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Abstract

The digitisation of historical documents has
provided historians with unprecedented re-
search opportunities. Yet, the conventional ap-
proach to analysing historical documents in-
volves converting them from images to text us-
ing OCR, a process that overlooks the potential
benefits of treating them as images and intro-
duces high levels of noise. To bridge this gap,
we take advantage of recent advancements in
pixel-based language models trained to recon-
struct masked patches of pixels instead of pre-
dicting token distributions. Due to the scarcity
of real historical scans, we propose a novel
method for generating synthetic scans to resem-
ble real historical documents. We then pre-train
our model, PHD, on a combination of synthetic
scans and real historical newspapers from the
1700-1900 period. Through our experiments,
we demonstrate that PHD exhibits high profi-
ciency in reconstructing masked image patches
and provide evidence of our model’s notewor-
thy language understanding capabilities. No-
tably, we successfully apply our model to a
historical QA task, highlighting its utility in
this domain.

1 Introduction

Recent years have seen a boom in efforts to digitise
historical documents in numerous languages and
sources (Chadwyck, 1998; Groesen, 2015; Moss,
2009), leading to a transformation in the way histo-
rians work. Researchers are now able to expedite
the analysis process of vast historical corpora using
NLP tools, thereby enabling them to focus on in-
terpretation instead of the arduous task of evidence
collection (Laite, 2020; Gerritsen, 2012).

The primary step in most NLP tools tailored
for historical analysis involves Optical Character
Recognition (OCR). However, this approach poses
several challenges and drawbacks. First, OCR

*This paper shows dataset samples that are racist in nature

strips away any valuable contextual meaning em-
bedded within non-textual elements, such as page
layout, fonts, and figures.1 Moreover, historical
documents present numerous challenges to OCR
systems. This can range from deteriorated pages,
archaic fonts and language, the presence of non-
textual elements, and occasional deficiencies in
scan quality (e.g., blurriness), all of which con-
tribute to the introduction of additional noise. Con-
sequently, the extracted text is often riddled with
errors at the character level (Robertson and Gold-
water, 2018; Bollmann, 2019), which most large
language models (LLMs) are not tuned to process.
Token-based LLMs are especially sensitive to this,
as the discrete structure of their input space cannot
handle well the abundance of out-of-vocabulary
words that characterise OCRed historical docu-
ments (Rust et al., 2023). Therefore, while LLMs
have proven remarkably successful in modern do-
mains, their performance is considerably weaker
when applied to historical texts (Manjavacas and
Fonteyn, 2022; Baptiste et al., 2021, inter alia). Fi-
nally, for many languages, OCR systems either do
not exist or perform particularly poorly. As train-
ing new OCR models is laborious and expensive
(Li et al., 2021a), the application of NLP tools to
historical documents in these languages is limited.

This work addresses these limitations by taking
advantage of recent advancements in pixel-based
language modelling, with the goal of construct-
ing a general-purpose, image-based and OCR-free
language encoder of historical documents. Specif-
ically, we adapt PIXEL (Rust et al., 2023), a lan-
guage model that renders text as images and is
trained to reconstruct masked patches instead of
predicting a distribution over tokens. PIXEL’s train-
ing methodology is highly suitable for the histori-
cal domain, as (unlike other pixel-based language
models) it does not rely on a pretraining dataset

1Consider, for example, the visual data that is lost by pro-
cessing the newspaper page in Fig 18 in App C as text.
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(a) Input example. (b) Masking the input. (c) Model predictions.

Figure 1: Our proposed model, PHD. The model is trained to reconstruct the original image (a) from the masked
image (b), resulting in (c). The grid represents the 16 × 16 pixels patches that the inputs are broken into.

composed of instances where the image and text
are aligned. Fig 1 visualises our proposed training
approach.

Given the paucity of large, high-quality datasets
comprising historical scans, we pretrain our model
using a combination of 1) synthetic scans designed
to resemble historical documents faithfully, pro-
duced using a novel method we propose for syn-
thetic scan generation; and 2) real historical En-
glish newspapers published in the Caribbeans in
the 18th and 19th centuries. The resulting pixel-
based language encoder, PHD (Pixel-based model
for Historical Documents), is subsequently eval-
uated based on its comprehension of natural lan-
guage and its effectiveness in performing Question
Answering from historical documents.

We discover that PHD displays impressive recon-
struction capabilities, being able to correctly pre-
dict both the form and content of masked patches of
historical newspapers (§4.4). We also note the chal-
lenges concerning quantitatively evaluating these
predictions. We provide evidence of our model’s
noteworthy language understanding capabilities
while exhibiting an impressive resilience to noise.
Finally, we demonstrate the usefulness of the model
when applied to the historical QA task (§5.4).

To facilitate future research, we provide the
dataset, models, and code at https://gith
ub.com/nadavborenstein/pixel-bw.

