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Abstract

Stance detection is important for understanding
different attitudes and beliefs on the Internet.
However, given that a passage’s stance toward
a given topic is often highly dependent on that
topic, building a stance detection model that
generalizes to unseen topics is difficult. In this
work, we propose using contrastive learning
as well as an unlabeled dataset of news arti-
cles that cover a variety of different topics to
train topic-agnostic/TAG and topic-aware/TAW
embeddings for use in downstream stance de-
tection. Combining these embeddings in our
full TATA model, we achieve state-of-the-art
performance across several public stance detec-
tion datasets (0.771 F1-score on the Zero-shot
VAST dataset). We release our code and data at
https://github.com/hanshanley/tata.

1 Introduction

Stance detection is the task of determining the at-
titude of a piece of text with regard to a particular
topic or target. Stance detection is often utilized to
gauge public opinion toward products, political is-
sues, or public figures. For example, the statement

“I think Abraham Lincoln would make a good Presi-
dent” would have a Pro stance concerning the topic
of Abraham Lincoln. Simultaneously, the same text
would be Neutral to the topic of Fruits.

Several works have built topic-specific stance
classifiers that have achieved promising results for
particular targets (Mohtarami et al., 2018; Xu et al.,
2018); however, these same approaches have often
failed to generalize to topics outside of their train-
ing domain, limiting their real-world use. Recent
works have sought to alleviate this issue by utilizing
general stance features (Liang et al., 2022a), com-
mon sense reasoning (Liu et al., 2021a), and gen-
eralized topic representations (Allaway and McK-
eown, 2020, 2023; Liang et al., 2022b), achieving
better performance in predicting stance on previ-
ously unseen topics (Zero-shot stance detection)

and on topics for which there are few training ex-
amples (Few-shot stance detection). In this work,
building on these insights, we create and release
synthetic datasets for designing topic-aware/TAW
embeddings and generalized topic-agnostic/TAG
stance embeddings for use in downstream stance
classification tasks. Taking advantage of both the
topic-aware and topic-agnostic perspectives and
embeddings, our full TATA model achieves state-
of-the-art performance in both the Zero-shot and
Few-shot stance classification settings on the VAST
benchmark dataset (Allaway and McKeown, 2020).

Specifically, utilizing an unstructured news ar-
ticle dataset (Hanley and Durumeric, 2023) and
extracting topics from within particular passages
using the T5-Flan language model (Chung et al.,
2022), we train a topic-aware/TAW embedding
layer with a triplet loss (Hermans et al., 2017). By
using triplet loss, we force training elements with
similar topics to have similar embeddings and train-
ing elements with different topics to have dissim-
ilar embeddings. By using an unlabelled dataset
of news articles with a diverse and wide set of au-
tomatically extracted topics when creating these
topic embeddings, rather than simply relying on
the set of topics with expensive and carefully la-
beled stance datasets as in other works (Allaway
and McKeown, 2020; Liang et al., 2022b), enables
these topic embeddings to incorporate relationships
between many different topics.

Similarly, for our topic-agnostic/TAG embed-
dings, after first extending the original VAST train-
ing dataset with paraphrased versions of the origi-
nal texts, we utilize contrastive learning objectives
to then extract generalized stance features (Saun-
shi et al., 2019). By using contrastive learning,
we force training instances with the same stance
to have similar embeddings while simultaneously
forcing training examples with different stances
to have different embeddings. This enables our
TAG layer to model general stance features that
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are important for classifying the stance in a given
example.

Combining both the topic-aware/TAW and topic-
agnostic/TAG perspectives into one model TATA,
we achieve state-of-the-art performance on the
VAST dataset in both Zero-shot (0.771 F1-score
compared to 0.723 in prior work (Liang et al.,
2022b)) and Few-shot (0.741 F1-score compared
to 0.715 in prior work) settings. Our TATA model
further achieves competitive results on the SEM16t6
dataset (Mohammad et al., 2016) in the Zero-shot
setting. By training on synthetic datasets, taking ad-
vantage of stance features that are common across
different topics/TAG, and deriving specific features
particular to given topics utilizing a rich embedding
latent/TAW, our TATA model thus achieves state-
of-the-art performance on current benchmarks for
stance classification.

2 Related Work and Background

Stance Detetection. Biber and Finegan define
stance as “the expression of a speaker’s attitude,
standpoint, and judgment” toward a topic (1988).
In the most common implementation, stance detec-
tion tasks consist of inputting a passage-topic pair
(where the passage is a longer text and the topic is a
noun phrase) and outputting the stance from among
{Pro,Against,Neutral} of that passage toward
that given topic. Stance detection, in addition to
understanding political attitudes (Darwish et al.,
2020), has been utilized to improve fact check-
ing (Dulhanty et al., 2019; Si et al., 2021; Bekoulis
et al., 2021), and to gauge general public opin-
ion (Alturayeif et al., 2023).

Given its real-world applications, several works
have sought to improve upon domain-specific
and baseline stance-detection methods to identify
stances in Few-shot settings (where the classifier
is evaluated on a large number of topics for which
it had few training examples) and Zero-shot sce-
narios (where the classifier is evaluated on new,
previously seen topics) (Liang et al., 2022a; All-
away and McKeown, 2020, 2023). For example,
in addition to developing one of the most varied
benchmark datasets for evaluating Zero-shot stance
detection VAST, Allaway and McKeown (2020) also
pioneered the use of generalized topic representa-
tions to perform Zero-shot and Few-Shot stance
detection. More recently, Zhu et al. (2022), im-
proving upon prior work, utilized targeted outside
knowledge to add information for stance detection

on previously unseen topics. Li and Yuan (2022),
utilized generative models (e.g., GPT2) to create
synthetic data to engineer training data for unseen
topics. Finally, Liang et al. (2022b) further pro-
posed target-aware graph contrastive learning to
learn relationships between topic-based representa-
tions for downstream stance classification.
Constrastive Learning. Contrastive learning,
which seeks to build representations by differenti-
ating similarly and differently labeled inputs, has
become an increasingly popular version of self-
supervised learning (Liu et al., 2021b; Rethmeier
and Augenstein, 2023; Gao et al., 2021). Con-
trastive learning is often utilized to build robust
representations that can then be utilized in down-
stream tasks (Gunel et al., 2020) including gener-
ating sentence embeddings (Gao et al., 2021; Wu
et al., 2022), image classification (Park et al., 2020;
Wang and Qi, 2022), and image captioning (Dai
and Lin, 2017). As in our work, contrastive learn-
ing has also increasingly been utilized to model
stance features (Liang et al., 2022a,b; Mohtarami
et al., 2019). For example, Liang et al. (2022b)
utilized in-batch contrastive learning to differenti-
ate between examples of stance classes while also
building a graph of prototypical topics to train topic-
specific features for downstream stance detection.

