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Abstract

Large language models (LLMs) have been
shown to perform well at a variety of syntactic,
discourse, and reasoning tasks. While LLMs
are increasingly deployed in many forms in-
cluding conversational agents that interact with
humans, we lack a grounded benchmark to
measure how well LLMs understand social
language. Here, we introduce a new theory-
driven benchmark, SOCKET, that contains 58
NLP tasks testing social knowledge which we
group into five categories: humor & sarcasm,
offensiveness, sentiment & emotion, trustwor-
thiness, and other social factors. In tests on the
benchmark, we demonstrate that current mod-
els attain only moderate performance but reveal
significant potential for task transfer among
different types and categories of tasks, which
were predicted from theory. Through zero-shot
evaluations, we show that pretrained models
already possess some innate but limited capa-
bilities of social language understanding and
training on one category of tasks can improve
zero-shot testing on others. Our benchmark
provides a systematic way to analyze model
performance on an important dimension of lan-
guage and points to clear room for improve-
ment to build more socially-aware LLMs. The
resources are released at https://github.
com/minjechoi/SOCKET.

1 Introduction

Interpersonal communication is more than just
what is said. Understanding communication re-
quires reasoning not only about the content of a
message but also the social implications drawn
from that message (Halliday, 1995). As NLP sys-
tems, particularly Large Language Models (LLMs),
are increasingly used in interpersonal settings,
these models’ abilities to understand social knowl-
edge become critical. However, despite the recog-
nized need for social knowledge (Hovy and Yang,
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2021), the NLP field has limited abilities to test it.
Here, we introduce SOCKET, a new benchmark
for evaluating social knowledge.

Evaluating NLP systems has remained a key
component for benchmarking the field’s progress.
Indeed, the rapid replacement of traditional mod-
els by LLM-based approaches was strongly moti-
vated by substantial gains by LLMs on a variety of
comprehensive Natural Language Understanding
(NLU) benchmarks like SuperGLUE (Wang et al.,
2019) and Natural Questions (Kwiatkowski et al.,
2019). However, despite the fundamental social
aspect of language, comprehensive benchmarks of
social language remain absent. Instead, existing
computational studies of social language have built
individual datasets and models for specific types
of information like empathy (Sharma et al., 2020),
politeness (Danescu-Niculescu-Mizil et al., 2013),
and humor (Van Hee et al., 2018). While benefi-
cial, these semantic-level tasks omit broader social
and narrative-level information (Li et al., 2021) and
present only a narrow view of model performance.

We introduce SOCKET (Social Knowledge
Evaluation Tests), a theory-grounded, systematic
collection of 58 social language tasks.1 SOCKET
covers five categories of social information: sen-
timent & emotion, trustworthiness, humor & sar-
casm, offensiveness, and social factors, each mo-
tivated by specific theories. To examine models’
generalizability, SOCKET includes four task for-
mats: classification, regression, pairwise compari-
son, and span identification. This construction aims
at assessing not only NLP models’ performances
on individual tasks but their ability to perform mul-
tiple task types and to productively benefit from
related tasks and task categories during learning.

Our study offers the following three contribu-

1The choice of the term “social knowledge” in framing
stems from its use for a broad category in psychology (e.g.,
Turiel, 1983; Adolphs, 2009) that matched the capabilities we
are interested in.
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tions to the research community. (1) We moti-
vate a theoretically-grounded organization of so-
cial tasks (§2) and subsequently introduce a new
easy-to-use benchmark, SOCKET, that system-
atically organizes 58 tasks (§3). (2) We bench-
mark multiple current LLM approaches to mul-
titask NLU via standard supervised training and
zero-shot LLMs (§4). Across all tests, our results
show that baseline LLMs perform moderately, at
best, but offer promising signs of being able to
leverage task correlations. (3) We test the abili-
ties of models to make use of cross-task transfer
(§5) showing multi-task training on strongly cor-
related tasks can maintain or even improve perfor-
mance in specific tasks, but doing so on weakly
correlated tasks can hurt the overall performance
of LLMs (§6). We release our framework code and
prepackaged datasets at https://github.com/

minjechoi/SOCKET and https://huggingface.

co/datasets/Blablablab/SOCKET.

2 Social Information in Natural
Language Processing

Language is inherently social, as meaning is con-
structed through social interactions (Wittgenstein,
1953). A substantial body of research in linguis-
tic theory and communication studies have ex-
amined how social knowledge is communicated
via language understanding. Theories of lan-
guage grounded in interaction and communication
systems such as Systemic Functional Linguistics
(SFL) by Halliday et al. (1989) assert that the func-
tion and appropriacy of language in a given context
is the key to our understanding of language and
its use (Eggins, 2004; Allan, 2007; Halliday et al.,
1989; Halliday, 2004). We use these insights to
probe linguistic models for their ability to capture
social information, which we define as information
conveyed through text about broader metatextual
function and contextual appropriacy of the utter-
ances in conversation.
NLP Studies on Social Information Numerous
studies have contributed to the development of
datasets and models aimed toward identifying nu-
anced social information in language across diverse
contexts. Computational linguists have modeled
multiple forms of social information in language
like sentiment (Buechel and Hahn, 2017), polite-
ness (Fu et al., 2020), humor (Meaney et al., 2021),
offensiveness (ElSherief et al., 2021), and intimacy
(Pei and Jurgens, 2020), often achieving state-of-

the-art results close to human performance in their
respective settings. Studies such as Park et al.
(2021) have also leveraged explicitly-given norms
to train models to be more accurate in context-
specific situations.

However, these plausible results may be achiev-
able solely by focusing on the statistical and syn-
tactical instead of the social aspects of language.
Whether to make advances in language understand-
ing in research or to ensure reliability and safety
in deployment, it is of vital importance to study
whether models are truly capable of gaining a gen-
eralizable understanding of social factors before
employing them for tasks that require such knowl-
edge (Hovy and Yang, 2021). The necessity for
such understanding is exemplified by studies show-
ing that, when measuring the same concept, the
performance of a model can vary greatly when
tested on a different dataset due to factors such
as changes in dialect, speaker demographics, and
dataset domain (Miller et al., 2020; Blodgett et al.,
2016; Wang et al., 2022a).

Despite this importance, efforts towards ag-
gregating and synthesizing various datasets into
themes have been less practiced. One notable ex-
ception is the work of Kang and Hovy (2021),
where the authors combine existing datasets on
different linguistic styles to introduce a benchmark
that enables them to study cross-style language un-
derstanding. Similarly, we present a benchmark
curated from over fifty different tasks on different
aspects of social information, which we group into
five distinctive categories.

Examining the social knowledge of LLMs LLMs
are ubiquitous in NLP and their success is at-
tributed to the ability to capture language charac-
teristics from the immense amount of text seen
in pre-training and to effectively apply this in-
formation on downstream tasks, achieving state-
of-the-art performances in many language under-
standing tasks (Chung et al., 2022a). LLMs have
demonstrated less success when solving tasks di-
rectly related to social knowledge. For tasks
that require social information such as detecting
sarcasm (Farha et al., 2022) or patronizing lan-
guage (Perez-Almendros et al., 2022), recent mod-
els exhibit only moderate performance. One major
challenge is that compared to humans, LLMs have
less capability to make predictions outside of the
provided input and must perform reasoning only
based on their innate social information (Sap et al.,
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2019b; Zhou et al., 2020). Yet, it is this very social
knowledge that is crucial for human interactions
and conversations and is a milestone that should be
reached for LLMs to engage in meaningful commu-
nications with humans (Mahowald et al., 2023).

More recently, general-purpose LLMs trained
with instruction-based prompts have been known
to achieve strong performances, putting them to use
in several practical domains such as summarization,
question answering, and classification (Sanh et al.,
2022). A newly emerging trend is to use curated
prompts to identify the psychological capabilities
of instruction-guided LLMs. Ruis et al. (2022)
and Hu et al. (2022a) examine pragmatic under-
standing capabilities using prompts. Coupled with
additional steps such as chain-of-thought (CoT)
reasoning, this prompt-based approach has large
potential for understanding whether LLMs can pro-
vide reasoning capabilities like humans.

The Inter-relatedness of Social Information So-
cial language understanding requires accurately
perceiving different dimensions and facets of com-
munication that relate to one another. Interper-
sonal communication makes frequent use of humor
(Schnurr, 2010), mitigation, also known as hedg-
ing, (Schneider, 2010), and swearing as a norm
violation (Stapleton, 2003) in defining the con-
tours of the social context for the speakers. Of-
ten, the pragmatics of these different dimensions
of social language use are intertwined: commu-
nication with one dimension influences the inter-
pretation of another, e.g., politeness and offensive
speech (Culpeper, 2021), humor and politeness (At-
tardo, 2008), humor and offensiveness (Alberts,
1992), and mitigation and empathy (LI Hai-hui,
2019). Understanding one of these dimensions
requires models to have the ability to recognize
the related dimensions. While past computational
work has largely focused on single dimensions,
SOCKET fills a key gap by testing whether models
can accurately recognize multiple, interrelated so-
cial dimensions—and whether models can benefit
in their understanding from cross-task transfer.

3 The SOCKET Benchmark

Here, we describe the steps taken to curate
SOCKET as robust benchmark for identifying so-
cial information embedded in language in interper-
sonal communication contexts.

3.1 Task Selection Process

The task curation process began with a system-
atic review of literature on social from linguistics,
communications, and psychology to identify likely
categories of social knowledge. Then, possible
datasets and tasks were identified through a system-
atic review of datasets published at ACL, EMNLP,
NAACL, EACL, LREC, and SemEval since 2015.
In this first pass, we selected more than 100 datasets
and tasks to detect different types of social infor-
mation in language (cf. Table 11 in Appendix B.9
for all candidate datasets and tasks). Tasks were
selected based on membership in five categories of
social language (described next) that are motivated
as core aspects of social language understanding.

For each category, we include tasks of sev-
eral distinct objectives: binary and multi-class
classification, regression, pairwise similarity de-
tection, and span identification.2 Where possi-
ble, we aim for diversity within categories and
ensure one task for each objective. Candidate
tasks were removed if it was found that train-
ing a bert-base-uncased model on the task
achieved test performance over 0.95, which would
provide little insight into progress at recognizing
social information .

While this process identified many candidate
tasks in multiple categories, the benchmark still
defines only partial progress in social knowledge
capabilities. Some abilities recognized by social
sciences such as deceit have only one or two tasks
proposed (Ott et al., 2011), providing limited data
to measure progress. However, recognizing these
as limitations (discussed in more detail in §8),
SOCKET provides a diverse set of tasks and ca-
pabilities, described next, for the field to begin to
measure progress.

3.2 Task categories

Inspired by theories in interpersonal communica-
tion and interpersonal pragmatics, we provide a
thematic organization of the tasks in SOCKET into
five related categories of social knowledge: Humor
& Sarcasm, Offensiveness, Sentiment & Emotion,
Social Factors, and Trustworthiness.
Humor & Sarcasm The practice of humor in
conversations and interactions plays a key role

2Other task types were initially considered (e.g., genera-
tion, paraphrasing) but such tasks were not feasible for all
models and often were less standardized in their evaluation,
complicating cross-task comparison if included.
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category dataset task name size type labels category dataset task name size type labels