2 Background

2.1 NLP for Historical Texts

Considerable efforts have been invested in improv-
ing both OCR accuracy (Li et al., 2021a; Smith,
2023) and text normalisation techniques for his-
torical documents (Drobac et al., 2017; Robertson
and Goldwater, 2018; Bollmann et al., 2018; Boll-

mann, 2019; Lyu et al., 2021). This has been done
with the aim of aligning historical texts with their
modern counterparts. However, these methods are
not without flaws (Robertson and Goldwater, 2018;
Bollmann, 2019), and any errors introduced during
these preprocessing stages can propagate to down-
stream tasks (Robertson and Goldwater, 2018; Hill
and Hengchen, 2019). As a result, historical texts
remain a persistently challenging domain for NLP
research (Lai et al., 2021; De Toni et al., 2022;
Borenstein et al., 2023b). Here, we propose a novel
approach to overcome the challenges associated
with OCR in historical material, by employing an
image-based language model capable of directly
processing historical document scans and effec-
tively bypassing the OCR stage.

2.2 Pixel-based Models for NLU

Extensive research has been conducted on models
for processing text embedded in images. Most
existing approaches incorporate OCR systems as an
integral part of their inference pipeline (Appalaraju
et al., 2021; Li et al., 2021b; Delteil et al., 2022).
These approaches employ multimodal architectures
where the input consists of both the image and the
output generated by an OCR system.

Recent years have also witnessed the emergence
of OCR-free approaches for pixel-based language
understanding. Kim et al. (2022) introduce Donut,
an image-encoder-text-decoder model for docu-
ment comprehension. Donut is pretrained with the
objective of extracting text from scans, a task they
refer to as “pseudo-OCR”. Subsequently, it is fine-
tuned on various text generation tasks, reminiscent
of T5 (Roberts et al., 2020). While architecturally
similar to Donut, Dessurt (Davis et al., 2023) and
Pix2Struct (Lee et al., 2022) were pretrained by
masking image regions and predicting the text in
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both masked and unmasked image regions. Unlike
our method, all above-mentioned models predict in
the text space rather than the pixel space. This pre-
supposes access to a pretraining dataset comprised
of instances where the image and text are aligned.
However, this assumption cannot hold for histori-
cal NLP since OCR-independent ground truth text
for historical scans is, in many times, unprocurable
and cannot be used for training purposes.

Text-free models that operate at the pixel level
for language understanding are relatively uncom-
mon. One notable exception is Li et al. (2022),
which utilises Masked Image Modeling for pre-
training on document patches. Nevertheless, their
focus lies primarily on tasks that do not necessitate
robust language understanding, such as table detec-
tion, document classification, and layout analysis.
PIXEL (Rust et al., 2023), conversely, is a text-free
pixel-based language model that exhibits strong
language understanding capabilities, making it the
ideal choice for our research. The subsequent sec-
tion will delve into a more detailed discussion of
PIXEL and how we adapt it to our task.

3 Model

PIXEL We base PHD on PIXEL, a pretrained
pixel-based encoder of language. PIXEL has three
main components: A text renderer that draws texts
as images, a pixel-based encoder, and a pixel-based
decoder. The training of PIXEL is analogous to
BERT (Devlin et al., 2019). During pretraining,
input strings are rendered as images, and the en-
coder and the decoder are trained jointly to recon-
struct randomly masked image regions from the
unmasked context. During finetuning, the decoder
is replaced with a suitable classification head, and
no masking is performed. The encoder and decoder
are based on the ViT-MAE architecture (He et al.,
2022) and work at the patch level. That is, the en-
coder breaks the input image into patches of 16 ×
16 pixels and outputs an embedding for each patch.
The decoder then decodes these patch embeddings
back into pixels. Therefore, random masking is
performed at the patch level as well.

PHD We follow the same approach as PIXEL’s
pretraining and finetuning schemes. However,
PIXEL’s intended use is to process texts, not natu-
ral images. That is, the expected input to PIXEL
is a string, not an image file. In contrast, we aim
to use the model to encode real document scans.
Therefore, we make several adaptations to PIXEL’s

Source #Issues #Train
Scans

#Test
Scans

Caribbean 7 487 1 675 172 87 721Project
Danish Royal 5 661 300 780 15 159Library

Total 13 148 1 975 952 102 880

Table 1: Statistics of the newspapers dataset.

training and data processing procedures to make it
compatible with our use case (§4 and §5).

Most crucially, we alter the dimensions of the
model’s input: The text renderer of PIXEL renders
strings as a long and narrow image with a resolution
of 16 × 8464 pixels (corresponding to 1 × 529
patches), such that the resulting image resembles
a ribbon with text. Each input character is set to
be not taller than 16 pixels and occupies roughly
one patch. However, real document scans cannot
be represented this way, as they have a natural two-
dimensional structure and irregular fonts, as Fig 1a
demonstrates (and compare to Fig 17a in App C).
Therefore, we set the input size of PHD to be 368
× 368 pixels (or 23 × 23 patches).

4 Training a Pixel-Based Historical LM

We design PHD to serve as a general-purpose,
pixel-based language encoder of historical docu-
ments. Ideally, PHD should be pretrained on a large
dataset of scanned documents from various histori-
cal periods and different locations. However, large,
high-quality datasets of historical scans are not
easily obtainable. Therefore, we propose a novel
method for generating historical-looking artificial
data from modern corpora (see subsection 4.1). We
adapt our model to the historical domain by contin-
uously pretraining it on a medium-sized corpus of
real historical documents. Below, we describe the
datasets and the pretraining process of the model.