3 Topic-Aware/TAW Dataset

As previously stated, within this work, we seek to
build informative topic-aware/TAW embeddings
that can then be utilized in downstream stance de-
tection. As such to pre-train these embeddings, we
collect a new dataset that includes a wide range
of topics. This new dataset, designed for creating
topic-aware embeddings, consists of sets of quadru-
plets such that DTaw = {xi = (pi, ti1, ti2, qi)}Ni=1

where pi is a passage, ti1 is pi’s corresponding
topic, ti2 is a paraphrase of the topic ti1, and qi is
a semantically similar passage to pi.

3.1 Passage Selection and Noisy Topic
Identification

To first build a dataset of passages that contain
wide-ranging multifaceted topics, we make use of
a dataset from Hanley and Durumeric (2023) of
15.90 million news articles collected between Jan-
uary 1, 2022, and May 1, 2023, from 3,074 news
sites. From these articles, we randomly subselect a
set of 100,000 articles (with at most 1000 articles
from any given single website). For each article
in our new set, we take the first paragraph (up to
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100 words) for inclusion as passages within our
TAW dataset. In order to use this set of passages
to pre-train a topic-aware encoding layer, as
in Allaway and McKeown (2020), we subsequently
identify the topics present within these passages.
As in Allaway and McKeown (2020), for each
passage pi we define a candidate topic as a noun
phrase in the passage from the constituency parse
generated using the Python Spacy library.1 If
no noun phrases are identified, we remove the
passage from our dataset and randomly select
another article and passage for use in our dataset.
Unlike Allaway and McKeown (2020), who then
heuristically select one of the noun phrases as
a topic, once candidate noun phrases have been
identified, we subsequently utilize the off-the-shelf
T5-Flan-XL (Chung et al., 2022) model from Hug-
gingface2 to further refine our topic identification.
The particular model that we utilize was fine-tuned
to identify topics within passages using the fol-
lowing prompt: Select the topic that this
about:{text}\n\n{options}\n\n,{answer}
and we also utilize this prompt to identify the topic
of our passages.

To ensure a diversity of different topics within
our dataset, we allow at most three passages within
our dataset to have the same topics. We again re-
move passages-topic pairs that did not fit this crite-
rion, creating another passage-topic pair using Han-
ley and Durumeric (2023)’s dataset if necessary.
Altogether, our TAW training dataset contained
97,984 unique topic noun phrases, illustrating the
diversity of different topics considered. After iden-
tifying 100,000 passage-topic pairs for use in our
training dataset, we identify an additional 10,000
passage-topic pairs, each with a unique topic and
with nonoverlapping topics with our TAW training
dataset, as our validation set. We note that while we
only utilize 110,000 pairs here, this TAW dataset
could easily be extended to utilize more passages
and topics.

3.2 Topically Similar Passages

Once we identified the topics of our set of pas-
sages, we subsequently identified other passages
within Hanley and Durumeric (2023)’s dataset that
were similar/about the same topic as our set of pas-
sages. To do so, we use an off-the-shelf version
of the MPNet (Song et al., 2020) large language

1https://spacy.io/
2https://huggingface.co/google/flan-t5-xl

model (LLM) fine-tuned on semantic similarity
tasks.3 Embedding all constituent 100-word pas-
sages from Hanley and Durumeric (2023)’s dataset
and indexing them with the FAISS library (Johnson
et al., 2019), a library for efficient semantic sim-
ilarity search, for each passage pi in our dataset,
we subsequently identify the passage qi that had
the highest semantic similarity to the given passage
pi. To ensure that each topically similar passage
was stylistically different from its similar passage
pi, we only include passage pairs if they originated
from two different websites. We set the minimum
similarity of two passages to be topically similar
at a cosine similarity threshold of 0.70 (Hanley
et al., 2023; Grootendorst, 2022). Across our fi-
nal dataset, each topically identified similar pas-
sage qi had an average/median cosine similarity
of 0.796/0.786 to its assigned passage pi in our
training dataset and an average/median similarity
of 0.786/0.764 in our validation set.

We further augment this dataset with different
paraphrases of the extracted topic strings. By para-
phrasing these topics, we model the different ways
of expressing the same topic. To make these para-
phrases, we utilize another publicly available T5-
based paraphraser Parrot that was trained on short
texts (Damodaran, 2021). For more details on this
paraphraser, see Appendix B and for example topic
paraphrases see Appendix D. We note that some of
the topics are particular named entities such as loca-
tions, person names, etc..., and thus cannot be effec-
tively paraphrased. As such, we utilize the Spacy
named entity recognizer to identify instances of
topics that cannot be effectively paraphrased. Alto-
gether, we remove entities in the following classes
{’PERSON’, ’GPE’, ’LOC’, ’TIME’, ’PERCENT’,
’QUANTITY’, ’ORDINAL’, ’MONEY’, ’DATE’}.

Our final dataset DTaw = {xi =
(pi, ti1, ti2, qi)}Ni=1 consists of 110,000 quadru-
plets, where the passages pi were taken from
news articles (Hanley and Durumeric, 2023), the
topics ti1 were identified by T5-FLan XL, ti2
are Parrot paraphrases of the ti1 topics, and the
semantically similar passages qi were identified
using MPNet. With permission from Hanley
and Durumeric (2023), we release these quadru-
plets and the splits upon request to a form
at https://github.com/hanshanley/tata.