Humor & Sarcasm hahackathon (Meaney et al., 2021) humor_rating 6,179 REG RMSE Sentiment & Emotion crowdflower (CrowdFlower, 2016) crowdflower 40,000 CLS 13 (F1)
Humor & Sarcasm humor-pairs (Hossain et al., 2020) humor-pairs 15,095 PAIR 2 (F1) Sentiment & Emotion dailydialog (Li et al., 2017) dailydialog 102,979 CLS 7 (F1)
Humor & Sarcasm sarc (Khodak et al., 2018) sarc 321,748 CLS 2 (F1) Sentiment & Emotion emobank (Buechel and Hahn, 2017) arousal 10,062 REG MAE
Humor & Sarcasm tweet_irony (Van Hee et al., 2018) tweet_irony 4,601 CLS 2 (F1) Sentiment & Emotion emobank (Buechel and Hahn, 2017) dominance 10,062 REG MAE
Humor & Sarcasm hahackathon (Meaney et al., 2021) is_humor 10,000 CLS 2 (F1) Sentiment & Emotion emobank (Buechel and Hahn, 2017) valence 10,062 REG MAE
Offensiveness contextual-abuse (Vidgen et al., 2021) IdentityDirectedAbuse 13,450 CLS 2 (F1) Sentiment & Emotion emotion-span (Ghazi et al., 2015) emotion-span 820 SPAN 3 (F1)
Offensiveness contextual-abuse (Vidgen et al., 2021) PersonDirectedAbuse 13,450 CLS 2 (F1) Sentiment & Emotion empathy (Buechel et al., 2018) distress 1,859 REG Corr.
Offensiveness hahackathon (Meaney et al., 2021) offense_rating 10,000 REG RMSE Sentiment & Emotion empathy (Buechel et al., 2018) distress_bin 1,859 CLS 2 (F1)
Offensiveness hasbiasedimplication (Sap et al., 2020) hasbiasedimplication 44,781 CLS 2 (F1) Sentiment & Emotion same-side-pairs (Körner et al., 2021) same-side-pairs 175 PAIR 2 (F1)
Offensiveness hateoffensive (Davidson et al., 2017) hateoffensive 24,783 CLS 3 (F1-M) Sentiment & Emotion sentitreebank (Socher et al., 2013) sentitreebank 119,794 CLS 2 (Acc.)
Offensiveness implicit-hate (ElSherief et al., 2021) explicit_hate 21,476 CLS 2 (F1) Sentiment & Emotion tweet_emoji (Barbieri et al., 2018) tweet_emoji 100,000 CLS 20 (F1-M)
Offensiveness implicit-hate (ElSherief et al., 2021) implicit_hate 21,476 CLS 2 (F1) Sentiment & Emotion tweet_emotion (Mohammad et al., 2018) tweet_emotion 5,052 CLS 4 (F1-M)
Offensiveness implicit-hate (ElSherief et al., 2021) incitement_hate 21,476 CLS 2 (F1) Sentiment & Emotion tweet_sentiment (Rosenthal et al., 2017) tweet_sentiment 59,899 CLS 3 (AvgRec)
Offensiveness implicit-hate (ElSherief et al., 2021) inferiority_hate 21,476 CLS 2 (F1) Social Factors complaints (Preoţiuc-Pietro et al., 2019) complaints 3,449 CLS 2 (F1)
Offensiveness implicit-hate (ElSherief et al., 2021) stereotypical_hate 21,476 CLS 2 (F1) Social Factors empathy (Buechel et al., 2018) empathy 1,859 REG Corr.
Offensiveness implicit-hate (ElSherief et al., 2021) threatening_hate 21,476 CLS 2 (F1) Social Factors empathy (Buechel et al., 2018) empathy_bin 1,859 CLS 2 (F1)
Offensiveness implicit-hate (ElSherief et al., 2021) white_grievance_hate 21,476 CLS 2 (F1) Social Factors hayati_politeness (Hayati et al., 2021) hayati_politeness 320 CLS 2 (F1)
Offensiveness intentyn (Sap et al., 2020) intentyn 44,781 CLS 2 (F1) Social Factors questionintimacy (Pei and Jurgens, 2020) questionintimacy 2,247 REG 6 (Corr.)
Offensiveness jigsaw (Jigsaw, 2017) severe_toxic 200,703 CLS 2 (F1) Social Factors stanfordpoliteness (Fu et al., 2020) stanfordpoliteness 10,956 CLS 2 (MAE)
Offensiveness jigsaw (Jigsaw, 2017) identity_hate 200,703 CLS 2 (F1) Trustworthiness bragging (Jin et al., 2022) brag_achievement 6,643 CLS 2 (F1)
Offensiveness jigsaw (Jigsaw, 2017) threat 200,703 CLS 2 (F1) Trustworthiness bragging (Jin et al., 2022) brag_action 6,643 CLS 2 (F1-M)
Offensiveness jigsaw (Jigsaw, 2017) obscene 200,703 CLS 2 (F1) Trustworthiness bragging (Jin et al., 2022) brag_possession 6,643 CLS 2 (F1-M)
Offensiveness jigsaw (Jigsaw, 2017) insult 200,703 CLS 2 (F1) Trustworthiness bragging (Jin et al., 2022) brag_trait 6,643 CLS 2 (F1-M)
Offensiveness jigsaw (Jigsaw, 2017) toxic 200,703 CLS 2 (F1) Trustworthiness hypo-l (Zhang and Wan, 2022) hypo-l 3,226 CLS 2 (Acc.)
Offensiveness offensiveyn (Sap et al., 2020) offensiveyn 44,781 CLS 2 (F1) Trustworthiness neutralizing-bias-pairs (Pryzant et al., 2020) neutralizing-bias-pairs 93,790 PAIR 2 (Acc.)
Offensiveness sexyn (Sap et al., 2020) sexyn 44,781 CLS 2 (F1) Trustworthiness propaganda-span (Martino et al., 2020) propaganda-span 357 SPAN 3 (F1-m)
Offensiveness talkdown-pairs (Wang and Potts, 2019) talkdown-pairs 6,510 PAIR 2 (F1) Trustworthiness rumor (Ma et al., 2017) rumor_bool 1,417 CLS 2 (F1)
Offensiveness toxic-span (Pavlopoulos et al., 2021) toxic-span 10,621 SPAN 3 (F1) Trustworthiness two-to-lie (Peskov et al., 2020) receiver_truth 11,728 CLS 2 (F1-M)
Offensiveness tweet_offensive (Zampieri et al., 2019b) tweet_offensive 14,100 CLS 2 (F1) Trustworthiness two-to-lie (Peskov et al., 2020) sender_truth 11,728 CLS 2 (F1-M)

Table 1: A list of the datasets covered in the SOCKET benchmark. A total of 58 tasks in 5 categories of social information.
Included are each task’s sample size, task type and evaluation metric used in the original paper. SOCKET covers four types of
tasks: classification (CLS), regression (REG), pair-wise comparison (PAIR), and span identification (SPAN). F1, F1-M and F1-m
indicate binary F1, macro F1 and micro F1 scores.

in maintaining and forming positive social rela-
tions (Holmes, 2006; Brown et al., 1987; Ziv, 2010).
We differ Humor & Sarcasm from Trustworthi-
ness as a social information category because while
both categories consider non-cooperative behaviors
(Grice, 1975), humor is considered to be prosocial
(Attardo, 2008). In instances where the humor is
not considered to be prosocial and is instead of
a derogatory nature, we consider it to be in the
Offensiveness category. By nature, humor is a sub-
jective concept that can differ depending on both
demographic and contextual factors (Ruch, 2010),
making humor detection a difficult task for LLMs.
SOCKET includes a number of tasks on humor
that can occur in various contexts such as in social
media (Meaney et al., 2021), short jokes (Meaney
et al., 2021), and news headlines (Hossain et al.,
2020). We also include tasks that require detecting
relevant concepts of humor such as sarcasm (Kho-
dak et al., 2018) and irony (Van Hee et al., 2018).

Offensiveness Detecting offensiveness using com-
putational methods has gained large attraction in
recent years due to the ubiquity of online com-
munication and the necessity to implement auto-
mated content moderation to combat abusive be-
haviors (Spertus, 1997). However, most existing
studies only focus on limited types of offensive
languages (Jurgens et al., 2019). In this study, we
consider offensiveness to be any explicit or implicit
language directed towards individuals, entities, or
groups (Waseem et al., 2017), and the tasks chosen
are representative of this understanding. SOCKET
includes a list of offensiveness detection tasks cov-
ering different levels of harmful content and abu-
sive language including both explicit and implicit

hate (ElSherief et al., 2021), abuse (Vidgen et al.,
2021), and humor-related offensiveness (Meaney
et al., 2021). We also include forms of bias directed
towards people and groups, as social bias enforces
harmful stereotypes (Sap et al., 2020).
Sentiment & Emotion Emotion is a core element
of interpersonal communication that can be com-
municated through human language in several as-
pects (Majid, 2012; Barrett et al., 2007). Social
information is crucial in the ability to not only
communicate, but also feel emotion. Theories
of discretized emotion (Ekman, 1992) have been
supported by empirical findings that humans use
discrete labels learned through language to direct
their emotional responses to stimuli (Lindquist and
Barrett, 2008). Moreover, emotional responses
have been shown to direct communication with
peers (Lee et al., 2020), and expressing certain
emotional responses—such as anger—have been
shown to have social ramifications (Keltner et al.,
1993). Interpreting emotions from text using com-
putational tools has been a popular research topic
across numerous areas in social sciences, enabling
new discoveries at unprecedented scale (Jackson
et al., 2022). In SOCKET, we include a wide
range of tasks from various domains such as daily
dialogue (Li et al., 2017), written responses to news
stories (Buechel and Hahn, 2017), and tweets using
textual syntax (Mohammad et al., 2018), and also
emojis (Barbieri et al., 2018).
Trustworthiness People can detect cues in lan-
guage that determine the trustworthiness of a mes-
sage (Newman et al., 2003), leading to studies that
aim to quantify the level of trust in text using com-
putational methods (Choi et al., 2020). In particu-
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lar, this direction has gained attention from NLP
communities following increased needs to combat
and mitigate potential harms coming from the gen-
eration and dissemination of false information in
online spaces (Wu et al., 2019). In SOCKET we in-
clude tasks that require identifying perceived trust
from several dimensions: impartiality (Pryzant
et al., 2020), deception (Ott et al., 2011), propa-
ganda (Martino et al., 2020), rumor (Ma et al.,
2017) and bragging, as it is considered to be “un-
plain speaking" (Haiman, 1998; Jin et al., 2022).
Other Social Factors Finally, we include tasks
of a more discursive and rhetorical type, that are
understood to be more reliant on the contextual
elements of social distance, power, and solidar-
ity. In SOCKET, the tasks included are empa-
thy (Buechel et al., 2018), politeness (Hayati et al.,
2021; Fu et al., 2020), intimacy (Pei and Jurgens,
2020) and complaints (Preoţiuc-Pietro et al., 2019).
Politeness, like humor, is understood to be a non-
cooperative prosocial behavior but unlike humor,
is concerned with the act of “saving face” (Brown
and Levinson, 1987). Empathy, shown to be closely
related to politeness (Fukushima and Haugh, 2014),
is heavily reliant on social positions in the context
of the conversation (Macagno et al., 2022). Inti-
macy, however, has been shown to be more depen-
dent on notions of time and space between people
in dialogue (Márquez Reiter and Frohlich, 2020).

3.3 Dataset Summary

The final SOCKET benchmark contains 58 tasks
from 35 datasets, grouped into the five categories
shown in Figure 1. We denote multiple tasks from
the same dataset by adding the task name as a suffix
following the dataset name and # symbol.

The collection of tasks chosen for SOCKET
makes it a comprehensive benchmark to measure
language models’ abilities to capture underlying so-
cial information. Motivated by theories of systemic
functional linguistics and interpersonal pragmatics,
SOCKET cuts across a number of dimensions of
interpersonal communication, allowing it to also be
a tool to better understand and interpret co-learning
abilities and dependencies in sociolinguistic tasks.
Having this ability allows researchers and users to
more efficiently and effectively deploy NLP meth-
ods by providing empirical results on the limits and
affordances of a variety of out-of-domain social
language tasks.

In total, SOCKET spans 2,616,342 items across

all tasks, including 269,246 samples in the test set.
However, experimenting with an evaluation set of
size can be prohibitive due to model size, available
resources, and considerations of the environment.
Therefore, we also release a subset of our data as
SOCKETTE (SOCKET but Tinier) that contains
at most 1000 items per task in the test set, reducing
the test set to 43,731 samples. In Appendix B.3, we
show that performance on SOCKETTE is highly
correlated and we hope that this smaller subset
enables more rapid progress.

4 Benchmarks on the Social Knowledge
Capabilities of LLMs

We first train and evaluate several commonly used
multitask LLMs on our datasets to obtain bench-
mark results, which provide a first glimpse of how
good LLMs are at learning social knowledge tasks.
Experiment details are described in Appendix §B.