4.1 Artificially Generated Pretraining Data

Our pretraining dataset consists of artificially gen-
erated scans of texts from the same sources that
BERT used, namely the BookCorpus (Zhu et al.,
2015) and the English Wikipedia.2 We generate
the scans as follows.

We generate dataset samples on-the-fly, adopt-
ing a similar approach as Davis et al. (2023). First,

2We use the version “20220301.en” hosted on huggingf
ace.co/datasets/wikipedia.
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(a) Embedding one paragraph. (b) Adding more paragraphs. (c) Adding noise.

Figure 2: Process of generating a single artificial scan. Refer to §4.1 for detailed explanations.

we split the text corpora into paragraphs, using the
new-line character as a delimiter. From a para-
graph chosen at random, we pick a random spot
and keep the text spanning from that spot to the
paragraph’s end. We also sample a random font
and font size from a pre-defined list of fonts (from
Davis et al. (2023)). The text span and the font are
then embedded within an HTML template using the
Python package Jinja,3 set to generate a Web page
with dimensions that match the input dimension
of the model. Finally, we use the Python package
WeasyPrint4 to render the HTML file as a PNG
image. Fig 2a visualises this process’ outcome.

In some cases, if the text span is short or the
selected font is small, the resulting image contains
a large empty space (as in Fig 2a). When the empty
space within an image exceeds 10%, a new image
is generated to replace the vacant area. We create
the new image by randomly choosing one of two
options. In 80% of the cases, we retain the font of
the original image and select the next paragraph.
In 20% of the cases, a new paragraph and font are
sampled. This pertains to the common case where
a historical scan depicts a transition of context or
font (e.g., Fig 1a). This process can repeat multiple
times, resulting in images akin to Fig 2b.

Finally, to simulate the effects of scanning age-
ing historical documents, we degrade the image
by adding various types of noise, such as blurring,
rotations, salt-and-pepper noise and bleed-through
effect (see Fig 2c and Fig 9 in App C for examples).
App A.2 enumerates the full list of the degradations
and augmentations we use.

4.2 Real Historical Scans
We adapt PHD to the historical domain by contin-
uously pretraining it on a medium-sized corpus of

3jinja.palletsprojects.com/en/3.1.x
4weasyprint.org

scans of real historical newspapers. Specifically,
we collect newspapers written in English from the
“Caribbean Newspapers, 1718–1876” database,5

the largest collection of Caribbean newspapers
from the 18th–19th century available online. We
extend this dataset with English-Danish newspa-
pers published between 1770–1850 in the Danish
Caribbean colony of Santa Cruz (now Saint Croix)
downloaded from the Danish Royal Library’s web-
site.6 See Tab 1 for details of dataset sizes. While
confined in its geographical and temporal context,
this dataset offers a rich diversity in terms of con-
tent and format, rendering it an effective test bed
for evaluating PHD.

Newspaper pages are converted into a 368× 368
pixels crops using a sliding window approach over
the page’s columns. This process is described in
more detail in App A.2. We reserve 5% of newspa-
per issues for validation, using the rest for training.
See Fig 10 in App C for dataset examples.

4.3 Pretraining Procedure

Like PIXEL, the pretraining objective of PHD is
to reconstruct the pixels in masked image patches.
We randomly occlude 28% of the input patches
with 2D rectangular masks. We uniformly sample
their width and height from [2, 6] and [2, 4] patches,
respectively, and then place them in random image
locations (See Fig 1b for an example). Training
hyperparameters can be found in App A.1.

4.4 Pretraining Results

Qualitative Evaluation. We begin by conducting
a qualitative examination of the predictions made
by our model. Fig 3 presents a visual representa-

5readex.com/products/caribbean-newspap
ers-series-1-1718-1876-american-antiqua
rian-society

6statsbiblioteket.dk/mediestream
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Figure 3: Examples of some image completions made by PHD . Masked regions marked by dark outlines.

(a) world (b) 1893 (c) every

Figure 4: Single word completions made by our model. Figure captions depict the missing word. Fig (a) depicts a
successful reconstruction, whereas Fig (b) and (c) represent fail-cases.

tion of the model’s predictions on three randomly
selected scans from the test set of the Caribbean
newspapers dataset (for additional results on other
datasets, refer to Fig 12 App C). From a visual
inspection, it becomes evident that the model ac-
curately reconstructs the fonts and structure of the
masked regions. However, the situation is less clear
when it comes to predicting textual content. Sim-
ilar to Rust et al. (2023), unsurprisingly, predic-
tion quality is high and the results are sharp for
smaller masks and when words are only partially
obscured. However, as the completions become
longer, the text quality deteriorates, resulting in
blurry text. It is important to note that evaluat-
ing these blurry completions presents a significant
challenge. Unlike token-based models, where the
presence of multiple words with high, similar like-
lihood can easily be detected by examining the
discrete distribution, this becomes impossible with
pixel-based models. In pixel-based completions,
high-likelihood words may overlay and produce
a blurry completion. Clear completions are only
observed when a single word has a significantly
higher probability compared to others. This limita-
tion is an area that we leave for future work.