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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4 Augmented VAST Dataset

In addition to developing our own dataset for train-
ing TAW embeddings, we further extend Allaway
and McKeown (2020)’s VAST dataset to pre-train
our topic-agnostic/TAG embeddings. As previ-
ously noted, the VAST dataset is one of the most
varied stance datasets. VAST consists of a dataset
DV ast = {xi = (pi, ti, si)}Ni=1, where pi a pas-
sage, ti the topic of the passage, and si is pas-
sage pi’s stance toward the topic ti with si ∈
{Pro,Neutral, Against}. We augment the train-
ing dataset with paraphrases of the original pas-
sages and topics while pretraining our TAG em-
bedding layer enabling the generation of additional
cases of passages with the exact stances and lexi-
cally similar topics to those in the VAST dataset.

To create paraphrases of the original VAST
dataset’s passages, we rely on the pre-trained
Dipper paraphraser4, a T5-based model fine-tuned
to paraphrase paragraph-level texts (Krishna et al.,
2023). See Appendix C for details on the hyper-
parameters we utilized for Dipper and see Ap-
pendix E for example Dipper paraphrases. By uti-
lizing the T5-based Dipper model, we augment the
original VAST dataset without changing the original
meaning of the original VAST passages. As with
our TAW dataset, we further augment VAST with
different paraphrases of the original topic strings
with the same methodology outlined in Section 3.2.
By paraphrasing these topics, we again model the
different ways of expressing the same topic.

Altogether, by paraphrasing each row from the
VAST dataset (paraphrasing individual texts as many
as 16 times) and by extracting out as many as
10 paraphrases of each topic phrase/word within
the original VAST dataset DV AST , we extend the
original training dataset of 13,477 examples to a
total of 743,644 different examples DV ASTaug .

5 Methods

We develop a model (TATA) that combines topic-
aware and topic-agnostic embedding layers to per-
form Zero and Few-shot stance detection. This
model (Figure 1) consists of the topic-aware em-
beddings layer (5.1), the topic-agnostic embedding
layer (5.2), two attention layers using the output
of the topic-aware embedding layer and the topic-
agnostic embedding layer (5.3), and finally a two-

4https://huggingface.co/kalpeshk2011/
dipper-paraphraser-xxl

Figure 1: TATA Model.

layer feed-forward neural network for stance clas-
sification (5.4).

5.1 Topic-Aware/TAW Embedding Layer

As previously noted, we train a topic-aware embed-
ding layer to extract topic-aware features for use in
downstream stance classification. As in Allaway
and McKeown (2020), we seek to design topic rep-
resentations that can be used to learn topic-specific
stance features in downstream tasks. However, un-
like previous work (Liang et al., 2022a,b; Allaway
and McKeown, 2020), we do not use representative
topic clusters as embeddings of particular topics
during training. Instead, we use our TAW dataset
and contrastive learning techniques to develop a
rich general latent representation of different top-
ics. Once trained, this topic latent, which implicitly
contains the relationship between topics, can then
be utilized to get informative generalized topic rep-
resentations. After training this layer, we freeze
this layer for use in the rest of our TATA model.

Specifically, we utilize a triplet loss to learn
similar representations for similar topics and
to differentiate different topics. This is such
that we embed each example xi ∈ DTaw =
{xi = (pi, ti1, qi, ti2)}Ni=1 using a contextual word
model by inputting by [CLS]pi[SEP ]ti1[SEP ]
and [CLS]qi[SEP ]ti2[SEP ] and outputting the
hidden states of the [CLS] tokens hpi and hqi .
Then using the hidden states of the [CLS] tokens,
we minimize with a triplet loss the Euclidean dis-
tance between the two hidden hpi ,hqj that share
a common paraphrased topic. We condition the
hidden state hqj using a paraphrased version ti2 of
the topic ti1 to guard against our model only learn-
ing to recognize moving together sentences with
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the exact same topic t. Putting this together, we
train our embedding layer such that given the out-
putted set of hidden vector pairs {hpi ,hqj}Nb

i , j=0

in a batch B of size Nb, we treat all pairs where
i = j as positive pairs and pairs where i ̸= j as
negative pairs. Within each batch B, the triplet loss
is computed across all positive pairs in the batch:

Ltaw =
1

Nb

∑

hpi ,hqj∈B,i=j

l taw(hpi ,hqj )

l taw(hpi ,hqj ) =
∑

i=j,i̸=k

[max(0, ||hpi − hqj ||22

−||hpi − hqk ||22)]

We use a triplet loss for our TAW layer rather
than a contrastive loss because normal contrastive
loss pushes similarly labeled elements to have
a near-zero distance between them (Xuan et al.,
2020). However, for our TAW encoding layer,
given the noisiness of our DTaw dataset, while we
wish for examples with similar topics to have simi-
lar embeddings, here we do not wish to train them
to have the same representation. Triplet loss only
ensures that negative examples are further away in
the latent space than positive examples. Namely,
triplet loss enables us to ensure that our noisy pairs
have more similar TAW representations between
themselves than with other examples in our dataset.

5.2 Topic-Agnostic/TAG Embedding Layer
As noted by Allaway and McKeown (2023), em-
beddings that encode general stance features have
been shown to improve a model’s ability to dis-
cern the stance of different passages. As in Liang
et al. (2022b), we thus use contrastive learning to
differentiate the {Pro,Neutral, Against} stance
classes and build a TAG embedding layer with our
augmented VAST dataset DV ASTaug . After training
this layer, we freeze it for use in the rest of our
TATA model.