4.1 Training Methods

BERT-based Finetuning We first apply the stan-
dard process of fine-tuning on pretrained LLMs.
We select two of the most popular LLMs -
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) - as well as two lightweight mod-
els known to achieve high performance on fine-
tuning tasks - DeBERTa-V3 (He et al., 2021) and
MiniLM (Wang et al., 2020).
Prompt-based finetuning Prompt-based finetun-
ing has emerged as a flexible and effective means
of adapting models to downstream tasks (Wei et al.,
2021). As a benchmark, we include the perfor-
mances of a T5 model (Raffel et al., 2020) trained
on each task via finetuning. We manually design
prompts for each task. For classification tasks, we
use verbalizers to map the class to word labels and
for regression tasks, we adopt a method similar to
Gao et al. (2021) in that we use two anchor words
“Yes” and “No” and consider the probability of pre-
dicting “Yes” as the final score. For span-based
tasks, we train the model to directly generate the
sequence outputs. A list of prompts can be found
in Table 8 and Table 9 in the Appendix.
Zero-shot predictions We further apply our de-
signed prompts to test the performances of LLMs
in a zero-shot setting where no further finetun-
ing is performed. Using the same prompts pro-
posed in Table 8, we test SOCKET on several
widely used LLMs: GPT (Radford et al., 2018),
GPT-J-6B (Wang and Komatsuzaki, 2021), OPT
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Category Model No. params (B) Humor & Sarcasm Offens. Sent. & Emo. Social Factors Trust. CLS PAIR REG SPAN Avg.

baseline majority 0.27 0.42 0.12 0.25 0.41 0.39 0.34 0.50 0.00 0.32
random 0.40 0.35 0.17 0.36 0.35 0.38 0.51 0.50 0.00 0.32

zero-shot

EleutherAI-gpt-j-6b 6 0.39 0.35 0.29 0.33 0.28 0.32 0.26 0.50 0.08 0.32
alpaca-native 7 0.39 0.44 0.45 0.55 0.31 0.42 0.48 0.57 0.17 0.43

bigscience-bloomz-7b1 7 0.50 0.49 0.43 0.53 0.45 0.49 0.51 0.56 0.09 0.48
cerebras-Cerebras-GPT-6.7B 6.7 0.42 0.39 0.30 0.36 0.34 0.35 0.33 0.52 0.13 0.36
decapoda-research-llama-13b 13 0.49 0.43 0.36 0.42 0.31 0.38 0.52 0.53 0.17 0.40

facebook-opt-13b 13 0.31 0.40 0.19 0.22 0.28 0.31 0.25 0.49 0.13 0.31
google-flan-t5-xxl 11 0.66 0.56 0.52 0.60 0.49 0.56 0.64 0.63 0.17 0.55

t5-3b 3 0.34 0.41 0.27 0.32 0.35 0.36 0.36 0.49 0.13 0.36
llama2-7b-chat 7 0.39 0.27 0.33 0.34 0.24 0.25 0.38 0.56 0.18 0.29

GPT-3.5 0.64 0.55 0.57 0.65 0.45 0.57 0.49 0.67 0.21 0.56

finetuning

bert-base-uncased 0.11 0.78 0.76 0.65 0.70 0.62 0.70 0.79 0.77 0.55 0.71
roberta-base 0.086 0.79 0.77 0.68 0.72 0.63 0.70 0.83 0.79 0.64 0.72

deberta-v3 0.098 0.83 0.77 0.70 0.72 0.66 0.72 0.87 0.79 0.63 0.73
MiniLM 0.066 0.77 0.72 0.61 0.67 0.58 0.66 0.78 0.69 0.57 0.67

T5* 0.25 0.68 0.72 0.55 0.59 0.47 0.65 0.66 0.45 0.54 0.62

Table 2: A comparison of the benchmark performances of different models and training schemes. Best-performing
instances are shown in bold. The best performing parameter size for each zero-shot model is shown (cf. Figure 1) .
A full comparison of all models across all settings can be found in Table 4 in the Appendix. The performances on
each individual task using a DeBERTa-V3 model can be found in Table 10 in the Appendix.

(Zhang et al., 2022), T5 (Raffel et al., 2020),
LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), BLOOM (Workshop et al.,
2023), BLOOMZ (Muennighoff et al., 2022),
FLAN-T5 (Chung et al., 2022b), RedPajama (Com-
puter, 2023), and Alpaca (Taori et al., 2023; Wang
et al., 2022b). We also evaluate the performance of
GPT-3.5 3 using OpenAI’s API. Samples for which
a model does not provide an appropriate label are
automatically marked as incorrect. For each LLM
variant, we test zero-shot results for different model
sizes ranging between 110M and 13B parameters,
which we report in Table 4 in the Appendix.

4.2 Results

We compare model performances across category
type and task type as shown in Table 2. Each re-
ported value is the average of the scores on ev-
ery task within the specified group. The ratio-
nale behind using a unified average score is to
provide a high-level comparison of the perfor-
mances of zero-shot and fine-tuned models un-
der various settings, including task type (regres-
sion/classification/pair/span) as well as dimension
of social knowledge.

DeBERTa-V3 achieves the best overall perfor-
mance after full training on each of the SOCKET
datasets, followed by other BERT-based models.
The prompt-based finetuning of T5 performs worse
than standard finetuning, especially on the pairwise
classification and regression tasks. Meanwhile,
most zero-shot models perform only slightly better
than the baseline, indicating that prompting alone
does not elicit correct social knowledge—though

3https://platform.openai.com/docs/models/gpt-3-5

two models, google-flan-t5-xxl and GPT3.5, are
much closer in performance to supervised models.

Social knowledge can be hard to infer Our bench-
mark results reveal that even our best-performing
model leaves significant room for improvement,
scoring just above 0.7 overall—compared with the
models’ analogous performance on syntactic and
discourse NLU tasks (He et al., 2021) which are
often much higher. A comparison among cate-
gories of social knowledge reveals that humor &
sarcasm is generally the easiest to detect, while
trustworthiness is the hardest. This performance
gap can be attributed to the level of understand-
ing required for each dimension - while detecting
humor or other social emotions can often be cor-
related with cues such as sentiment, detecting the
level of trust within sentences requires more under-
standing of the context and may be harder to detect
using computational models (Choi et al., 2020). At
a task level, we observe that models struggle most
in span detection tasks. This is a complex task due
to its open-ended nature, and thus BERT-based fine-
tuning does not perform as well as in other types
of tasks. We highlight that learning the various
aspects of social knowledge is indeed a challenge
for current LLMs, and thus call for the need for
future models with improved social capabilities.

Supervised models significantly outperform
zero-shot models Table 2 reveals that despite be-
ing much smaller in the number of parameters, fine-
tuning supervised models such as MiniLM leads
to much better performance than zero-shot mod-
els using state-of-the-art LLMs. All the zero-shot
LLMs performed poorly, many on par with random
baselines, apart from FLAN-T5. Figure 1 shows
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Figure 1: A comparison of LLMs on the aggregated scores tested on SOCKET under zero-shot settings. The overall
performances vary greatly by model architecture, while larger models do not always guarantee better performance.

a detailed picture of how different LLM parame-
ter sizes influence the ability to comprehend social
knowledge tasks in a zero-shot setting. Surpris-
ingly, we find that of the various training schemes
FLAN-T5 is by far the most effective for inferring
social knowledge, even with relatively small mod-
els. We speculate this performance is due to its
initial pretraining on more than 1,000 tasks.
More parameters do not guarantee more social
knowledge Another general trend we observe is a
weak correlation between the number of parame-
ters and overall performance within the same model
architecture (ρ = 0.266, p = .08). This is to some
extent determined by the model’s ability to under-
stand the task itself given an instruction prompt as
well as a sample input, as larger models are capa-
ble of understanding a wider variety of tasks (cf.
Appendix Table 6). Of course, it is also possible
that larger LLMs could encode a greater amount
of social knowledge through their greater parame-
ter sizes. Interestingly, we observe that for some
models, larger size does not always guarantee bet-
ter performance. This is the case especially for
BLOOM, T5 and GPT, where the largest model is
not always the best performer within the group.

Models varied in the ability to follow instruc-
tions (Appendix Table 6). As expected, instruction-
tuned models like FLAN-T5 and Alpaca are gener-
ally able to follow the prompt instructions, while
other models may generate answers that are not
provided in the options. For our social tasks,
instruction-following was not significantly corre-
lated with model size (ρ=0.08, p=0.60). Thus,
lower model performance in Figure 1 is, in part,
due to models being unable to answer questions
relating to social knowledge.

When models are able to answer the question,
are they right? Restricting only to instances in
which a model outputs a valid answer reveals het-
erogeneity among different model groups (Fig-
ure 3), showing an interplay between model size,
coverage, and performance. For architectures such
as FLAN-T5 or BLOOMZ we observe a posi-
tive correlation between parameter size and perfor-
mance, both in its ability to understand instructions
and to make correct predictions. On the other hand,
for certain architectures having larger parameters
can actually make it worse at understanding in-
structions (e.g. LlaMA) or predicting correctly (e.g.
OPT). Recognizing that measuring of instruction
understanding and the accuracy of an LLM both
depend on how strictly one chooses to map the pre-
dictions to an answer, overall, our results suggest
that while LLMs do contain the potential for under-
standing social knowledge, additional steps such as
finetuning or instruction tuning are likely needed
for better social understanding.

5 Do we see Cross-task Transfer of Social
Knowledge?

In this section, we examine the relations and de-
pendencies between tasks using the predictions of
LLMs trained on different tasks and test for depen-
dencies between tasks that are predicted by theory.
Quantifying Task Dependency We quantify the
dependency between two tasks as follows. We fine-
tune a pretrained LLM on task tA to obtain a model
mA, which is used to make predictions on the test
set of another task tB . The correlation between
the predicted values from model mA and the true
labels of the test set of tB is considered as the task
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Figure 2: Heatmap of task dependency among all task
pairs, annotated at category level. Each value represents
the absolute strength of correlation between the true
labels of the test set of a specific task (columns) and the
predictions made on that task using a model trained on
a different task (rows). We observe strong correlations,
especially within the Offensiveness, Sentiment & Emo-
tion, and Social Factors categories. A larger version
labeled at the task level is shown in Appendix Figure 6.

dependency that tA has on tB . We report the ab-
solute correlation value, as negatively correlated
tasks are still informative. We describe how the
correlations are obtained across different task types
in the Appendix (§B.6). Span identification tasks
are omitted from this analysis, resulting in 55× 55
scores. We also measure the pairwise correlation
between models mA and mB as well as task de-
pendency to gain an additional perspective of task
similarity. Details for the model correlation can be
found in Appendix §B.6 and Figure 7.

The task dependencies for all task pairs, shown
in Figure 2, reveal salient block structures within
the category,4 especially for the Offensiveness,
Sentiment & Emotion, and Social Factors cate-
gories, suggesting the existence of shared knowl-
edge within our thematically grouped tasks. These
correlations align with existing findings from inter-
personal pragmatics on the relationships between
social knowledge. For instance, increased self-
disclosure or pain-related interactions are known to
promote both intimacy (questionintimacy) and em-
pathy (empathy) (Parks, 1981; Cano and Williams,
2010), two elements within the Social Factors cat-
egory, while the usage of emojis (tweet_emoji) as
effective symbols are indicative of emotional states
such as valence (emobank#_valence) and arousal
(emobank#_arousal) (Fischer and Herbert, 2021),
which belong to the Sentiment & Emotion category.

The Offensiveness category shows mixed results
in comparison with Arango et al. (2019), whose

4See Figure 6 for fully labeled version.

results show that hate speech datasets are often
overfit and do not generalize well to other similar
datasets . Figures 2 & 6, however, show that of the
seven datasets included in SOCKET, five of them
included at least one task which showed compara-
ble correlations when tested both within and out
of domain. Indeed, PersonDirectedAbuse, a task
labeled for offensive language specifically directed
towards an individual, is actually predicted better
by models fine-tuned on jigsaw# tasks than it was
on its own.

Interestingly, correlations are scarce within the
Humor & Sarcasm, and Trustworthiness categories.
This is consistent with findings from (Hu et al.,
2022b) which show that models without exposure
to linguistic forms lack the requisite social infor-
mation to perform well on non-literal pragmatic
phenomena such as humor and deceit.

Another notable individual task is humor_rating
from the Humor & Sarcasm dataset, which per-
forms well as both the fine-tuning and predicted
task alongside a number of tasks from the Emotion
& Sentiment category—particularly discretized
emotion tasks, as well as hateoffensive in the Of-
fensiveness category—which labels comments as
either “hateful," “offensive," or neither. While re-
lationships between offensiveness and humor have
been theorized as early as Freud (1960) and sen-
timent recognition has been shown to bolster of-
fensive language detection (Liu, 2012), relatively
little has been said regarding connections between
the three categories and thus, this result presents an
opportunity for further research.

We observe that politeness shows strong transfer
with many of the offensive and hate speech detec-
tion tasks in the SOCKET benchmark. In particular,
those tasks with high correlation within the offen-
sive category are highly correlated in predicting
the politeness classification task. This finding is
supported by literature showing that impoliteness
can fall under the umbrella of offensive language
(Bączkowska, 2021) and, although key differences
exist in the pragmatics of the two, the constructs are
closely related (Parvaresh, 2023; Culpeper, 2021).