We now move to analyse PHD’s ability to fill
in single masked words. We randomly sample test

scans and OCRed them using Tesseract.7 Next, we
randomly select a single word from the OCRed text
and use Tesseract’s word-to-image location func-
tionality to (heuristically) mask the word from the
image. Results are presented in Fig 4. Similar to
our earlier findings, the reconstruction quality of
single-word completion varies. Some completions
are sharp and precise, while others appear blurry.
In some few cases, the model produces a sharp
reconstruction of an incorrect word (Fig 4c). Un-
fortunately, due to the blurry nature of many of the
results (regardless of their correctness), a quantita-
tive analysis of these results (e.g., by OCRing the
reconstructed patch and comparing it to the OCR
output of the original patch) is unattainable.

Semantic Search. A possible useful application
of PHD is semantic search. That is, searching in
a corpus for historical documents that are seman-
tically similar to a concept of interest. We now
analyse PHD’s ability to assign similar historical
scans with similar embeddings. We start by tak-
ing a random sample of 1000 images from our test
set and embed them by averaging the patch em-
beddings of the final layer of the model. We then
reduce the dimensionality of the embeddings with

7github.com/tesseract-ocr/tesseract
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(a) Semantic search target. (b) Retrieved scans.

Figure 5: Semantic search using our model. (a) is the target of the search, and (b) are scans retrieved from the
newspaper corpus.

t-SNE (van der Maaten and Hinton, 2008). Upon
visual inspection (Fig 13 in App C), we see that
scans are clustered based on visual similarity and
page structure.

Fig 13, however, does not provide insights re-
garding the semantic properties of the clusters.
Therefore, we also directly use the model in se-
mantic search settings. Specifically, we search
our newspapers corpus for scans that are semanti-
cally similar to instances of the Runaways Slaves
in Britain dataset, as well as scans containing ship-
ping ads (See Fig 16 in App C for examples). To do
so, we embed 1M random scans from the corpus.
We then calculate the cosine similarity between
these embeddings and the embedding of samples
from the Runaways Slaves in Britain and embed-
dings of shipping ads. Finally, we manually exam-
ine the ten most similar scans to each sample.

Our results (Fig 5 and Fig 14 in App C) are en-
couraging, indicating that the embeddings capture
not only structural and visual information, but also
the semantic content of the scans. However, the
results are still far from perfect, and many retrieved
scans are not semantically similar to the search’s
target. It is highly plausible that additional spe-
cialised finetuning (e.g., SentenceBERT’s (Reimers
and Gurevych, 2019) training scheme) is necessary
to produce more semantically meaningful embed-
dings.

Figure 6: Samples from the clean and noisy visual
GLUE datasets.

Figure 7: Example from the Runaways Slaves in Britain
dataset, rendered as visual question answering task. The
gray overlay marks the patches containing the answer.

5 Training for Downstream NLU Tasks

After obtaining a pretrained pixel-based lan-
guage model adapted to the historical domain (§4),
we now move to evaluate its understanding of
natural language and its usefulness in addressing
historically-oriented NLP tasks. Below, we
describe the datasets we use for this and the
experimental settings.

92



Noise Images Model MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE WNLI AVG
393k 364k 105k 67k 8.6k 5.8k 3.7k 2.5k 635

✗

✗
BERT 84.1 87.6 91.0 92.6 60.3 88.8 90.2 69.5 51.8 80.0
PIXEL 78.5 84.5 87.8 89.6 38.4 81.1 88.2 60.5 53.8 74.1

✓

CLIPlin 50.2 64.7 67.4 79.8 4.2 56.4 74.1 51.5 25.6 52.7
Donut 64.0 77.8 69.7 82.1 13.9 14.4 81.7 54.0 57.7 57.2
Ours 70.1 82.7 82.3 82.5 15.9 80.2 83.4 59.9 54.1 67.9

✓ ✓

OCR+BERT 71.7 77.5 82.7 85.5 39.7 68.4 86.9 58.8 51.3 69.2
OCR+PIXEL 70.6 78.5 81.5 83.6 30.3 68.8 84.7 59.7 58.6 68.5

CLIPlin 45.3 67.4 64.4 79.2 3.5 57.9 78.8 47.3 32.7 52.9
Donut 61.6 74.1 75.1 75.5 10.2 20.6 81.9 56.7 60.0 57.3
Ours 68.0 80.4 81.8 83.9 15.1 80.4 83.6 58.5 57.8 67.2

Table 2: Results for PHD finetuned on GLUE. The metrics are F1 score for QQP and MRPC, Matthew’s correlation
for COLA, Spearman’s ρ for STS-B, and accuracy for the remaining datasets. Bold values indicate the best model
in category (noisy/clean), while underscored values indicate the best pixel-based model.