We train our TAG layer such that we em-
bed each example xi ∈ DV ASTaug = {xi =
(pi, ti, si)}Ni=1 using a contextual word model, in-
putting [CLS]pi[SEP ]ti[SEP ] and outputting the
hidden vector of the [CLS] token for each xi. Then,
given a set of hidden vectors {hi}Nb

i=0, where Nb is
the size of the batch, we perform contrastive learn-
ing with that batch. This is such that for each batch
B, for an anchor hidden embedding hi within the
batch, the set of hidden vectors hi ,hj ∈ B vectors
where i ̸= j are considered a positive pair if their
corresponding stances si, sj are equivalent; other

pairs where si ̸= sj are considered negative pairs.
Within each batch B, the contrastive loss is com-
puted across all positive pairs in the batch such that:

Ltag = − 1

Nb

∑

hi∈B
l tag(hi)

l tag(hi) = log

∑
j∈B\i 1[si=sj ]exp(

h⊤
i hj

τ ||hi||||hj ||)
∑

j∈B\i exp(
h⊤
i hj

τ ||hi||||hj ||)

where τ is the temperature parameter.

5.3 TATA Attention

Finally, once our topic-agnostic/TAG and topic-
aware/TAW layers are fully trained, as shown in
Figure 1, we utilize them as embedding layers
within our full TATA model. Specifically, taking
as input instances xi such that {xi = (pi, ti, si)}
our TATA model, uses the outputted hidden vectors
htaw and htag in attention layers with contextual
embeddings of the passage and topic. This is such
that after getting the output of the TAW layer htaw

and our TAG layer htag, and outputting another
contextual embedding representation hpassage|topic
of the joint input of the passage-topic pair, and a
contextual embedding htopic the topic ti, we finally
utilize a scaled dot product attention (Vaswani et al.,
2017) between htaw and htopic as well between
htag and hpassage|topic:

rtopic =
∑

i

aih
(i)
taw,

ai = softmax
(
λh

(i)
taw · (Wtawhtopic)

)

rstance =
∑

i

bih
(i)
passage|topic,

bi = softmax
(
λh

(i)
passage|topic · (Wtaghtag)

)

where Wtag ∈ RE×E and Wtaw ∈ RE×E are
learned parameters, and λ = 1/

√
E. This enables

us to obtain a representation rtopic that captures the
relationship between the generated TAW embed-
ding and our topic; in this way, we manage to better
determine which aspect of the general TAW latent
space representation of the topic is important in
representing the topic for downstream stance clas-
sification. We further get the representation rstance
that captures how much the calculated stance fea-
tures extracted by our TAG embedding apply to our
given passage.

11284



Train Validation Test

# Examples 13,477 2,062 3,006
# Unique passages 1,845 682 786
# Zero-shot topics 4,003 383 600
# Few-shot topics 638 114 159

Table 1: Data statistics for the VAST dataset.

5.4 Label Prediction

Once rtopic and rstance are calculated, we concate-
nate them with hpassage|topic using a residual con-
nection. We then feed the resulting representation
into a two-layer feed-forward network with soft-
max activation to compute the output probabili-
ties for {Pro,Neutral, Against}. We minimize
cross-entropy loss while training.

6 Experiments

6.1 Pre-training

TAW Training Data. As pre-training data for our
TAW embedding layer, we utilize our TAW DTaw

dataset of passage pairs with shared topics. As pre-
viously stated, this dataset includes 100,000 pas-
sage pairs with shared topics as training data and
10,000 passage pairs as validation data.
TAG Training Data. As pre-training data for our
TAG embedding layer, we utilize our augmented
VAST dataset DV ASTaug consisting of 743,644
unique passage-topic-stance triplets. We utilize
the validation split of the original VAST dataset as
validation data.
Pre-training Details. We utilize
DeBERTa-v3-base as our contextual model
and to jointly embed our passage-topic pairs,
where our passage-topic pairs are mapped to a
768-dimensional embedding using the outputted
hidden state of the [CLS] token (He et al., 2022).
We use DeBERTa given its larger vocabulary
(128,100 tokens vs. 30,522 tokens in BERT (Devlin
et al., 2019)) and its better overall documented
performance on various downstream tasks (He
et al., 2022). While encoding the passage-topic
pairs, we use a maximum length of 512 possible
tokens as opposed to the first 200 tokens as in other
works (Allaway and McKeown, 2020). Unlike in
previous works (Allaway and McKeown, 2020;
Liang et al., 2022b), we further do not remove
stopwords and punctuation from our datasets,
electing to use the full unprocessed version of
original texts and their topics.

While pretraining the TAG and TAW layers, we
set the learning rate to 1× 10−5 and use AdamW

as the optimizer (Kingma and Ba, 2015). Due to
computational constraints, while pretraining, we
use a batch size of 16. While pre-training and using
a contrastive loss, we set the temperature parameter
τ to 0.07 as in Liang et al. (2022b). For our TAG
layer, we ended training after 2 epochs, and for
our TAW layer, we ended training after 1 epoch.
We completed all training on an Nvidia A6000
GPU. Once trained, we freeze the TAG and TAW
embedding layers.

6.2 Training
Training Data. While much of our pre-training
data was artificially generated or was unlabeled
data gathered from news websites, after we freeze
our TAG and TAW layers, for training our TATA
stance classifier, we use only the original VAST
dataset. As previously noted, this dataset consists
of 13,477 passage-topic-stance triplets. We give an
overview of this dataset in Table 1.
TATA Training Details. We use similar settings
training as we did for pre-training except for chang-
ing to a batch size of 32. In our feed-forward layers,
we utilize dropout with p = 0.30. While training,
we utilize early stopping with a patience of 3.