Interestingly, regression tasks (from the ha-
hackathon, emobank, and empathy datasets) in
general have strong correlations with several other
tasks. This trend suggests that tasks labeled with
continuous variables may have more expressive
power compared to ordinal or nominal categoriza-
tion, and thus have a higher potential for stronger
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task dependencies. However, the magnitude of
the correlation may be influenced by the relative
value distributions of different correlation methods.
This finding calls for a need for more datasets with
continuous labels, which requires more effort but
allows models to capture more fine-grained con-
cepts of social knowledge.

6 Can Multi-task Training improve Social
Knowledge?

Our findings reveal significant task transfer, both
within and across task categories, which hints at
shared knowledge among tasks. Linguistics studies
of social language also note the interrelated percep-
tions of different dimensions such as humor and
offensiveness (Culpeper, 2021; Attardo, 2008; Al-
berts, 1992; LI Hai-hui, 2019). We now examine
whether LLMs can learn a more robust sense of
social knowledge by training on multiple tasks.
Experimental Setup Recent studies have explored
the possibility of multi-task training on LLMs,
which is training a single model on several different
tasks simultaneously, with effects of improving its
performance on both seen and unseen tasks (Agha-
janyan et al., 2021; Padmakumar et al., 2022). We
apply multi-task training on SOCKET, but make
one clear distinction from prior work. Whereas pre-
vious studies have shown that multi-task training is
especially effective when the grouped tasks are of
similar types (Padmakumar et al., 2022), we intro-
duce a new setting by grouping tasks instead by our
defined categories of social knowledge. We expect
that same-category tasks contain social knowledge
that can be shared across tasks, resulting in LLMs
that learn a more robust concept of the specific
dimension than when trained on single tasks.

A popular method for multi-task training is pre-
finetuning (Aghajanyan et al., 2021; Shi et al.,
2022), which involves a first stage of finetuning on
multiple tasks using task-specific heads on a shared
encoder, then re-using the encoder for downstream
tasks. We apply pre-finetuning in two different set-
tings: (1) category-wise tasks, where we perform
pre-finetuning on tasks grouped to the same cate-
gory, and (2) all tasks, where all tasks of SOCKET
are included in the pre-finetuning stage. Consistent
with prior work, we perform the second finetuning
stage on individual tasks using the pre-finetuned
model as initial weights (Aghajanyan et al., 2021).
Other training details are identical to §4.
Results Multitask training had little to negative ef-

Model type
Category Single task Category-wise All tasks

Humor & Sarcasm 0.76 0.76 0.74*
Offensiveness 0.76 0.76 0.76

Sentiment & Emotion 0.64 0.64 0.62
Social Factors 0.67 0.67 0.66

Trustworthiness 0.66 0.64* 0.62*

Table 3: The performances of different multi-task set-
tings aggregated at category level. Numbers with *
indicate cases where the prediction results significantly
differ from the single task setting (paired t-tests).

fect on task performance (Table 3). Although some
tasks did benefit from being co-trained within cat-
egory (Appendix Table 10)—particularly the Of-
fensiveness category—when aggregated at the cat-
egory level, the average performance is worse. In
particular, the Humor & Sarcasm and Trustworthi-
ness categories have the lowest levels of within-
task and cross-task dependencies (§5). The per-
formance drop is less strong in categories with
high dependency, indicating that while multi-task
training on similar tasks may not always improve
performance, task-relatedness can help preserve
performance when also learning task-specific new
concepts. Together, our results suggest multi-task
training on unrelated social tasks hurts overall
performance—a result contrary to social science ex-
pectations of how social information is processed—
and points to a need to further investigate cases
when applying multi-task training as a practice to
improve the social knowledge of LLMs.

7 Conclusion

People increasingly interact with LLMs in natural
conversation. To what degree are these models able
to pick up on the social cues? To help answer this
question, we introduce SOCKET, an NLP bench-
mark to evaluate how well models perform at learn-
ing and recognizing concepts of social knowledge.
We provide benchmark results using several popu-
lar models and provide case studies of studying the
inherent social capabilities of LLMs in a zero-shot
setting. Surprisingly, LLMs perform moderately
at best, with even large LLMs (>10b parameters)
varying widely in their abilities. Additionally, we
show that there exist significant task dependencies
both within and across task categories, and that
multi-task training on task categories can affect
model performance. Our work contributes to the
broader NLP community by fostering future ef-
forts toward building and evaluating more socially
responsible and coherent LLMs.
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8 Limitations

Cross-cultural and multilingual expansions
Culture is an important aspects of understanding
language, especially within the broader setting of
multilingual NLP. In this study, however, we make
a clear distinction between cultural knowledge and
social knowledge, the latter of which is our focus
for this study. Our work is grounded in social-
psychological theory and the sociolinguistics of
interpersonal communication, especially dyadic
communication. Such studies are often aimed
at phenomena that are widely shared across cul-
tures while recognizing that cultural variation exists
within how those phenomena are perceived. In con-
trast, work in anthropology or cultural studies pro-
vides a different perspective and grounding. Such
work frequently focuses on cross-cultural perspec-
tives and what is or is-not shared across cultures.
For example, in language, the interpretation of
whether something is polite can depend on gender
norms (Mills, 2004) and cultural (Lorenzo-Dus and
Bou-Franch, 2003), highlighting the potential con-
text sensitivity. Similarly, the perception of toxicity
can depend on the cultural identities of the reader
(Sap et al., 2019a; Ghosh et al., 2021). While highly
valuable to study, cultural knowledge is a separate
construct from social knowledge (though interre-
lated) and not the focus of this benchmark, though
we hope that our work inspires other benchmarks
to help assess such differences.

Regarding multilingual data, SOCKET currently
contains tasks based in English due to the limited
availability of tasks in non-English. While there
are a few datasets such as HAHA (Chiruzzo et al.,
2020) in Spanish and DeTox (Demus et al., 2022)
in German, we were not able to find sufficient num-
bers yet to provide a meaningful grouping. This
highlights the importance of constructing datasets
and frameworks capable of capturing social knowl-
edge for a wide variety of languages, which we
consider an important future step.

Additional dimensions and forms of social
knowledge Interpersonal communication con-
veys a richness of different social information and
despite our extensive literature review and data cu-
ration process, we fully acknowledge that other
dimensions of social knowledge are not included
in our current benchmark. In creating SOCKET,
our aim was to focus on diverse categories of so-
cial knowledge that have multiple tasks in order to

get a more robust assessment of model capabilities,
e.g., multiple tests of a model’s ability to recognize
humor, in order to avoid the pitfalls of ascribing
progress on the basis of a single task alone (Sub-
ramonian et al., 2023). Nevertheless, SOCKET
omits several notable dimensions or forms of so-
cial knowledge. Some social aspects of language
such as pragmatic polysemy (Carston, 2021; Apres-
jan, 1974) and idioms (Strässler, 1982) either had
too few similar datasets to form a theory-backed
category, or there were no existing NLP datasets
to test the construct. The latter is the case, espe-
cially in the case of linguistic techniques unique to
recognize when a speaker is adopting community-
specific dialects such as African-American En-
glish (Hyter et al., 2015; Rivers et al., 2012; Allan,
2007) and Queer Language (Barrett, 2006; Hueb-
ner, 2021; Harvey, 2000).

Social language understanding happens within
a static, unspecified context for the current tasks
in SOCKET. However, the social context in which
a message is said can dramatically alter its mean-
ing. NLP is just beginning to incorporate the social
context into language understanding (Hovy and
Yang, 2021). While a handful of datasets have be-
gun to explore modeling context explicitly, such as
through the preceding conversation (Pavlopoulos
et al., 2020; Menini et al., 2021), the identity of
the speaker (Almagro et al., 2022), the social re-
lationship between speakers (Jurgens et al., 2023),
or explicit social norms (Park et al., 2021), there
are currently too few of such tasks to compose a
comprehensive benchmark with which to measure
progress. Future datasets and benchmarks will be
needed to study understanding social knowledge
when controlling for context.

Thus, SOCKET represents a starting point for
modeling models’ abilities and provides room for
improvement via the addition of new categories or
constructs, as additional data becomes available.
Further inclusion of other dimensions and corre-
sponding tasks should be an ongoing goal.

Benchmarks as markers of progress SOCKET
fills a current gap for assessing the capabilities of
LLMs on understanding social language. How-
ever, benchmarks as constructs have been rightly
critiqued as markers of progress in NLP (e.g., Bow-
man and Dahl, 2021; Schlangen, 2021; Subramo-
nian et al., 2023), due to aspects such as changing
or narrowing the field’s definition of a task, overem-
phasizing or overselling progress in a particular
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area, or encouraging leaderboard chasing. In de-
signing SOCKET, we aimed to directly address the
pitfalls of benchmark design by selecting a diverse
set of social language understanding tasks that mir-
rored human capabilities recognized in social sci-
ence studies; this selection helps ensure a broad
measure of performance and that “progress” is not
due to improved performance on one type of task.
However, the benchmark itself does not capture all
of social knowledge (nor do we claim as such) and
we view it only as a starting point—a yardstick by
which to measure current systems—with a need for
new tasks and benchmarks as models advance in
their social reasoning capabilities.

The use of a single metric to measure progress
in an area or task can mask meaningful insight and
fail to contextualize performance. While we follow
common practice in NLP (e.g., Wang et al., 2018,
2019; Muennighoff et al., 2023) and report a single
mean score in Table 2, the design of SOCKET in-
cludes specific task categories and types designed
to easily and meaningfully inspect what is ulti-
mately contributing to the single score—e.g., are
models performing well in classification but poorly
in span recognition? Nevertheless, this design is a
trade-off: A single score can and likely does pro-
mote leaderboard chasing by setting a clear goal
to pursue, while completely disaggregated scores
like those in Table 4 become unwieldy and make
it hard to assess whether meaningful progress is
being made when comparing two models. Here,
we have opted to report both the overall average
and averages for each category and type (10 scores
total) in an attempt to balance these two tensions.

Technical limitations One major limitation of
the current benchmark is we only tested LLMs that
have up to 13B parameters. Recent studies show
that the LLMs may start to show emergent abilities
when they are scaled up above a certain threshold
(Wei et al., 2022). Due to limited computational
and financial resources, we are not able to test all
very large language models, though we welcome
future researchers to work on our benchmark and
evaluate the sociability of new and larger LLMs.

Finally, our zero-shot model performance used
curated prompts on pretrained models without any
further finetuning. While it is widely known that
instruction-based finetuning specific to downstream
tasks can greatly improve performance, we delib-
erately chose not to do so. Finetuning LLMs with
billions of parameters can leave a large carbon foot-

print, which we avoid for both financial and envi-
ronmental reasons (Hu et al., 2021; Liu et al., 2022;
Lester et al., 2021).

9 Ethical Considerations

The interpretation of social information in commu-
nication is highly subjective in that it can largely
vary depending on demographic and contextual
factors. Nevertheless, several NLP datasets are cre-
ated via crowdsourcing, which raises concerns on
whether the dataset’s labels are truly representative
of our society (Talat et al., 2022). Even within our
benchmark, there is the possibility that for tasks
such as offensiveness or humor the crowdsourced
labels may undermine phrases that might disregard
a specific demographic group, which may be in-
evitably picked up by LLMs that are trained and
evaluated on these datasets. Improved versions
of our benchmark should include datasets that are
more inclusive in such contexts, which we call for
future work.

There has been increasing concern over the
amount of computing resources required for con-
ducting deep learning research at scale, especially
regarding LLMs where task performance is im-
proved through larger datasets, increased model
parameters, and longer training hours. The time
and amount of computing resources required for
training LLMs has become nontrivial (Bender et al.,
2021), and it has been increasingly aware among
machine learning practitioners to consider the car-
bon footprint of models and computing methods
to minimize risks of global warming. This, com-
bined with limited transparency of experiment re-
sults, may harm the very concept of open science.
Keeping this in mind, we focused on conducting
easily reproducible experiments that can be run on
a single GPU within the time frame of hours or a
couple of days at the longest. Some of our findings
contribute towards this rightful direction, as can be
seen in our investigation on multi-task training.

More importantly, we highlight the fact that the
main contribution of our study is a thoroughly de-
signed public framework of tasks for examining
the social knowledge of LLMs. While it is indeed
important to develop and improve LLMs that can
perform better on several tasks, we believe that
correctly evaluating the level of social knowledge
engraved in these models is an equally important
task. Without such scrutiny, the users of LLMs
deployed in practical settings may be vulnerable to
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socially undesirable or unethical content. We sin-
cerely hope that our efforts in producing SOCKET
can ease difficulties of conducting future studies
that aim to examine and improve the social under-
standing of LLMs.
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A Details on dataset processing

A.1 Benchmark construction (§3)

The SOCKET dataset consists of 58 tasks from 35
unique, public datasets. The datasets that make
up the benchmark dataset are processed in a way
that is meant to balance uniformity across datasets
and tasks while minimizing deviations from the
original dataset.