5.1 Language Understanding

We adapt the commonly used GLUE benchmark
(Wang et al., 2018) to gauge our model’s under-
standing of language. We convert GLUE instances
into images similar to the process described in §4.1.
Given a GLUE instance with sentences s1, s2 (s2
can be empty), we embed s1 and s2 into an HTML
template, introducing a line break between the sen-
tences. We then render the HTML files as images.

We generate two versions of this visual GLUE
dataset – clean and noisy. The former is rendered
using a single pre-defined font without applying
degradations or augmentations, whereas the latter
is generated with random fonts and degradations.
Fig 6 presents a sample of each of the two dataset
versions. While the first version allows us to mea-
sure PHD’s understanding of language in “sterile”
settings, we can use the second version to estimate
the robustness of the model to noise common to
historical scans.

5.2 Historical Question Answering

QA applied to historical datasets can be immensely
valuable and useful for historians (Borenstein et al.,
2023a). Therefore, we assess PHD’s potential for
assisting historians with this important NLP task.
We finetune the model on two novel datasets. The
first is an adaptation of the classical SQuAD-v2
dataset (Rajpurkar et al., 2016), while the second
is a genuine historical QA dataset.

SQuAD Dataset We formulate SQuAD-v2 as
a patch classification task, as illustrated in Fig 11
in App C. Given a SQuAD instance with question
q, context c and answer a that is a span in c, we
render c as an image, I (Fig 11a). Then, each

patch of I is labelled with 1 if it contains a part
of a or 0 otherwise. This generates a binary label
mask M for I , which our model tries to predict
(Fig 11b). If any degradations or augmentations
are later applied to I , we ensure that M is affected
accordingly. Finally, similarly to Lee et al. (2022),
we concatenate to I a rendering of q and crop the
resulting image to the appropriate input size (Fig
11c).

Generating the binary mask M is not straightfor-
ward, as we do not know where a is located inside
the generated image I . For this purpose, we first
use Tesseract to OCR I and generate ĉ. Next, we
use fuzzy string matching to search for a within
ĉ. If a match â ∈ ĉ is found, we use Tesseract to
find the pixel coordinates of â within I . We then
map the pixel coordinates to patch coordinates and
label all the patches containing â with 1. In about
15% of the cases, Tesseract fails to OCR I properly,
and â cannot be found in ĉ, resulting in a higher
proportion of SQuAD samples without an answer
compared to the text-based version.

As with GLUE, we generate two versions of
visual SQuAD, which we use to evaluate PHD’s
performance in both sterile and historical settings.

Historical QA Dataset Finally, we finetune
PHD for a real historical QA task. For this, we use
the English dataset scraped from the website of the
Runaways Slaves in Britain project, a searchable
database of over 800 newspaper adverts printed
between 1700 and 1780 placed by enslavers who
wanted to capture enslaved people who had self-
liberated (Newman et al., 2019). Each ad was man-
ually transcribed and annotated with more than 50
different attributes, such as the described gender
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and age, what clothes the enslaved person wore,
and their physical description.

Following Borenstein et al. (2023a), we convert
this dataset to match the SQuAD format: given
an ad and an annotated attribute, we define the
transcribed ad as the context c, the attribute as the
answer a, and manually compose an appropriate
question q. We process the resulting dataset sim-
ilarly to how SQuAD is processed, with one key
difference: instead of rendering the transcribed ad c
as an image, we use the original ad scan. Therefore,
we also do not introduce any noise to the images.
See Figure 7 for an example instance. We reserve
20% of the dataset for testing.

5.3 Training Procedure
Similar to BERT, PHD is finetuned for downstream
tasks by replacing the decoder with a suitable head.
Tab 4 in App A.1 details the hyperparameters used
to train PHD on the different GLUE tasks. We
use the standard GLUE metrics to evaluate our
model. Since GLUE is designed for models of
modern English, we use this benchmark to evaluate
a checkpoint of our model obtained after training
on the artificial modern scans, but before training
on the real historical scans. The same checkpoint is
also used to evaluate PHD on SQuAD. Conversely,
we use the final model checkpoint (after introduc-
ing the historical data) to finetune on the historical
QA dataset: First, we train the model on the noisy
SQuAD and subsequently finetune it on the Run-
aways dataset (see App A.1 for training details).

To evaluate our model’s performance on the QA
datasets, we employ various metrics. The primary
metrics include binary accuracy, which indicates
whether the model agrees with the ground truth
regarding the presence of an answer in the con-
text. Additionally, we utilise patch-based accuracy,
which measures the ratio of overlapping answer
patches between the ground truth mask M and the
predicted mask M̂ , averaged over all the dataset
instances for which an answer exists. Finally, we
measure the number of times a predicted answer
and the ground truth overlap by at least a single
patch. We balance the test sets to contain an equal
number of examples with and without an answer.

