effects
of different initialization methods on the transla-
tion performance of the incremental language pairs.
Specifically, we study the three initialization meth-

ods:

• Random: the newly added parameters or em-
bedding layer are randomly initialized with
Gaussian distribution.

• Copy: the newly added parameters are ini-
tialized with their counterparts in the original
MNMT model and the extended embeddings
are initialized with the embeddings of the orig-
inal MNMT model by sampling.

• Transfer: the newly added parameters and the
extended embeddings are initialized with their
counterparts in the fine-tuned task-specific
model.

The results are summarized in Table 11. We find
that the translation results are more sensitive to the
initialization method for the new parameters (θP ),
compared with the embedding layer (θE). Specifi-
cally, when the new parameters (θP ) are initialized
randomly, it fails to adapt the model to the incre-
mental language pairs. This result suggests that the
representation gap between the original parameters
and newly added parameters cannot be eliminated
during incremental training. By contrast, the copy
initialization and transfer initialization methods do
not suffer from this problem since the parameters
have been well trained to fit the model in advance.
The initialization method for the embedding layer
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does not apparently affect the translation perfor-
mance on the incremental language pairs.

We also study the training time of the model
with different initialization methods. As shown in
Figure 4, the transfer initialization method can re-
markably reduce the training time of incremental
learning, which is more efficient than other meth-
ods. Based on the above results, we adopt the
transfer method to initialize the embedding layer
(θP ) and new parameters (θE) in the experiments.
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