For all datasets, key changes from the original
dataset are twofold:

• Duplicates and unlabeled items are removed
from all datasets. If duplicates occur across
data splits, the splits are recombined, reshuf-
fled, and split.

• All datasets are split 80%/10%/10% be-
tween train/test/dev splits, respectively. Any
datasets not split 80%/10%/10% are recom-
bined, reshuffled, and split 80%/10%/10%.

All datasets were made compatible with the Hug-
ging Face Datasets package.

B Experimental Details

B.1 Computational resources (§4, §5, §6)

All of our experiments were conducted on an
Ubuntu 22.04.1 machine installed with NVIDIA
RTX A5000 and A6000 GPUs. The Python pack-
ages used in our experiments include Pytorch 1.13,
Transformers 4.21.3, and Pytorch Lightning 1.6.4.

B.2 Comparison of all models

Table 4 contains a detailed version of Table 2,
where the scores of every single task are presented.

B.3 Details on the comparison between
SOCKET and SOCKETTE

32 out of 58 tasks contained more than 1,000 test
samples, resulting in a disparity between the sizes
of the original SOCKET and SOCKETTE variants.
To test that both datasets still offer comparable
evaluations for testing models, we compare their
scores for a supervised model and compare test set
performances. For each task, we train a deberta-
v3-base model, evaluate using the test sets of both
versions, and compute the correlation between each
setting using Pearson’s r score. We provide eval-
uation results of SOCKETTE for our models in
Table 5. Also, we show through Table 7 and Fig-
ure 5 that there exists a strong correlation between

the evaluations of both versions, demonstrating that
SOCKETTE is indeed a representative sample of
SOCKET.

B.4 Details on language model finetuning (§4,
§5, §6)

B.4.1 Task-specific heads (§4, §5, §6)
As our benchmark consists of four different task
types: classification, regression, sentence pair de-
tection, and span identification - we maintain a
unified structure for each task where each sample
is fed into the encoder of an LLM, and the out-
put states are then fed into a task-specific head
layer. For span detection tasks, we feed the last hid-
den layer into a bidirectional GRU (Chung et al.,
2014), and then the output vectors of the GRU into
a linear layer that transforms each vector into a
dimension of 3, corresponding to the [B,I,O] la-
bels for each token, following earlier work in span
identification (Suman and Jain, 2021). For all other
tasks, we feed the last hidden state of the encoder
corresponding to the [CLS] token into a separate
classifier/regression head consisting of two linear
layers of hidden size 768 and a dropout probabil-
ity of 0.1. We use the mean squared error loss for
regression tasks and the cross-entropy loss for all
other tasks.

B.4.2 Training strategies for language model
finetuning (§4, §6)

When training models for the benchmark (§4) and
the multi-task (§6) experiments, the learning rate
was linearly increased for 6% of the training steps
up to 1e-5 and linearly decreased afterward. All
models were trained for a maximum of 10 epochs
using three different seeds, with early stopping after
validation performance did not increase for three
consecutive epochs.

Our multi-task training in §6 requires two stages
of training: (1) a pre-finetuning stage that simulta-
neously trains a model on multiple different tasks,
and (2) a finetuning stage that loads the model
trained from (1) and finetunes it to a single task. In
the first stage, a single batch can include several
different tasks and produce different types of losses.
To obtain a unified loss that is differentiable, we
aggregated the loss for each sample and sum them
up, which we use for backpropagation. For both
stages, we use the same aforementioned training
steps and learning rate strategy.

For all settings, the training batch size was set to
32 with 16-bit precision enabled. Validation was
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Category Model No. params (billions) Humor & Sarcasm Offensiveness Sentiment & Emotion Social Factors Trustworthiness CLS PAIR REG SPAN Avg.

baseline majority 0.27 0.42 0.12 0.25 0.41 0.39 0.34 0.50 0.00 0.32
random 0.40 0.35 0.17 0.36 0.35 0.38 0.51 0.50 0.00 0.32

zero-shot

EleutherAI-gpt-j-6b 6 0.39 0.35 0.29 0.33 0.28 0.32 0.26 0.50 0.08 0.32
alpaca-native 7 0.39 0.44 0.45 0.55 0.31 0.42 0.48 0.57 0.17 0.43

bigscience-bloom-560m 0.56 0.30 0.24 0.14 0.26 0.18 0.21 0.26 0.49 0.07 0.22
bigscience-bloom-1b1 1 0.26 0.39 0.17 0.25 0.33 0.33 0.21 0.48 0.11 0.31
bigscience-bloom-3b 3 0.37 0.44 0.30 0.34 0.30 0.37 0.32 0.51 0.12 0.37

bigscience-bloom-7b1 7 0.42 0.27 0.30 0.29 0.20 0.25 0.39 0.51 0.11 0.28
bigscience-bloomz-560m 0.56 0.38 0.42 0.34 0.42 0.41 0.40 0.41 0.51 0.10 0.40

bigscience-bloomz-1b1 1 0.41 0.44 0.38 0.43 0.41 0.42 0.44 0.52 0.10 0.42
bigscience-bloomz-7b1 7 0.50 0.49 0.43 0.53 0.45 0.49 0.51 0.56 0.09 0.48

cerebras-Cerebras-GPT-111M 0.11 0.21 0.07 0.18 0.09 0.03 0.05 0.18 0.49 0.07 0.10
cerebras-Cerebras-GPT-590M 0.59 0.31 0.11 0.14 0.19 0.09 0.13 0.23 0.00 0.08 0.14
cerebras-Cerebras-GPT-2.7B 2.7 0.32 0.19 0.14 0.23 0.16 0.17 0.26 0.49 0.18 0.19
cerebras-Cerebras-GPT-6.7B 6.7 0.42 0.39 0.30 0.36 0.34 0.35 0.33 0.52 0.13 0.36
decapoda-research-llama-7b 7 0.45 0.44 0.34 0.41 0.22 0.38 0.34 0.52 0.12 0.38

decapoda-research-llama-13b 13 0.49 0.43 0.36 0.42 0.31 0.38 0.52 0.53 0.17 0.40
facebook-opt-1.3b 1.3 0.41 0.43 0.28 0.33 0.39 0.38 0.34 0.50 0.12 0.38
facebook-opt-2.7b 2.7 0.37 0.45 0.29 0.36 0.32 0.37 0.34 0.52 0.18 0.38
facebook-opt-6.7b 6.7 0.20 0.31 0.20 0.16 0.17 0.21 0.13 0.48 0.16 0.24
facebook-opt-13b 13 0.31 0.40 0.19 0.22 0.28 0.31 0.25 0.49 0.13 0.31

google-flan-t5-small 0.08 0.37 0.43 0.23 0.32 0.40 0.38 0.34 0.50 0.08 0.37
google-flan-t5-base 0.25 0.45 0.49 0.43 0.45 0.41 0.47 0.44 0.53 0.09 0.45
google-flan-t5-large 0.78 0.50 0.52 0.48 0.50 0.41 0.50 0.44 0.59 0.13 0.49

google-flan-t5-xl 3 0.59 0.53 0.50 0.60 0.47 0.53 0.58 0.60 0.19 0.52
google-flan-t5-xxl 11 0.66 0.56 0.52 0.60 0.49 0.56 0.64 0.63 0.17 0.55
mosaicml-mpt-7b 7 0.41 0.42 0.36 0.44 0.32 0.37 0.45 0.54 0.25 0.39

mosaicml-mpt-7b-instruct 7 0.20 0.25 0.30 0.34 0.15 0.22 0.25 0.46 0.24 0.25
t5-small 0.06 0.12 0.05 0.09 0.18 0.06 0.08 0.09 NaN 0.04 0.08
t5-base 0.22 0.41 0.18 0.15 0.31 0.12 0.20 0.30 NaN 0.03 0.20
t5-large 0.77 0.36 0.11 0.26 0.26 0.10 0.14 0.30 0.50 0.03 0.18

t5-3b 3 0.34 0.41 0.27 0.32 0.35 0.36 0.36 0.49 0.13 0.36
t5-11b 11 0.38 0.38 0.14 0.31 0.36 0.33 0.23 0.50 0.03 0.32

togethercomputer-RedPajama-INCITE-7B-Instruct 7 0.41 0.48 0.37 0.41 0.42 0.44 0.39 0.53 0.11 0.43
llama2-7b-chat 7 0.39 0.27 0.33 0.34 0.24 0.25 0.38 0.56 0.18 0.29

GPT-3.5 0.64 0.55 0.57 0.65 0.45 0.57 0.49 0.67 0.21 0.56

full

bert-base-uncased 0.11 0.78 0.76 0.65 0.70 0.62 0.70 0.79 0.77 0.55 0.71
roberta-base 0.086 0.79 0.77 0.68 0.72 0.63 0.70 0.83 0.79 0.64 0.72

deberta-v3 0.098 0.83 0.77 0.70 0.72 0.66 0.72 0.87 0.79 0.63 0.73
MiniLM 0.066 0.77 0.72 0.61 0.67 0.58 0.66 0.78 0.69 0.57 0.67

T5* 0.25 0.53 0.71 0.48 0.50 0.47 0.63 0.44 0.37 0.54 0.58

Table 4: A comparison of the benchmark performances of different models and training schemes. Best-performing
instances are shown in bold.

Category Model No. params (billions) Humor & Sarcasm Offensiveness Sentiment & Emotion Social Factors Trustworthiness CLS PAIR REG SPAN Avg.

baseline majority 0.27 0.42 0.12 0.25 0.41 0.39 0.34 0.50 0.00 0.32
random 0.40 0.35 0.17 0.36 0.35 0.38 0.51 0.50 0.00 0.32

zero-shot

EleutherAI-gpt-j-6b 6 0.39 0.35 0.29 0.33 0.28 0.32 0.26 0.50 0.08 0.32
alpaca-native 7 0.39 0.44 0.45 0.55 0.31 0.42 0.48 0.57 0.17 0.43

bigscience-bloom-560m 0.56 0.30 0.24 0.14 0.26 0.18 0.21 0.26 0.49 0.07 0.22
bigscience-bloom-1b1 1 0.26 0.39 0.17 0.25 0.33 0.33 0.21 0.48 0.11 0.31
bigscience-bloom-3b 3 0.37 0.44 0.30 0.34 0.30 0.37 0.32 0.51 0.12 0.37

bigscience-bloom-7b1 7 0.42 0.27 0.30 0.29 0.20 0.25 0.39 0.51 0.11 0.28
bigscience-bloomz-560m 0.56 0.38 0.42 0.34 0.42 0.41 0.40 0.41 0.51 0.10 0.40

bigscience-bloomz-1b1 1 0.41 0.44 0.38 0.43 0.41 0.42 0.44 0.52 0.10 0.42
bigscience-bloomz-7b1 7 0.50 0.49 0.43 0.53 0.45 0.49 0.51 0.56 0.09 0.48

cerebras-Cerebras-GPT-111M 0.11 0.21 0.07 0.18 0.09 0.03 0.05 0.18 0.49 0.07 0.10
cerebras-Cerebras-GPT-590M 0.59 0.31 0.11 0.14 0.19 0.09 0.13 0.23 0.00 0.08 0.14
cerebras-Cerebras-GPT-2.7B 2.7 0.32 0.19 0.14 0.23 0.16 0.17 0.26 0.49 0.18 0.19
cerebras-Cerebras-GPT-6.7B 6.7 0.42 0.39 0.30 0.36 0.34 0.35 0.33 0.52 0.13 0.36
decapoda-research-llama-7b 7 0.45 0.44 0.34 0.41 0.22 0.38 0.34 0.52 0.12 0.38

decapoda-research-llama-13b 13 0.49 0.43 0.36 0.42 0.31 0.38 0.52 0.53 0.17 0.40
facebook-opt-1.3b 1.3 0.41 0.43 0.28 0.33 0.39 0.38 0.34 0.50 0.12 0.38
facebook-opt-2.7b 2.7 0.37 0.45 0.29 0.36 0.32 0.37 0.34 0.52 0.18 0.38
facebook-opt-6.7b 6.7 0.20 0.31 0.20 0.16 0.17 0.21 0.13 0.48 0.16 0.24
facebook-opt-13b 13 0.31 0.40 0.19 0.22 0.28 0.31 0.25 0.49 0.13 0.31

google-flan-t5-small 0.08 0.40 0.43 0.30 0.33 0.41 0.39 0.43 0.49 0.06 0.39
google-flan-t5-base 0.25 0.42 0.46 0.35 0.36 0.41 0.43 0.42 0.52 0.05 0.42
google-flan-t5-large 0.78 0.51 0.52 0.47 0.50 0.47 0.51 0.58 0.54 0.09 0.50

google-flan-t5-xl 3 0.57 0.53 0.48 0.55 0.47 0.53 0.51 0.60 0.14 0.51
google-flan-t5-xxl 11 0.61 0.55 0.52 0.61 0.47 0.55 0.59 0.62 0.18 0.54
mosaicml-mpt-7b 7 0.41 0.42 0.36 0.44 0.32 0.37 0.45 0.54 0.25 0.39

mosaicml-mpt-7b-instruct 7 0.20 0.25 0.30 0.34 0.15 0.22 0.25 0.46 0.24 0.25
t5-small 0.06 0.33 0.08 0.08 0.25 0.07 0.12 0.09 0.00 0.03 0.12
t5-base 0.22 0.41 0.15 0.14 0.28 0.12 0.17 0.33 0.00 0.03 0.17
t5-large 0.77 0.37 0.13 0.14 0.25 0.12 0.14 0.32 0.48 0.03 0.16

t5-3b 3 0.13 0.21 0.14 0.17 0.23 0.19 0.19 0.48 0.09 0.19
t5-11b 11 0.38 0.38 0.14 0.31 0.36 0.33 0.23 0.50 0.03 0.32

togethercomputer-RedPajama-INCITE-7B-Instruct 7 0.41 0.48 0.37 0.41 0.42 0.44 0.39 0.53 0.11 0.43
llama2-7b-chat 7 0.39 0.27 0.33 0.34 0.24 0.25 0.38 0.56 0.18 0.30