5.4 Results
Baselines We compare PHD’s performance on
GLUE to a variety of strong baselines, covering
both OCR-free and OCR-based methods. First, we
use CLIP with a ViT-L/14 image encoder in the lin-

Task Model Noise / Image Binary
acc

Patch
acc

One
Overlap

S
BERT ✗/ ✗ 72.3 47.3 53.9

Ours ✗/ ✓ 60.3 16.4 42.2
Ours ✓/ ✓ 61.7 14.4 41.2

R BERT - / ✗ 78.3 52.0 55.8

Ours - / ✓ 74.7 20.0 48.8

Table 3: Results for PHD finetuned on our visual
SQuAD (S) and the Runaways Slaves (R) datasets.

ear probe setting, which was shown to be effective
in a range of settings that require a joint understand-
ing of image and text—including rendered SST-2
(Radford et al., 2021). While we only train a linear
model on the extracted CLIP features, compared
to full finetuning in PHD, CLIP is about 5× the
size with ∼427M parameters and has been trained
longer on more data. Second, we finetune Donut
(§2.2), which has ∼200M parameters and is the
closest and strongest OCR-free alternative to PHD.
Moreover, we finetune BERT and PIXEL on the
OCR output of Tesseract. Both BERT and PIXEL
are comparable in size and compute budget to PHD.
Although BERT has been shown to be overall more
effective on standard GLUE than PIXEL, PIXEL
is more robust to orthographic noise (Rust et al.,
2023). Finally, to obtain an empirical upper limit
to our model, we finetune BERT and PIXEL on
a standard, not-OCRed version of GLUE. Like-
wise, for the QA tasks, we compare PHD to BERT
trained on a non-OCRed version of the datasets
(the Runaways dataset was manually transcribed).
We describe all baseline setups in App B.

GLUE Tab 2 summarises the performance of
PHD on GLUE. Our model demonstrates notewor-
thy results, achieving scores of above 80 for five out
of the nine GLUE tasks. These results serve as evi-
dence of our model’s language understanding capa-
bilities. Although our model falls short when com-
pared to text-based BERT by 13 absolute points
on average, it achieves competitive results com-
pared to the OCR-then-finetune baselines. More-
over, PHD outperforms other pixel-based models
by more than 10 absolute points on average, high-
lighting the efficacy of our methodology.

Question Answering According to Tab 3, our
model achieves above guess-level accuracies on
these highly challenging tasks, further strengthen-
ing the indications that PHD was able to obtain im-
pressive language comprehension skills. Although
the binary accuracy on SQuAD is low, hovering
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(a)

(b)

Figure 8: Saliency maps of PHD fine-tuned on the Run-
aways Slaves in Britain dataset. Ground truth label in a
grey box. The figures were cropped in post-processing.

around 60% compared to the 72% of BERT, the rel-
atively high “At least one overlap” score of above
40 indicates that PHD has gained the ability to lo-
cate the answer within the scan correctly. Further-
more, PHD displays impressive robustness to noise,
with only a marginal decline in performance ob-
served between the clean and noisy versions of the
SQuAD dataset, indicating its potential in handling
the highly noisy historical domain. The model’s
performance on the Runaways Slaves dataset is par-
ticularly noteworthy, reaching a binary accuracy
score of nearly 75% compared to BERT’s 78%,
demonstrating the usefulness of the model in appli-
cation to historically-oriented NLP tasks. We be-
lieve that the higher metrics reported for this dataset
compared to the standard SQuAD might stem from
the fact that Runaways Slaves in Britain contains
repeated questions (with different contexts), which
might render the task more trackable for our model.

Saliency Maps Our patch-based QA approach
can also produce visual saliency maps, allowing
for a more fine-grained interpretation of model pre-
dictions and capabilities (Das et al., 2017). Fig
8 presents two such saliency maps produced by
applying the model to test samples from the Run-
aways Slaves in Britain dataset, including a failure
case (Fig 8a) and a successful prediction (Fig 8b).
More examples can be found in Fig 15 in App C.

6 Conclusion

In this study, we introduce PHD, an OCR-free lan-
guage encoder specifically designed for analysing

historical documents at the pixel level. We present
a novel pretraining method involving a combina-
tion of synthetic scans that closely resemble histor-
ical documents, as well as real historical newspa-
pers published in the Caribbeans during the 18th
and 19th centuries. Through our experiments, we
observe that PHD exhibits high proficiency in re-
constructing masked image patches, and provide
evidence of our model’s noteworthy language un-
derstanding capabilities. Notably, we successfully
apply our model to a historical QA task, achieving
a binary accuracy score of nearly 75%, highlight-
ing its usefulness in this domain. Finally, we note
that better evaluation methods are needed to further
drive progress in this domain.
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Limitations

We see several limitations regarding our work.
First, we focus on the English language only, a
high-resource language with strong OCR systems
developed for it. By doing so, we neglect low-
resource languages for which our model can poten-
tially be more impactful.

On the same note, we opted to pretrain our model
on a single (albeit diverse) historical corpus of
newspapers, and its robustness in handling other
historical sources is yet to be proven. To address
this limitation, we plan to extend our historical cor-
pora in future research endeavours. Expanding the
range of the historical training data would not only
alleviate this concern but also tackle another limi-
tation; while our model was designed for historical
document analysis, most of its pretraining corpora
consist of modern texts due to the insufficient avail-
ability of large historical datasets.