6.3 Testing
Testing Data. We utilize the testing split within the
VAST dataset. Following prior work (Liang et al.,
2022b; Allaway and McKeown, 2020; Liu et al.,
2021a), when reporting results on this dataset, we
calculate the macro-averaged F1 for each stance la-
bel. We present results separately for the Few-shot
(where the detector is evaluated on a large number
of topics for which it had few training examples)
and Zero-shot (where the detector is evaluated on
new, previously seen topics) settings.
Baseline and Comparison Models. We com-
pare our proposed TATA model with several other
baselines including TGA-Net (Allaway and McK-
eown, 2020), TOAD (Allaway et al., 2021), CKE-
Net (Liu et al., 2021a), BERT-GCN (Lin et al.,
2021), and JointCL (Liang et al., 2022b). As an
additional baseline, we further train a model based
on DeBERTa-v3-base that takes the hidden state
of the [CLS] for the combined passage-topic input
followed by a two-layer feed-forward neural net-
work to predict the stance. Finally, to understand
the respective importance of the TAW and the TAG
embedding layers, we further train a TAG archi-
tecture that takes our original TATA architecture
and removes the TAW embedding layer as well as a
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Zero-Shot VAST Few-Shot VAST

Pro Against Neutral All Pro Against Neutral All

BERT 0.546 0.584 0.853 0.661 0.554 0.597 0.796 0.646
TGA-Net 0.554 0.585 0.858 0.665 0.589 0.595 0.805 0.663
CKE-Net 0.612 0.612 0.880 0.702 0.644 0.622 0.835 0.701
BERT-GCN 0.583 0.606 0.869 0.686 0.628 0.643 0.830 0.697
TOAD 0.426 0.367 0.438 0.410 - - - -
JointCL 0.649 0.632 0.889 0.723 0.632 0.667 0.846 0.715

DeBERTa 0.680 0.683 0.900 0.755 0.659 0.657 0.869 0.728
TAW 0.672 0.709 0.903 0.760 0.656 0.677 0.869 0.736
TAG 0.681 0.687 0.901 0.756 0.665 0.655 0.868 0.729
TATA 0.695 0.711 0.905 0.771 0.665 0.683 0.873 0.741

Table 2: F1-scores of models on benchmarks from the VAST dataset. We bold the highest/best score in each column.
We obtain scores for BERT and TGA-Net from Allaway and McKeown (2020), scores for CKE-Net and BERT-GCN
from Liu et al. (2021a), and scores for TOAD and JointCL from Liang et al. (2022b).

TAW architecture that removes the TAG embedding
layer. Lastly, we note to improve the consistency
and robustness of our results, we train each model
with a different random seed a total of five times
and report the average of those five different runs
in our results.

7 Experimental Results

Our models achieve a noticeable increase in perfor-
mance over prior work. We present our results on
the VAST test dataset in Table 2. We observe that
by using the unedited text, including stopwords,
using a max token length of 512, and by finetuning
a DeBERTa model, we achieve similar results to
JointCL (Liang et al., 2022b). This illustrates that
utilizing a model with a larger token vocabulary
(128,100 in DeBERTa vs. 30,522 in BERT) can
largely assist with the stance detection task. How-
ever, we further observe that by utilizing the TAG
and TAW features in our full TATA models, we can
increase our performance, achieving a 0.771 F1

score in the Zero-shot setting and a 0.741 F1 score
in the Few-shot setting.
Ablation Studies. We perform an ablation study in
order to understand the relative importance of our
TAG and TAW layers. As seen in Table 2, our TAW
model performs better than our TAG model in both
Zero-shot and Few-shot scenarios suggesting the
importance of the TAW topic latent in predicting
stance. By removing this layer from our TATA
model, our model’s score in the Zero-shot and Few-
shot scenarios decreases by 0.015 F1 and 0.012 F1

respectively.
Given the reliance of our TAW model on the in-

formative TAW topic latent for predicting stance,
we perform another study to investigate whether
it is simply predicting the stance of input texts

using only the input topic text. We do this pri-
marily to ensure that our TAW model is actually
utilizing the input texts and is not relying pri-
marily on the topic embeddings. To do so, for
our TAW embedding layer rather than passing
[CLS]pi[SEP ]ti[SEP ] to the layer as input, we
pass in [CLS][SEP ]ti[SEP ]. As seen in Table 3,
predicting based on the topic significantly hurts our
results in the Zero-shot and Few-shot settings, with
our model nearly always predicting the Neutral
class. This behavior largely conforms to the defini-
tion of the Neutral class; without any input text, the
stance of an empty string to a given topic should be
neutral. This suggests that our TAW model is not
only picking up on the topic but is also, as expected,
heavily considering the text when predicting the
stance.

Examining our TAG model, we only observe
slight improvements over our DeBERTa model. In-
deed, plotting the t-SNE (Van der Maaten and Hin-
ton, 2008) of the entire VAST validation dataset, as
seen in Figure 2, while we do observe the forma-
tion of clear stance clusters during training on the
VAST validation set, these clusters are not exact. De-
spite this, we note that incorporating the TAG layer
embeddings to our TATA model did lead to better
downstream stance classification (an increase of
0.011 F1 and 0.005 F1 in the Zero-shot and Few-
shot settings respectively). This reinforces prior
work (Allaway and McKeown, 2023; Liang et al.,
2022b) that has found that general stance features,
incorporated with other features and knowledge,
can lead to better downstream stance classification.

7.1 Error Analysis

Challenging Linguistic Phenomena. As in All-
away and McKeown (2020), we analyze the perfor-
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Zero-Shot VAST Few-Shot VAST

Model Pro Against Neutral All Pro Against Neutral All

TAW 0.034 0.000 0.519 0.184 0.020 0.000 0.507 0.176

Table 3: Performing an ablation study testing whether our TAW model utilizes only the topic for determining the
stance of a given text, we find that our model does utilize the passage input, with this reduced model nearly always
predicting the Neutral class.

Against
Pro
Neutral

(a) Before Training

Against
Pro
Neutral

(b) One Epoch

Against
Pro
Neutral

(c) Two Epochs

Figure 2: As we train the topic-agnostic/TAG layer of our model on our augmented VAST training set, while not
separating perfectly (illustrating the need for additional features) clear Pro, Against, and Neutral clusters appear in
the t-SNE of the embeddings of the VAST validation dataset. As confirmed elsewhere (Allaway and McKeown, 2020;
Liang et al., 2022a), the Neutral category of examples is the most differentiable from Pro and Against categories.