GPT-3.5 0.64 0.56 0.57 0.65 0.45 0.57 0.49 0.67 0.21 0.56

full

bert-base-uncased 0.11 0.78 0.76 0.65 0.70 0.62 0.70 0.79 0.77 0.55 0.71
roberta-base 0.086 0.79 0.77 0.68 0.72 0.63 0.70 0.83 0.79 0.64 0.72

deberta-v3 0.098 0.83 0.77 0.70 0.72 0.66 0.72 0.87 0.79 0.63 0.73
MiniLM 0.066 0.77 0.72 0.61 0.67 0.58 0.66 0.78 0.69 0.57 0.67

T5* 0.25 0.53 0.71 0.48 0.50 0.47 0.63 0.44 0.37 0.54 0.58

Table 5: A comparison of the benchmark performances of different models and training schemes on the SOCKETTE
test set (a subset of SOCKET). Best-performing instances are shown in bold.
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Model Group No. params (billions) Humor & Sarcasm Offensiveness Sentiment & Emotion Social Factors Trustworthiness CLS PAIR REG SPAN Total ratio

chavinlo-alpaca-native 13.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.96 1.00
bigscience-bloom-560m 0.56 0.49 0.74 0.42 0.54 0.76 0.71 0.72 0.00 0.80 0.63

bigscience-bloom-1b1 1 0.54 0.83 0.53 0.64 0.94 0.86 0.56 0.02 0.91 0.74
bigscience-bloom-3b 3 0.89 0.96 0.75 0.89 0.97 0.99 0.92 0.29 0.95 0.90

bigscience-bloom-7b1 7 0.94 0.97 0.78 0.76 0.99 0.96 0.99 0.52 0.96 0.91
bigscience-bloomz-560m 0.56 1.00 0.99 0.96 1.00 0.99 0.99 1.00 1.00 0.92 0.99

bigscience-bloomz-1b1 1 1.00 0.99 0.96 1.00 0.99 0.99 1.00 0.99 0.89 0.98
bigscience-bloomz-7b1 7 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.97 0.99

google-flan-t5-small 0.08 0.94 0.96 0.90 0.94 0.97 0.95 0.92 1.00 0.79 0.94
google-flan-t5-base 0.25 1.00 0.98 0.90 1.00 0.90 0.98 0.75 0.98 0.79 0.95
google-flan-t5-large 0.78 1.00 1.00 0.91 1.00 0.90 0.97 0.75 1.00 0.98 0.96

google-flan-t5-xl 3 1.00 1.00 0.92 1.00 0.93 0.98 0.84 1.00 0.95 0.97
google-flan-t5-xxl 11 1.00 1.00 0.92 1.00 1.00 0.98 1.00 1.00 0.99 0.98

cerebras-Cerebras-GPT-111M 0.11 0.30 0.22 0.15 0.16 0.27 0.20 0.41 0.01 0.66 0.21
cerebras-Cerebras-GPT-590M 0.59 0.66 0.70 0.51 0.64 0.68 0.70 0.66 0.32 0.54 0.64
cerebras-Cerebras-GPT-2.7B 2.70 0.73 0.88 0.66 0.62 0.88 0.77 0.60 0.98 0.97 0.79
cerebras-Cerebras-GPT-6.7B 6.70 0.83 0.91 0.58 0.72 0.99 0.89 0.81 0.36 0.96 0.82

EleutherAI-gpt-j-6b 6 0.70 0.77 0.56 0.65 0.74 0.75 0.53 0.41 0.88 0.70
decapoda-research-llama-7b-hf 7 0.73 0.93 0.51 0.78 0.87 0.82 0.99 0.50 0.87 0.80

decapoda-research-llama-13b-hf 13 0.44 0.48 0.62 0.50 0.57 0.46 0.57 0.75 0.95 0.53
mosaicml-mpt-7b 7 0.87 0.99 0.67 0.96 1.00 0.95 0.86 0.63 0.96 0.91

mosaicml-mpt-7b-instruct 7 0.36 0.62 0.72 0.75 0.67 0.66 0.53 0.46 0.99 0.64
facebook-opt-1.3b 1.30 0.80 0.95 0.61 0.79 0.97 0.90 0.88 0.48 0.87 0.85
facebook-opt-2.7b 2.70 0.82 0.94 0.65 0.83 1.00 0.98 1.00 0.05 0.87 0.87
facebook-opt-6.7b 6.70 0.42 0.58 0.24 0.18 0.45 0.41 0.34 0.34 0.90 0.43
facebook-opt-13b 13 0.65 0.82 0.30 0.50 0.73 0.70 0.68 0.20 0.74 0.64

togethercomputer-RedPajama-INCITE-7B-Instruct 7 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.95 1.00
t5-small 0.06 0.77 0.76 0.16 0.66 0.60 0.74 0.28 0.00 0.21 0.59
t5-base 0.22 0.80 0.88 0.23 0.67 0.84 0.84 0.75 0.00 0.19 0.70
t5-large 0.77 0.95 0.88 0.24 0.67 0.85 0.84 0.72 0.14 0.23 0.71

t5-3b 3 0.40 0.39 0.46 0.50 0.54 0.46 0.49 0.23 0.58 0.44
t5-11b 11 0.80 0.74 0.23 0.61 0.87 0.75 0.56 0.04 0.58 0.64

llama2-7b-chat 7 1.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99
gpt-3.5 1.00 1.00 0.99 1.00 0.92 1.00 0.80 0.99 1.00 0.98

Overall 0.53 0.57 0.39 0.44 0.57 0.51 0.4 0.39 1.0 0.51

Table 6: The fraction of samples that each LLM can make inferences given the instruction prompts, when tested in a
zero-shot setting.
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Figure 3: A comparison of the ratio of valid samples which the LLM was able to make an inference given the
correct instruction prompt (x-axis) versus the overall scores when limited to the samples that the model was capable
of making an inference (y-axis).

made after each training epoch on the validation
set using Pearson’s r correlation added by 1 and di-
vided by 2 for regression tasks and macro F1 score
for all other tasks. If there were multiple tasks con-
sidered due to multi-task training, the average of all
task performances was used as the final validation
score.

B.5 Details on prompt-based finetuning (§4,
§5)

We use fix prompts fine-tuning for all the prompt-
based models. The batch size was set as 32 for
training. For every single task, we set 10 as the
max epoch and do early stopping based on the
validation loss. The learning rate is set as 5e-5.

For classification tasks, the model is fine-tuned
to generate the target label. For regression tasks,
we first normalized the scores into (0,1) and then
split the labels into two groups. The model is fine-
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Figure 4: A comparison of the ratio of valid samples which the LLM was able to make an inference given the
correct instruction prompt (x-axis) versus the overall scores across every sample in the test dataset where failed
predictions are considered incorrect (y-axis).

task SOCKET SOCKETTE

contextual-abuse#IdentityDirectedAbuse 0.62 0.58
contextual-abuse#PersonDirectedAbuse 0.53 0.49
crowdflower 0.24 0.22
dailydialog 0.38 0.38
hasbiasedimplication 0.86 0.87
hateoffensive 0.93 0.93
humor-pairs 0.98 0.97
implicit-hate#explicit_hate 0.72 0.68
implicit-hate#implicit_hate 0.71 0.72
implicit-hate#incitement_hate 0.68 0.70
implicit-hate#inferiority_hate 0.60 0.69
implicit-hate#stereotypical_hate 0.68 0.68
implicit-hate#threatening_hate 0.63 0.67
implicit-hate#white_grievance_hate 0.70 0.68
intentyn 0.75 0.73
jigsaw#identity_hate 0.80 0.83
jigsaw#insult 0.88 0.87
jigsaw#obscene 0.91 0.91
jigsaw#severe_toxic 0.73 0.74
jigsaw#threat 0.85 1.00
jigsaw#toxic 0.90 0.90
neutralizing-bias-pairs 0.98 0.98
offensiveyn 0.82 0.82
sarc 0.74 0.77
sentitreebank 0.97 0.97
sexyn 0.79 0.77
toxic-span 0.68 0.69
tweet_emoji 0.34 0.32
tweet_emotion 0.81 0.81
tweet_sentiment 0.71 0.69
two-to-lie#receiver_truth 0.59 0.60
two-to-lie#sender_truth 0.58 0.58

Table 7: A comparison of the evaluation scores between
the test sets for SOCKET versus SOCKETTE when
evaluated on a DeBERTa-v3 model trained on a single-
task setting.
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Pearson's r: 0.997

Figure 5: For each of the 32 tasks in SOCKET con-
taining more than 1,000 test samples, we evaluate the
performance of a deberta-v3 model trained on a single
SOCKET task on both the original test set as well as the
smaller SOCKETTE variant. The correlation between
the two scores results in a high Pearson’s r score of
0.997, indicating SOCKETTE can be reliably deployed
for more rapid model testing.

tuned to predict “yes” or “no” regarding the prompt
question. During inference, the probability of the
“yes” token is used as the prediction score. For span
tasks, we directly train the model to generate the
full answer.
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B.6 Details on zero-shot predictions (§4, §5)
We use manually designed prompts for all the zero-
shot prediction tasks and the prompts are shown in
Table 8.

B.7 Computing correlation scores of task
dependencies (§5)

Because our framework consists of several task
types, it is challenging to obtain a unified metric of
correlation across different task comparisons. We
use the following rules to obtain correlation values:

• Regression task & regression task: We com-
pute the Pearson’s correlation coefficient of
the two arrays.

• Regression task & binary classification task:
We compute the point biserial correlation co-
efficient of a continuous array and a binary
array.

• Regression task & multi-class classification
task: We set up a linear regression task using
the one-hot coded values of the multi-class
array as independent variables and the con-
tinuous array as the dependent variable. We
report the root of the R-squared value of the
regression as correlation (Olsson et al., 1982).

• Binary classification task & binary classifica-
tion task: We compute the Matthews’ corre-
lation coefficient (Matthews, 1975) from the
two binary arrays.

• Binary or multi-task classification task &
multi-class classification task: We compute
the Cramer’s V score (Cramér, 1999) from the
two arrays of categorical variables.

B.8 Computing pairwise model
similarities (§5)

We quantify the model similarity between two tasks
as follows. We finetune a pretrained LLM on task
tA to obtain a model mA, and another LLM on task
tB to obtain mB . We obtain pairwise model simi-
larities by inferring both models on a sufficiently
large dataset—in this case the entire test set of all
tasks—and computing the correlation of the two
inferred arrays. We construct an undirected graph
(Figure 7) where the thickness and color represent
absolute correlation strength and polarity between
the two models. The addition of polarity enables us
to further discover strong negative correlations with
task pairs such as politeness and offensiveness.