We also see limitations in the evaluation of PHD.
As mentioned in Section 4.4, it is unclear how to
empirically quantify the quality of the model’s re-
construction of masked image regions, thus neces-
sitating reliance on qualitative evaluation. This
qualitative approach may result in a suboptimal
model for downstream tasks. Furthermore, the eval-
uation tasks used to assess our model’s language
understanding capabilities are limited in their scope.
Considering our emphasis on historical language
modelling, it is worth noting that the evaluation
datasets predominantly cater to models trained on
modern language. We rely on a single historical
dataset to evaluate our model’s performance.

Lastly, due to limited computational resources,
we were constrained to training a relatively small-
scale model for a limited amount of steps, poten-
tially impeding its ability to develop the capabilities
needed to address this challenging task. Insufficient
computational capacity also hindered us from con-
ducting comprehensive hyperparameter searches
for the downstream tasks, restricting our ability to
optimize the model’s performance to its full poten-
tial. This, perhaps, could enhance our performance
metrics and allow PHD to achieve more competi-
tive results on GLUE and higher absolute numbers
on SQuAD.
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A Reproducibility

A.1 Training
Pretraining We pretrain PHD for 1M steps on
with the artificial dataset using a batch size of 176
(the maximal batch size that fits our system) us-
ing AdamW optimizer (Kingma and Ba, 2014;
Loshchilov and Hutter, 2017) with a linear warm-
up over the first 50k steps to a peak learning rate of
1.5e−4 and a cosine decay to a minimum learning
rate of 1e−5. We then train PHD for additional
100k steps with the real historical scans using the
same hyperparameters but without warm-up. Pre-
training took 10 days on 2 × 80GB Nvidia A100
GPUs.

GLUE Table 4 contains the hyperparameters
used to finetune PHD on the GLUE benchmark.
We did not run a comprehensive hyperparameter
search due to compute limitations; these settings
were manually selected based on a small number
of preliminary runs.

SQuAD To finetune PHD on SQuAD, we used
a learning rate of 6.75e−6, batch size of 128,
dropout probability of 0.0 and weight decay of
1e−5. We train the model for 50 000 steps.

Runaways Slaves in Britain To finetune PHD
on the Runaways Slaves in Britain dataset, first
trained the model on SQuAD using the hyperpa-
rameters mentioned above. Then, we finetuned the
resulting model for an additional 1000 steps on the
Runaways Slaves in Britain. The only hyperpa-
rameter we changed between the two runs is the
dropout probability, which we increased to 0.2.

A.2 Dataset Generation
List of dataset augmentations To generate the
synthetic dataset described in Section 4.1, we ap-
plied the following transformations to the rendered
images: text bleed-through effect; addition of ran-
dom horizontal and lines; salt and pepper noise;
Gaussian blurring; water stains effect; “holes-in-
image" effect; colour jitters on image background;
and random rotations.

Converting the Caribbean Newspapers dataset
into 368 × 368 scans We convert full newspaper
pages into a collection of 368 × 368 pixels using
the following process. First, we extract the layout
of the page using the Python package Eynollah.8

8https://github.com/qurator-spk/eynol
lah
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Parameter MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE WNLI
Classification-head-pooling Mean
Optimizer AdamW
Adam β (0.9, 0.999)
Adam ϵ 1e−8
Weight decay 1e−5
Learning rate 5e−2
Learning rate warmup steps 100
Learning rate schedule Cosine annealing
Batch size 172 172 128 128 128 128 172 172 172
Max steps 10 000
Early stopping ✓
Eval interval (steps/epoch) 500 500 500 500 100 100 100 250 100
Dropout probability 0.0

Table 4: The hyperparameters used to train PHD on GLUE tasks.

This package provides the location of every para-
graph on the page, as well as their reading order.
As newspapers tend to be multi-columned, we “lin-
earise” the page into a single-column document.
We crop each paragraph and resize it such that its
width equals 368 pixels. We then concatenate all
the resized paragraphs with respect to their reading
order to generate a long, single-column document
with a width of 368 pixels. Finally, we use a slid-
ing window approach to split the linear page into
368 × 368 crops, applying a stride of 128 pixels.
We reserve 5% of newspaper issues for validation,
using the rest for training. See Fig 10 in App C for
dataset examples.

B Historical GLUE Baselines

For all baselines below, we compute and average
scores over 5 random initializations.

OCR + BERT/PIXEL For each GLUE task, we
first generate 5 epochs of noisy training data and
run Tesseract on it to obtain noisy text datasets.
Similarly, however without oversampling, we ob-
tain noisy versions of our fixed validation sets. We
then finetune BERT-base and PIXEL-base in the
same way as Rust et al. (2023), with one main dif-
ference: the noisy OCR output prevents us from
separating the first and second sentence in sentence-
level tasks. Therefore we treat each sentence pair
as a single sequence and leave it for the models to
identify sentence boundaries itself, similar to how
PHD has to identify sentence boundaries in the im-
ages. We use the codebase and training setup from
Rust et al. (2023).9

9https://github.com/xplip/pixel

CLIP We run linear probing on CLIP using an
adaptation of OpenAI’s official codebase.10 We
first extract image features from the ViT-L/14 CLIP
model and then train a logistic regression model
with L-BFGS solver for all classification tasks and
an ordinary least squares linear regression model
for the regression tasks (only STS-B).