Qte Sarc Imp mlS mlT
Model N=539 N=431 N=1231 N=952 N=1802

TGA-Net 0.661 0.637 0.623 0.547 0.624
BERT 0.625 0.587 0.600 0.541 0.610

DeBERTa 0.709 0.713 0.667 0.578 0.676
TAW 0.712 0.722 0.673 0.620 0.689
TAG 0.710 0.731 0.668 0.568 0.676
TATA 0.714 0.730 0.693 0.603 0.703

Table 4: Accuracies on various challenging linguistic
phenomena in the VAST test set. We give accuracies
to directly compare our results against Allaway and
McKeown (2020). We utilize scores for BERT and
TGA-Net from Allaway and McKeown (2020).

mance of our TATA network on five challenging
linguistic phenomena provided within the VAST test
dataset. The phenomena within the VAST dataset
for passage-topic pairs are as follows: (1) Qte: the
passage contains quotations, (2) Sarc: the passage
contains sarcasm, (3) Imp: the topic is not expressly
contained in the passage, (4) mlS: the passage is
among a set with multiple topics with different non-
neutral stance labels, and (5) mlT: the passage has
multiple topics. As seen across the various phenom-
ena, our set of models outperforms the TGA-Net
and BERT baselines from Allaway and McKeown
(2020), with TATA having the best overall perfor-
mance. We find that our TATA model performs
particularly better in cases where there are quota-
tions (Qte), where there are multiple topics (mlT ),
and where the passage does not expressively con-
tain the topic (Imp). This again suggests that our

TATA model is able to effectively utilize the TAW
informative latent space of topics. We note that our
TAW model, also performs second-best in each of
these scenarios, besting our TATA model in per-
formance on cases where individual passages have
topics with different non-neutral stances (mlS). In
these (mlS) cases, the model must learn to not
simply always predict the same stance for a given
text; and as seen in Table 4, while our topic-ware
models perform better in these scenarios compared
to all other models, across every model tested, they
perform the worst in on this particular challenging
linguistic phenomenon. We leave to future work to
explore how to encourage models to better differ-
entiate stances in passages with conflicting stances
on multiple topics.

Performance on Topics Included in TAW dataset.
We note that several of the Zero-shot topics in the
VAST dataset had lexically similar topics in our
TAW dataset. We thus determine if the number of
lexically similar topics included in the TAW dataset
correlated with our TATA model’s performance on
those topics. In this way, we test if learning the
specific tested topics within our latent space was
important in later predicting a stance involving the
topic. To identify lexically similar topics, as in All-
away and McKeown (2020), we represent each
topic in the Zero-shot test set using pre-trained
GloVe word embeddings (Pennington et al., 2014)
and determine the number of topics examples in
our TAW dataset with cosine similarity to these
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Target Pro Against Neutral

Donald Trump 148 200 260
Hillary Clinton 163 565 256
Feminist Movement 268 511 170
Legalization of Abortion 167 544 222
Atheism 124 464 145
Climate Change 335 26 203

Table 5: Data statistics for the SEM16t6 dataset.

topics greater than 0.90. We do not find a statis-
tically significant correlation between the number
of lexically similar topics in our TAW dataset and
whether our TATA model predicted the correspond-
ing VAST test instance’s stance correctly (p-value
=0.353). This illustrates that our TAW model’s la-
tent was not particularly biased toward the specific
topics that we included within our TAW dataset.
Performance in Few-shot vs. Zero-Shot Settings.
Given our model’s greater performance in the Zero-
shot setting than the Few-shot setting, we measure
whether the number of lexically similar training
examples with regards to a given topic within VAST
(e.g., where a lexically similar topic is as previously
defined in our paper and Allaway and McKeown
(2020) as having a GloVe cosine similarity above
0.9) is correlated with whether our system correctly
labels a given instance of that topic. If there is
a positive correlation, this may indicate that the
topics with few examples may be noisy/biasing our
results (as those with no similar training examples
at all have higher F1-scores than those in the Few-
shot setting). In the Few-shot setting, we find a
small Pearson correlation (0.186, p-value =0.021)
between the number of semantic similar training
examples and the percentage of a given topic’s test
examples that are labeled correctly by our TATA
model (0.2675, p-value=0.001 for the TAG model;
0.199, p-value=0.012 for the TAW model; 0.215,
p-value= 0.007 for the DeBERTa model). Together
with the other models (Allaway and McKeown,
2020; Liu et al., 2021a; Liang et al., 2022b) that
perform worse in the Few-shot setting, this suggests
some noisiness and a tendency of our model to
be biased on topics in VAST with only one or two
training examples. As reported by Allaway and
McKeown (2020), there was high (75%) but not
perfect agreement among labelers of the original
VAST, further helping to explain this phenomenon.
Generalizability. As was seen in Table 2, our
models have better performance in Zero-shot and
Few-shot settings than other baselines on the VAST
dataset. However, to further confirm these re-

Zero-Shot SEM16t6

DT LA HC FM CC A Avg

JointCL 0.505 0.495 0.548 0.538 0.397 0.545 0.505
TOAD 0.495 0.462 0.512 0.541 0.309 0.461 0.463

DeBERTa 0.660 0.606 0.698 0.656 0.347 0.528 0.566
TAW 0.609 0.642 0.664 0.644 0.360 0.428 0.558
TAG 0.623 0.618 0.727 0.647 0.423 0.479 0.586
TATA 0.638 0.629 0.654 0.669 0.416 0.521 0.588

Table 6: Macro average of the Pro and Against classes
for the SEM16t6 dataset for our set of trained models.
We bold the highest/best score in each column.

sults, we evaluate our model on the Zero-shot
SEM16t6 dataset (Mohammad et al., 2016) which
contains passages on six pre-defined topics: Don-
ald Trump (DT), Hillary Clinton (HC), Femi-
nist Movement (FM), Legalization of Abortion
(LA), Atheism (A), and Climate Change (CC).
Each passage’s stance can again be classified in
{Pro,Neutral, Against}. We give dataset statis-
tics for the SEM16t6 dataset in Table 5.