B.9 List of all potential tasks and datasets for
SOCKET
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Type Task Question/Options
PAIR talkdown-pairs For the quote "text_a" and its context "text_b", is the quote condescending? [’No’, ’Yes’]
REG hahackathon#humor_rating Determine the degree of humor of the given sentence: "text". The score should be ranging

from 0.0 to 5.0, and can be a decimal. 0 is not humorous at all, and 5 is very humorous.
CLS hahackathon#is_humor For the sentence: "text", is it humorous? [’No’, ’Yes’]
PAIR humor-pairs The first sentence is "text_a". The second sentence is "text_b". Is the first sentence funnier

than the second sentence?
[’Yes’, ’No’]

CLS sarc For the sentence: "text", is it sarcastic? [’Yes’, ’No’]
CLS tweet_irony For the sentence: "text", is it ironic? [’No’, ’Yes’]
CLS contextual-abuse#IdentityDirectedAbuse For the sentence: "text", is it identity directed abuse? [’No’, ’Yes’]
CLS contextual-abuse#PersonDirectedAbuse For the sentence: "text", is it person directed abuse? [’No’, ’Yes’]
REG hahackathon#offense_rating Determine the degree of offense of the given sentence: "text". The score should be ranging

from 0.0 to 5.0, and can be a decimal.
CLS hasbiasedimplication For the sentence: "text", does it imply some biases? [’No’, ’Yes’]
CLS hateoffensive For the sentence: "text", is it hate or offensive? [’Hate’, ’Offensive’, ’Nei-

ther’]
CLS implicit-hate#explicit_hate For the sentence: "text", is it explicit hate? [’No’, ’Yes’]
CLS implicit-hate#implicit_hate For the sentence: "text", is it implicitly hateful? [’No’, ’Yes’]
CLS implicit-hate#incitement_hate For the sentence: "text", is it a hateful incitement to act? [’No’, ’Yes’]
CLS implicit-hate#inferiority_hate For the sentence: "text", is it inferiority hate? [’No’, ’Yes’]
CLS implicit-hate#stereotypical_hate For the sentence: "text", is it a hateful message involving stereotypes? [’No’, ’Yes’]
CLS implicit-hate#threatening_hate For the sentence: "text", is it hateful in a threatening way? [’No’, ’Yes’]
CLS implicit-hate#white_grievance_hate For the sentence: "text", is it white grievance hate? [’No’, ’Yes’]
CLS intentyn For the sentence: "text", is it intentional? [’No’, ’Yes’]
CLS jigsaw#identity_hate For the sentence: "text", is it identity hate? [’No’, ’Yes’]
CLS jigsaw#insult For the sentence: "text", is it an insult? [’No’, ’Yes’]
CLS jigsaw#obscene For the sentence: "text", is it obscene? [’No’, ’Yes’]
CLS jigsaw#severe_toxic For the sentence: "text", is it severely toxic? [’No’, ’Yes’]
CLS jigsaw#threat For the sentence: "text", is it a threat? [’No’, ’Yes’]
CLS jigsaw#toxic For the sentence: "text", is it toxic? [’No’, ’Yes’]
CLS offensiveyn For the sentence: "text", is it offensive? [’No’, ’Yes’]
CLS sexyn For the sentence: "text", is it sexist? [’No’, ’Yes’]
SPAN toxic-span In the sentence: "text", which part of it can be identified as toxic?
CLS tweet_offensive For the sentence: "text", is it offensive? [’No’, ’Yes’]
CLS crowdflower For the sentence: "text", what is its emotion? [’empty’, ’sadness’,

’enthusiasm’, ’neutral’,
’worry’, ’love’, ’fun’,
’hate’, ’happiness’,
’relief’, ’boredom’,
’surprise’, ’anger’]

CLS dailydialog For the given conversation, "text", what is its emotion? [’no emotion’, ’anger’,
’disgust’, ’fear’, ’hap-
piness’, ’sadness’,
’surprise’]

REG emobank#arousal Given the VAD model of emotion, determine the degree of arousal of the given sentence:
"text". The score should be ranging from 0.0 to 5.0, and can be a decimal.

REG emobank#dominance Given the VAD model of emotion, determine the degree of dominance of the given sentence:
"text". The score should be ranging from 0.0 to 5.0, and can be a decimal.

REG emobank#valence Given the VAD model of emotion, determine the degree of valence of the given sentence:
"text". The score should be ranging from 0.0 to 5.0, and can be a decimal.

SPAN emotion-span In the sentence: "text", which part of it expresses strong emotion?
REG empathy#distress Determine the degree of distress of the given sentence: "text". The score should be ranging

from 0.0 to 7.0, and can be a decimal.
CLS empathy#distress_bin For the sentence: "text", is it showing distress? [’No’, ’Yes’]
PAIR same-side-pairs For the sentences: "text_a" and "text_b", are they on the same side? [’No’, ’Yes’]
CLS sentitreebank For the sentence: "text", is it positive? [’Yes’, ’No’]
CLS tweet_emoji For the sentence: "text", what is the emoji that can be added to it? 20 emojis
CLS tweet_emotion For the sentence: "text", what is its emotion? [’anger’, ’joy’, ’opti-

mism’, ’sadness’]
CLS tweet_sentiment For the sentence: "text", what is its sentiment? [’negative’, ’neutral’, ’pos-

itive’]
CLS complaints For the sentence: "text", is it a complaint? [’No’, ’Yes’]
REG empathy#empathy Determine the degree of empathy of the given sentence: "text". The score should be ranging

from 0.0 to 7.0, and can be a decimal.
CLS empathy#empathy_bin For the sentence: "text", is it expressing empathy? [’No’, ’Yes’]
CLS hayati_politeness For the sentence: "text", is it polite? [’No’, ’Yes’]
CLS questionintimacy For the sentence: "text", how intimate do you think it is? [’Very intimate’, ’Inti-

mate’, ’Somewhat inti-
mate’, ’Not very intimate’,
’Not intimate’, ’Not inti-
mate at all’]

CLS stanfordpoliteness For the sentence: "text", is it polite? [’Yes’, ’No’]
CLS bragging#brag_achievement For the sentence: "text", is it bragging about an achievement? [’No’, ’Yes’]
CLS bragging#brag_action For the sentence: "text", is it bragging about an action? [’No’, ’Yes’]
CLS bragging#brag_possession For the sentence: "text", is it bragging about a possession? [’No’, ’Yes’]
CLS bragging#brag_trait For the sentence: "text", is it bragging about a trait? [’No’, ’Yes’]
CLS hypo-l For the sentence: "text", is it a hyperbole? [’No’, ’Yes’]
PAIR neutralizing-bias-pairs For the sentences: "text_a" and "text_b", which one is biased? [’the first sentence is bi-

ased’, ’the second sen-
tence is biased’]

SPAN propaganda-span In the sentence: "text", which part of it can be identified as the propaganda?
CLS rumor#rumor_bool For the sentence: "text", is it a rumor? [’No’, ’Yes’]
CLS two-to-lie#receiver_truth For the sentence :"text", will it be perceived as a lie by the receiver? [’Yes’, ’No’]
CLS two-to-lie#sender_truth For the sentence :"text", is the sender intending to tell a lie? [’Yes’, ’No’]

Table 8: The manually designed prompt questions and options used for each task.11396



Type Task Question
REG hahackathon#humor_rating For the sentence:"text", is it humorous?
REG hahackathon#offense_rating For the sentence:"text", is it offensive?
REG emobank#arousal For the sentence:"text", is the presented emotion highly arousal?
REG emobank#dominance For the sentence:"text", is the presented emotion highly dominant?
REG emobank#valence For the sentence:"text", is the presented emotion positive?
REG empathy#distress For the sentence:"text", does it show distress?
REG empathy#empathy For the sentence:"text", does it show empathy?

Table 9: The manually designed prompt questions for fine-tuning regression tasks over the t5 model.
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Figure 6: A detailed heatmap of Figure 2 showing task dependency among all task pairs as well as task labels.
Each value represents the absolute strength of correlation between the true labels of the test set of a specific task
(columns) and the predictions made on that task using a model trained on a different task (rows).
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Figure 7: Weighted, undirected graph of model correlations. Each edge between nodes i and j is weighted by the
correlation between predictions from a model fine-tuned on task i and predictions from a model fine-tuned on task
j, evaluated on the entire SOCKET dataset. Nodes are sized proportionally to their weighted degree and a Yifan Hu
algorithm is applied for layout, with minor adjustments for readability. Refer to §B.8 for details on how the pairwise
score for each edge was computed. We observe strong positive correlations similar to Figure 2, especially within
the Sentiment & Emotion category and the Offensiveness category. We also see that across-category transfers may
happen in a negative direction such as hayati_politeness and several Offensiveness tasks.
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Dataset Task name Task type Rand. Maj. Single task Categorywise All tasks
Humor & Sarcasm
hahackathon humor_rating REG 0.5 0.5 0.68 0.01 0.67 0.01 0.66 0.03
hahackathon is_humor CLS 0.49 0.38 0.93 0.00 0.93 0.00 0.91 0.01
humor-pairs humor-pairs PAIR 0.50 0.34 0.98 0.00 0.98 0.00 0.97 0.00
tweet_irony tweet_irony CLS 0.49 0.28 0.80 0.01 0.80 0.00 0.75 0.03

Offensiveness
contextual-abuse IdentityDirectedAbuse CLS 0.35 0.50 0.61 0.02 0.62 0.00 0.63 0.01
contextual-abuse PersonDirectedAbuse CLS 0.34 0.50 0.54 0.01 0.55 0.02 0.57 0.02
hahackathon offense_rating REG 0.5 0.5 0.91 0.01 0.91 0.00 0.92 0.01
hasbiasedimplication hasbiasedimplication CLS 0.50 0.37 0.86 0.00 0.86 0.00 0.87 0.00
hateoffensive hateoffensive CLS 0.27 0.27 0.93 0.00 0.95 0.01 0.95 0.01
implicit-hate explicit_hate CLS 0.37 0.49 0.72 0.00 0.74 0.01 0.73 0.01
implicit-hate implicit_hate CLS 0.47 0.43 0.71 0.01 0.71 0.01 0.69 0.01
implicit-hate incitement_hate CLS 0.38 0.49 0.67 0.01 0.68 0.01 0.67 0.00
implicit-hate inferiority_hate CLS 0.34 0.50 0.59 0.02 0.59 0.01 0.58 0.02
implicit-hate stereotypical_hate CLS 0.37 0.49 0.68 0.01 0.66 0.01 0.68 0.01
implicit-hate threatening_hate CLS 0.33 0.50 0.60 0.02 0.64 0.01 0.65 0.04
implicit-hate white_grievance_hate CLS 0.39 0.48 0.71 0.01 0.71 0.01 0.71 0.02
intentyn intentyn CLS 0.47 0.42 0.75 0.00 0.74 0.01 0.74 0.01
jigsaw identity_hate CLS 0.34 0.50 0.79 0.01 0.76 0.01 0.79 0.01
jigsaw insult CLS 0.38 0.49 0.88 0.00 0.87 0.01 0.88 0.01
jigsaw obscene CLS 0.38 0.49 0.90 0.01 0.91 0.00 0.91 0.01
jigsaw severe_toxic CLS 0.34 0.50 0.74 0.01 0.73 0.02 0.71 0.02
jigsaw threat CLS 0.34 0.50 0.85 0.02 0.81 0.04 0.80 0.03
jigsaw toxic CLS 0.41 0.47 0.91 0.00 0.90 0.00 0.91 0.01
offensiveyn offensiveyn CLS 0.50 0.37 0.82 0.00 0.83 0.01 0.83 0.00
sexyn sexyn CLS 0.37 0.49 0.80 0.01 0.79 0.00 0.79 0.00
talkdown-pairs talkdown-pairs PAIR 0.50 0.33 0.89 0.01 0.88 0.01 0.88 0.00
toxic-span toxic-span SPAN 0 0 0.68 0.02 0.65 0.05 0.67 0.05
tweet_offensive tweet_offensive CLS 0.48 0.42 0.81 0.01 0.81 0.01 0.80 0.00