Donut We finetune Donut-base using an adapta-
tion of ClovaAI’s official codebase.11 We frame
each of the GLUE tasks as image-to-text tasks:
the model receives the (noisy) input image and
is trained to produce an output text sequence
such as <s_glue><s_class><positive/>
</s_class></s>. In this example, taken from
SST-2, the < X > tags are new vocabulary items
added to Donut and the label is an added vocab-
ulary item for the positive sentiment class. All
classification tasks in GLUE can be represented in
this way. For STS-B, where the label is a floating
point value denoting the similarity score between
two sentences, we follow Raffel et al. (2020) to
round and convert the floats into strings.12 We fine-
tune with batch size 32 and learning rate between
1e−5 and 3e−5 for a maximum of 30 epochs or
15 000 steps on images resized to a resolution of
320 × 320 pixels.

OCR-free BERT/PIXEL For GLUE, we take
results reported in (Rust et al., 2021). For SQuAD,
we take a BERT model finetuned on SQuAD-v2,13

10https://github.com/openai/CLIP#linea
r-probe-evaluation

11https://github.com/clovaai/donut
12Code example in https://github.com/googl

e-research/text-to-text-transfer-transfo
rmer/blob/main/t5/data/preprocessors.py#
L816-L855

13from https://huggingface.co/deepset/ber
t-base-cased-squad2.
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and evaluate it on the validation set of SQuAD-v2,
after being balanced for the existence of an an-
swer. For the Runaways Slaves in Britain dataset,
we finetune a BERT-base-cased model14 on a man-
ually transcribed version of the dataset. We use
the default SQuAD-v2 hyperparameters reported
in the official Huggingface repository for training
on SQuAD-v2.15 We then evaluate the model on a
balanced test set, containing 20% of the ads.

C Additional Material

Figure 9 additional examples from our artificially
generated dataset.
Figure 10 Sample scans from the real historical
dataset, as described in Section 4.2.
Figure 11 The process of generating the Visual
SQuAD dataset. We first render the context as an
image (a), generate a patch-level label mask high-
lighting the answer (b), add noise and concatenate
the question (c).
Figure 12 Additional examples of PHD’s comple-
tions over test set samples.
Figure 13 Dimensionality reduction of embedding
calculated by our model on historical scans. We see
that scans are clustered based on visual similarity
and page structure. However, further investigation
is required to determine whether scans are also
clustered based on semantic similarity.
Figure 14 Using PHD for semantic search. Fig-
ure 14a and is the target of the search (the concept
we are looking for), while Figure 14b and are the
retrieved scans.
Figure 15 Additional examples of PHD’s saliency
maps for samples from the test set of the Runaways
Slaves in Britain dataset.
Figure 16 Examples of shipping ads Newspapers.
Newspapers in the Caribbean region routinely re-
ported on passenger and cargo ships porting and
departing the islands. These ads are usually well-
structured and contain information such as relevant
dates, the ship’s captain, route, and cargo.
Figure 17 Input samples for PIXEL. The images
are rolled, i.e., the actual input resolution is 16
× 8464 pixels. The grid represents the 16 × 16
patches that the inputs are broken into.
Figure 18 An example of a full newspaper page
downloaded from the “Caribbean project”.

14from https://huggingface.co/bert-bas
e-cased

15https://colab.research.google.com/gi
thub/huggingface/notebooks/blob/master/e
xamples/question_answering.ipynb
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Figure 9: Samples of our artificially generated dataset, and compare to Figure 10.
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Figure 10: Sample scans from the real historical dataset.

(a) Rendering context c as an image I . (b) Generating a label mask M . (c) Adding q and degradations.

Figure 11: Process of generating the Visual SQuAD dataset. We first render the context as an image (a), generate a
patch-level label mask highlighting the answer (b), add noise and concatenate the question (c).
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Figure 12: Additional examples of PHD’s completions.
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Figure 13: Dimensionality reduction of embedding calculated by our model on historical scans.

(a) Semantic search target. (b) Retrieved scans.

Figure 14: Semantic search using our model. (a) is the target of the search, and (b) are scans retrieved from the
newspaper corpus.
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Figure 15: Additional examples of PHD’s saliency maps for samples from the test set of the Runaways Slaves in
Britain dataset.
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Figure 16: Shipping ads samples. Newspapers in the
Caribbean region routinely reported on passenger and
cargo ships porting and departing the islands. These
ads are usually well-structured and contain information
such as relevant dates, the ship’s captain, route, and
cargo.

(a) PIXEL’s input.

(b) PIXEL’s masking.

Figure 17: Input samples for PIXEL. The images are
rolled, i.e., the actual input resolution is 16 × 8464
pixels. The grid represents the 16 × 16 patches that the
inputs are broken into.
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Figure 18: An example of a full newspaper page downloaded from the “Caribbean project”. Section 4.2 details the
way of processing full newspaper pages so that they can be inputted to our model.
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