We note that given that our TAG embeddings
were trained on the VAST dataset that contained
SEM16t6 topics, we retrain our TAG embedding
layer on a reduced dataset that removed these
SEM16t6 topics (30 training instances removed).
Further, given that our TAG and TATA models
werere implicitly trained on the rest of the VAST
dataset (through the TAG embedding layer), in
order to give a fairer comparison, we combine
the reduced VAST (i.e., without the SEM16t6 top-
ics) and the SEM16t6 training sets when training
each model. For each topic, we use the leave-one-
target-out evaluation setup (Allaway and McKe-
own, 2023; Liang et al., 2022b) and report the
macro average of the Pro and Against classes. As
seen in Table 6, our TATA model, on average, again
outperforms our other models and baseline models.

8 Conclusion

Combining pre-trained layers that learn topic-
agnostic/TAG features and topic-aware/TAW fea-
tures, our TATA model achieves state-of-the-art
performance on the VAST test dataset. TATA per-
forms better than prior works not only in Few-shot
settings but also in Zero-shot settings. Our most
common failure mode is cases where a given pas-
sage has both positive and negative stances within
it. For future work, during training, we plan to in-
corporate additional passages with multiple stances
toward different topics.

11288



Limitations

We note several limitations of our approach here:
Use of News Articles for TAW Layer. We note
that while our use of news articles from a variety
of sources enables us to build an informative latent
across a variety of topics, our dataset is probably
largely biased against topics that are not regularly
spoken about in the news such as different science
concepts or medical information.
Use of Paraphrases for TAG and Noisy Topic
Identification. We note that using paraphrases
while developing our augmented VAST dataset may
unintentionally change the meaning of the original
text. While we guard against this by utilizing con-
servative parameters of our Dipper Paraphraser,
we acknowledge that it may result in incorrect in-
formation in our augmented VAST dataset.
Zero-Shot vs. Few-Shot Setting Performance.
We note that, as in prior work such as CKE-
Net (Liu et al., 2021a) and JointCL (Liang et al.,
2022b), we achieve better results in a Zero-shot
setting than in a Few-shot setting. This may indi-
cate partially disagreeing labels among multiple
annotators present within the original training VAST
dataset that may be biasing the results for the topics
in the Few-shot setting.

Ethics Statement

We utilize a dataset of public news articles collected
by Hanley and Durumeric (2023) to train a topic-
aware encoding layer. We ask for permission to
utilize and release sections of their dataset.

We note that our work can be utilized to under-
stand the stance of news articles and comments
on various phenomena ranging from individual po-
litical figures like Joe Biden or Donald Trump to
topics such as immigration and vaccines. How-
ever, while our work substantially improves upon
past works for stance detection, before it can be
utilized or deployed, at scale, the accuracy for Pro
and Against classes still needs to be improved as
we still only achieve near 0.70 F1 scores for those
classes.
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A T5-Flan

Rather than considering all noun phrases in the sub-
ject and object sections of passages as potential top-
ics as in Allaway and McKeown (2020), we instead
prompt T5-Flan-Xl (Chung et al., 2022), an 11 bil-
lion parameter fine-tuned large language model
to identify the topic for a given article passage
given a list of candidate noun phrases extracted
by Spacy. The T5-Flan-XL model that we uti-
lize was fine-tuned on 193 tasks present in the T0
dataset (Sanh et al., 2022), which includes topic
classification. Given how T5-Flan-XL was fine-
tuned, we utilize the following prompt to extract
the topic using the noun-phrases from the text as
potential options: Select the topic that this
about:{text}\n\n{options}\n\n,{answer}.

B Parrot Paraphraser

We utilize the Parrot Paraphraser (Damodaran,
2021) to generate paraphrases of topics. We utilize
the Parrot Paraphraser for our topic paraphrases
as it was fine-tuned on several shorter datasets. The
Parrot Paraprhaser5 was trained to develop seman-
tic similar and logically consistent paraphrases by
fine-tuning on NLU tasks. The Parrot paraphrase
has input parameters for:

5https://huggingface.co/prithivida/parrot_
paraphraser_on_T5
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• Adequacy: Is the output semantically equiva-
lent to the input?

• Fluency: How fluent is the English of the para-
phrase?

• Diversity: How much has paraphrasing
changed the original input?

We use the default setting for the Parrot Para-
phrser, only changing the fluency to a value of 0.50
given that we input topic phrases rather than full
sentences.

C Dipper Paraphraser

We utilize the Dipper (Krishna et al., 2023) Para-
phraser6, a T5-based model (Raffel et al., 2020)
in order to paraphrase the original text in the VAST
dataset. The Dipper paraphrase model was trained
to give paraphrases of paragraph-level data by uti-
lizing different translations of non-English nov-
els into English aligned at a paragraph level. The
Dipper model in addition has two parameters L
and O that correspond to the estimated lexical di-
versity (using unigram token overlap) and the or-
dering of words (using the Kendall-Tau correlation
of tokens). This is such that a L = 40 value corre-
sponds to a 40% lexical modification of the original
text and similarly for O.

The authors of Dipper found that using a high
lexical diversity value (on a scale of 0 to 100) in the
Dipper model has a tendency to change the proper
nouns within a given paragraph. Given that for our
pretraining of the TAG embedding layer, we require
the stance of the original text to be maintained
toward the nouns within it, as recommended by
Krishna et al. (2023), we use a low lexical diversity
value of 20. We use an order diversity of O = 40.

6https://huggingface.co/kalpeshk2011/
dipper-paraphraser-xxl
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D Example Parrot Paraphrases

Original Topic Paraprhase List

israelis’ retributions the retribution of Israel , israel’s revenge

farm aide aide, a farm assistant, farm support

taxing the rich taxation of the wealthy , taxing wealthy

favors for one another favors for each other, a favor for each other

government funding source of money, government grants,federal funding, government money

the royals the royal family, royalty

pain pills pain reliever, pain medication, pain relief pills

illness medical condition, disease, ill

china’s manufacturing manufacturing in china, china’s production

people being obese obesity, obese, people who are fat, people who are overweight

Table 7: Examples of different topic paraphrases generated by the Parrot paraphraser (Damodaran, 2021).
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E Example Dipper Paraphrases

Original Text Paraprhase

Absolutely it’s needs to be defined and regulated in its use, as currently the
word ’natural’ when used on food products is totally confusing and meaning-
less. Clearly they are trying to imply the item is ’healthy’ or possibly ’organic’,
but when you see food ’manufacturers’ like Frito-Lay or Campbell’s with
products labelled ’natural’, that alone should set off alarms that all is not what
it seems. ;-)

The word “natural” has absolutely to be defined and regulated in its use.
Applied to food products, the word is now so confusing and meaningless that
it’s useless. The mere fact that a food “manufacturer” like Frito-Lay or a
can manufacturer like the Campbell Soup Company label their products as
“natural” should alert you to the fact that not all is as it seems. Obviously
they are trying to suggest that the product is “healthy,” or possibly “organic.”
—Suomi-Maestro!