Sentiment & Emotion
crowdflower crowdflower CLS 0.06 0.03 0.24 0.00 0.23 0.01 0.22 0.00
dailydialog dailydialog CLS 0.07 0.13 0.43 0.04 0.47 0.00 0.47 0.02
emobank arousal REG 0.5 0.5 0.80 0.02 0.81 0.02 0.79 0.02
emobank dominance REG 0.5 0.5 0.75 0.02 0.75 0.01 0.73 0.02
emobank valence REG 0.5 0.5 0.92 0.01 0.92 0.00 0.90 0.01
emotion-span emotion-span SPAN 0 0 0.96 0.01 0.89 0.00 0.86 0.03
empathy distress REG 0.5 0.5 0.77 0.01 0.75 0.03 0.72 0.01
empathy distress_bin CLS 0.50 0.31 0.68 0.01 0.69 0.03 0.65 0.02
same-side-pairs same-side-pairs PAIR 0.48 0.35 0.66 0.12 0.70 0.09 0.76 0.05
sentitreebank sentitreebank CLS 0.50 0.31 0.97 0.00 0.96 0.00 0.96 0.01
tweet_emoji tweet_emoji CLS 0.04 0.02 0.34 0.00 0.33 0.00 0.33 0.00
tweet_emotion tweet_emotion CLS 0.24 0.14 0.80 0.01 0.81 0.01 0.80 0.00
tweet_sentiment tweet_sentiment CLS 0.32 0.22 0.71 0.00 0.71 0.01 0.69 0.01

Social Factors
complaints complaints CLS 0.50 0.36 0.92 0.01 0.92 0.00 0.91 0.01
empathy empathy REG 0.5 0.5 0.70 0.04 0.71 0.03 0.70 0.01
empathy empathy_bin CLS 0.50 0.33 0.63 0.02 0.62 0.01 0.59 0.03
hayati_politeness hayati_politeness CLS 0.47 0.41 0.87 0.01 0.87 0.05 0.89 0.03
questionintimacy questionintimacy CLS 0.16 0.06 0.49 0.03 0.48 0.02 0.46 0.02
stanfordpoliteness stanfordpoliteness CLS 0.50 0.36 0.70 0.02 0.71 0.01 0.72 0.02

Trustworthiness
bragging brag_achievement CLS 0.36 0.49 0.74 0.01 0.69 0.01 0.76 0.03
bragging brag_action CLS 0.35 0.50 0.59 0.02 0.57 0.06 0.59 0.04
bragging brag_possession CLS 0.35 0.50 0.70 0.02 0.66 0.03 0.52 0.03
bragging brag_trait CLS 0.34 0.50 0.67 0.01 0.59 0.07 0.61 0.04
hypo-l hypo-l CLS 0.48 0.41 0.74 0.01 0.71 0.01 0.69 0.01
neutralizing-bias-pairs neutralizing-bias-pairs PAIR 0.50 0.33 0.96 0.01 0.96 0.01 0.96 0.00
propaganda-span propaganda-span SPAN 0 0 0.22 0.10 0.23 0.03 0.24 0.00
rumor rumor_bool CLS 0.49 0.39 0.85 0.05 0.78 0.02 0.78 0.05
two-to-lie receiver_truth CLS 0.38 0.49 0.57 0.02 0.57 0.02 0.53 0.01
two-to-lie sender_truth CLS 0.38 0.49 0.58 0.02 0.59 0.03 0.55 0.03

Table 10: Detailed table of performance scores from comparing single-task vs multi-task trained models in
Section 6 (refer to Table 3 in Section 6). There are no significant gains from the two multi-task settings in the
Humor & Sarcasm category, where the tasks in general have low task dependency (ref. Section 5). However, for
other categories we see several instances of tasks where multi-task trained model have greater performance.
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Paper/Dataset Title Tasks Reference

Automatic Identification and Classification of
Bragging in Social Media

Bragging
(Achievement)

Jin et al. (2022)

Automatic Identification and Classification of
Bragging in Social Media (Jin et al., 2022)

Bragging (Ac-
tion)

Jin et al. (2022)

Automatic Identification and Classification of
Bragging in Social Media

Bragging (Pos-
session)

Jin et al. (2022)

Automatic Identification and Classification of
Bragging in Social Media

Bragging (Trait) Jin et al. (2022)

Automatically Identifying Complaints in Social
Media

Complaints Preoţiuc-Pietro et al.
(2019)

Introducing CAD: the Contextual Abuse Dataset Identity Based
Hate

Vidgen et al. (2021)

Introducing CAD: the Contextual Abuse Dataset Individual Hate Vidgen et al. (2021)
Introducing CAD: the Contextual Abuse Dataset Group-Based

Hate
Vidgen et al. (2021)

Introducing CAD: the Contextual Abuse Dataset Counter Speech Vidgen et al. (2021)
Sentiment Analysis in Text Emotion CrowdFlower (2016)
DailyDialog: A Manually Labelled Multi-turn Di-
alogue Dataset

Emotion Li et al. (2017)

EmoBank: Studying the Impact of Annotation
Perspective and Representation Format on Dimen-
sional Emotion Analysis

Emotion (Va-
lence)

Buechel and Hahn
(2017)

EmoBank: Studying the Impact of Annotation
Perspective and Representation Format on Dimen-
sional Emotion Analysis

Emotion
(Arousal)

Buechel and Hahn
(2017)

EmoBank: Studying the Impact of Annotation
Perspective and Representation Format on Dimen-
sional Emotion Analysis

Emotion (Domi-
nance)

Buechel and Hahn
(2017)

Detecting Emotion Stimuli in Emotion-Bearing
Sentences

Emotion Ghazi et al. (2015)

Measuring the Language of Self-Disclosure across
Corpora

Disturbance Reuel et al. (2022)

Measuring the Language of Self-Disclosure across
Corpora

Empathy Reuel et al. (2022)

SemEval 2021 Task 7: HaHackathon, Detecting
and Rating Humor and Offense

Humor Rating Meaney et al. (2021)

11400



SemEval 2021 Task 7: HaHackathon, Detecting
and Rating Humor and Offense

Funny (boolean) Meaney et al. (2021)

SemEval 2021 Task 7: HaHackathon, Detecting
and Rating Humor and Offense

Offensiveness Meaney et al. (2021)

Social Bias Frames: Reasoning about Social and
Power Implications of Language

Biased Implica-
tion

Sap et al. (2020)

Social Bias Frames: Reasoning about Social and
Power Implications of Language

Intent Sap et al. (2020)

Social Bias Frames: Reasoning about Social and
Power Implications of Language

Offensiveness Sap et al. (2020)

Social Bias Frames: Reasoning about Social and
Power Implications of Language

Sexism Sap et al. (2020)

Automated Hate Speech Detection and the Prob-
lem of Offensive Language

Offensive Davidson et al. (2017)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Politeness Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Positivity Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Anger Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Disgust Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Fear Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Joy Hayati et al. (2021)

Does BERT Learn as Humans Perceive? Under-
standing Linguistic Styles through Lexica

Sadness Hayati et al. (2021)

SemEval-2020 Task 7: Assessing Humor in Edited
News Headlines

Funnier Se-
quence

Hossain et al. (2020)

MOVER: Mask, Over-generate and Rank for Hy-
perbole Generation

Hyperbole Zhang and Wan (2022)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Explicit Hate ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Implicit Hate ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Incitement ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Inferiority ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Stereotyping ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Threat ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Offensive ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Irony ElSherief et al. (2021)

Latent Hatred: A Benchmark for Understanding
Implicit Hate Speech

Other Hate ElSherief et al. (2021)
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Toxic Comment Classification Challenge Identity-Based
Hate

Jigsaw (2017)

Toxic Comment Classification Challenge Insult Jigsaw (2017)
Toxic Comment Classification Challenge Obscenity Jigsaw (2017)
Toxic Comment Classification Challenge Severe Toxicity Jigsaw (2017)
Toxic Comment Classification Challenge Threat Jigsaw (2017)
Toxic Comment Classification Challenge Toxicity Jigsaw (2017)
Automatically Neutralizing Subjective Bias in Text Bias Pryzant et al. (2020)
SemEval-2020 Task 11: Detection of Propaganda
Techniques in News Articles

Propaganda
Technique

Da San Martino et al.
(2020)

Quantifying Intimacy in Language Intimacy Pei and Jurgens (2020)
Detect Rumors in Microblog Posts Using Propaga-
tion Structure via Kernel Learning

Rumor Detec-
tion

Ma et al. (2017)

On Classifying whether Two Texts are on the Same
Side of an Argument

Stance Körner et al. (2021)

A Large Self-Annotated Corpus for Sarcasm Sarcasm Khodak et al. (2018)
Recursive Deep Models for Semantic Composi-
tionality Over a Sentiment Treebank

Sentiment Socher et al. (2013)

Facilitating the Communication of Politeness
through Fine-Grained Paraphrasing

Politeness Fu et al. (2020)

TalkDown: A Corpus for Condescension Detec-
tion in Context

Condescension Wang and Potts (2019)

SemEval-2021 Task 5: Toxic Spans Detection Toxicity Pavlopoulos et al. (2021)
SemEval 2018 Task 2: Multilingual Emoji Predic-
tion

Emoji Barbieri et al. (2018)

SemEval-2018 Task 1: Affect in Tweets Emotion Mohammad et al. (2018)
SemEval-2018 Task 3: Irony Detection in English
Tweets

Irony Van Hee et al. (2018)

Predicting the Type and Target of Offensive Posts
in Social Media

Offensiveness Zampieri et al. (2019a)

SemEval-2017 Task 4: Sentiment Analysis in Twit-
ter

Sentiment Rosenthal et al. (2017)

It Takes Two to Lie: One to Lie, and One to Listen Sender Truth Peskov et al. (2020)
It Takes Two to Lie: One to Lie, and One to Listen Receiver Truth Peskov et al. (2020)
“So You Think You’re Funny?”: Rating the Hu-
mour Quotient in Standup Comedy

Humor Rating Mittal et al. (2021)

DEBAGREEMENT: A comment-reply dataset for
(dis)agreement detection in online debates

Stance Pougué-Biyong et al.
(2021)

The CLEF-2021 CheckThat! Lab on Detecting
Check-Worthy Claims, Previously Fact-Checked
Claims, and Fake News

Trustworthiness Nakov et al. (2021)

Finding Deceptive Opinion Spam by Any Stretch
of the Imagination

Deceipt Ott et al. (2011)

Finding Deceptive Opinion Spam by Any Stretch
of the Imagination

Fact Ott et al. (2011)

A Clustering Approach for Nearly Unsupervised
Recognition of Nonliteral Language

Nonliteral Lan-
gauge

Birke and Sarkar (2006)

Detecting Community Sensitive Norm Violations
in Online Conversations

Community
Norms

Park et al. (2021)

Can Machines Learn Morality? The Delphi Exper-
iment

Moral Judge-
ment

Jiang et al. (2021)
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SemEval-2019 Task 5: Multilingual Detection of
Hate Speech Against Immigrants and Women in
Twitter

Hate Speech Basile et al. (2019)

SemEval-2019 Task 6: Identifying and Categoriz-
ing Offensive Language in Social Media (OffensE-
val)

Offensiveness Zampieri et al. (2019b)

CivilComments Toxicity (Jigsaw, 2019)
CivilComments Very Toxic (Jigsaw, 2019)
(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Gender Kang et al. (2019)

(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Age Kang et al. (2019)

(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Country Kang et al. (2019)

(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Political view Kang et al. (2019)

(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Education Kang et al. (2019)

(Male, Bachelor) and (Female, Ph.D) have differ-
ent connotations: Parallelly Annotated Stylistic
Language Dataset with Multiple Personas

Ethnicity Kang et al. (2019)

Webis Clickbait Corbus 2017 Clickbait Potthast et al. (2018)
VU Amsterdam Metaphor Corpus Metaphor Steen et al. (2011)
Measuring Sentence-Level and Aspect-Level
(Un)certainty in Science Communications

Uncertainty Pei and Jurgens (2021)

Dear Sir or Madam, May I Introduce the GYAFC
Dataset: Corpus, Benchmarks and Metrics for For-
mality Style Transfer

Formality Rao and Tetreault (2018)

International Survey on Emotion Antecedents and
Reactions

Sentiment Scherer and Wallbott
(1994)

Short Jokes Joke Moudgil
Short Text Corpus with Focus on Humor Detection Joke CrowdTruth (2016)
Hateful Symbols or Hateful People? Predictive
Features for Hate Speech Detection on Twitter

Sexism Waseem and Hovy
(2016)

Hateful Symbols or Hateful People? Predictive
Features for Hate Speech Detection on Twitter

Racism Waseem and Hovy
(2016)

Studying the Dark Triad of Personality through
Twitter Behavior

narcissism Preoţiuc-Pietro et al.
(2019)

Studying the Dark Triad of Personality through
Twitter Behavior

psychopathy Preoţiuc-Pietro et al.
(2019)

Studying the Dark Triad of Personality through
Twitter Behavior

Machiavellianism Preoţiuc-Pietro et al.
(2019)

Utterance-level Dialogue Understanding: An Em-
pirical Study

Emotion Ghosal et al. (2020)

Table 11: Table of all the datasets considered when curating the SOCKET Benchmark.
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