..one must ask how much money they must make to demonstrate that they are
among the best managed companies on the planet." They must make enough
money to insure that they can never fail and threaten the stability of the worlds
economy again. That much money.

... to see that they are one of the best-managed companies on the planet, one
must ask how much profit they must make.’ If you wish to keep the economy
stable you must never again threaten to go bankrupt. So you must make enough
money to guarantee that. This much money.

I had a beautiful home birth with a licensed midwife in 2011. I was so
inspired by the experience that I became a certified birth doula and have
attended 17 births (many at home or at a birth center). All women should
have the opportunity to choose where they feel safest birthing. SO grateful for
midwifery!

In 2011, I had a beautiful homebirth with a licensed midwife. I was so
enthusiastic about the whole thing that I became a certified birth doula and
have been to seventeen more births since then, mostly at home or in a birthing
center. “The women should be able to choose where they want to give birth.
The gratefulness for midwifery!

"As a single mother I adopted my nearly two year old daughter from China
at 49 and three years later I brought home my son from China – and he was
nearly 13. Today he is one semester away from graduating college and she
just had her Bat Mitzvah and is a rising eighth grader. Okay, so I am the oldest
mom in her class – in her school. Its not my fault. These are the children I was
meant to have and I just had to wait for them to be available so I could bring
them home. One of the best things about being an older parent – one really
doesn’t care what others think.

In my forties I adopted my daughter from China. She was nearly two when
she came to live with us. Three years later I brought home my son, then aged
thirteen. Then she had her Bat Mitzvah and began the eighth grade. He was
only one semester away from graduating from college. I am the oldest mother
in her class—in her school. It is not my fault. ‘No, I am not sorry,’ he cried, ‘I
only wish that I could have my own children. I have been waiting for so long
for them to become free so that I could take them home.’ As an old parent one
is no longer concerned with the opinions of others.

In considering the threat posed by Iran, it’s important to remember that Iran
has not invaded any of its neighbors. We have supported Iraq’s invasion of
Iran, under Saddam and even assisted Iraq in targeting chemical weapons
attacks upon Iranian forces. We also supported the Shah, throughout his
tenure, including over-throwing an elected government and installing the Shah.
Iran has far more reason to distrust and fear us than the other way around.
It also needs to be understood that Iran is presently in Iraq and Syria at the
invitation of the official governments of those nations (with the Iraqi leader
having basically been chosen by us), while the Syrian government does not
want us in Syria and the Iraqi government is ambivalent at best about our
presence. Waging combat through surrogates is actually the approach of a
weak and cautious nation, not a strong and confident regional power. In terms
of Americans and Westerners killed and threatened, Saudi Arabia is a far
worse actor than Iran. In terms of the killing in Syria, Saudi Arabia is also a
far worse actor than Iran.

In considering the threat posed by Iran it is important to remember that Iran
has never invaded any of its neighbours. Iraq, under Saddam, invaded Iran
and we even helped Iraq to attack Iran with chemical weapons. Throughout
the Shah’s reign, we supported him. We also supported his overthrowing an
elected government and putting himself in power. In fact, we have far more
reason to distrust and fear Iran than the other way around. In fact, Iran is in
Syria and Iraq now at the official invitation of their respective governments
(the one in Baghdad having basically been chosen by us), while the Syrian
government does not want us in Syria and the Iraqi government at best is
ambivalent about our presence there. A weak and wary nation is in fact the
true adversary of a strong and confident local power. But the kingdom of Saudi
Arabia is worse than Iran in killing and threatening Americans and Westerners.
Certainly in the slaughter of Syria, Saudi Arabia is a far worse offender than
Iran.

This is one of the most intelligent articles I have read on Syria. Hoffman is
right – this is a civil war, and only the Syrians can resolve it. We need to stay
out of this - it is not our concern.

The most intelligent article on Syria I have ever read. ... But it’s a civil war.
Only the Syrians can solve it. ‘This isn’t our business. We need to stay out of
this.

Do ANY programs make money after taking into account: Amortization of
physical plant including all athletic venues and buildings occupied exclusively
by coaches, staff and athletes. Maintenance, heating, cooling, groundskeep-
ing, police & fire protection for all athletic facilities and the territory that
surrounds them. Administrator time spent dealing with athletic scandals, crim-
inal athletes, and spoiled coaches. Subsidized travel to post season games
by administrators and board members. Also consider: The total amount of
tax deductible contributions to higher ed is likely to be a relatively fixed sum
within any given set of tax laws. Therefore athletic department contributions
subtract from contributions to legitimate academic purposes and should be
counted as a cost, not a benefit.

Among the costs of a university program, you should include the depreciation
of the physical plant, that is, all the sports arenas and the buildings occupied
exclusively by coaches, staff and athletes. Do any of these programs show a
profit, after you have included the depreciation? For all sports venues and their
surroundings, maintenance, heating, air-conditioning, gardening, police, and
fire protection. At the same time, the time of the manager is spent on athletic
scandals, criminal athletes, and spoiled coaches. Administrators and board
members traveling to post-season games. Contributions to higher education are
likely to be relatively fixed within any given set of tax laws. Consider also the
following. Contributions to the athletic department detract from contributions
to legitimate academic purposes and should therefore be regarded as a cost,
not a benefit.

Table 8: Examples of different paraphrases of texts from the VAST dataset generated by the Dipper paraphraser (Kr-
ishna et al., 2023).

11294


