
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10066–10086
December 6-10, 2023 ©2023 Association for Computational Linguistics

RECEVAL: Evaluating Reasoning Chains via
Correctness and Informativeness

Archiki Prasad Swarnadeep Saha Xiang Zhou Mohit Bansal
UNC Chapel Hill

{archiki, swarna, xzh, mbansal}@cs.unc.edu

Abstract

Multi-step reasoning ability is fundamental to
many natural language tasks, yet it is unclear
what constitutes a good reasoning chain and
how to evaluate them. Most existing methods
focus solely on whether the reasoning chain
leads to the correct conclusion, but this answer-
oriented view may confound reasoning quality
with other spurious shortcuts to predict the an-
swer. To bridge this gap, we evaluate reasoning
chains by viewing them as informal proofs that
derive the final answer. Specifically, we pro-
pose RECEVAL (Reasoning Chain Evaluation),
a framework that evaluates reasoning chains via
two key properties: (1) correctness, i.e., each
step makes a valid inference based on informa-
tion contained within the step, preceding steps,
and input context, and (2) informativeness, i.e.,
each step provides new information that is help-
ful towards deriving the generated answer. We
evaluate these properties by developing metrics
using natural language inference models and
V-Information. On multiple datasets, we show
that RECEVAL effectively identifies various
error types and yields notable improvements
compared to prior methods. We analyze the im-
pact of step boundaries, and previous steps on
evaluating correctness and demonstrate that our
informativeness metric captures the expected
flow of information in high-quality reasoning
chains. Finally, we show that scoring reasoning
chains based on RECEVAL improves down-
stream task performance.1

1 Introduction

The ability to reason is fundamental to many nat-
ural language processing tasks (Lin et al., 2019;
Duan et al., 2020). A reasoning chain composes
multiple reasoning steps together to accomplish an
end task such as solving complex reasoning prob-
lems involving commonsense (Talmor et al., 2019;
Huang et al., 2019; Aggarwal et al., 2021) and arith-
metic (Hendrycks et al., 2021; Cobbe et al., 2021).

1Code: https://github.com/archiki/ReCEval

Question: What keeps the Moon orbiting Earth?

Context: The moon is a kind of moon. Earth is a kind
of planet. Moons orbit planets. Gravity causes orbits.

Model-generated Step-by-Step Rationales: 
- Step 1: [Moon is a kind of moon] and [earth is a kind
  of planet], so [the moon and earth are planets].
- Step 2: [Gravity causes orbits], so [gravity causes
  moon to orbit earth]. 
Answer: Earth's gravity.

Figure 1: Model-generated step-by-step reasoning
from Entailment Bank (Dalvi et al., 2021). Rea-
soning errors include: incorrect step inference
(requires inferring ‘moon orbits earth’), and
incorrect inference and uninformative (‘moon is a

planet’ does not help answer the question). Reasoning
Content Units (RCUs) are shown as ‘[.]’.

Recent advances in scaling language models have
led to emergent reasoning capabilities, whereby
a model is able to generate a reasoning chain in
a few-shot manner (Wei et al., 2022; Chowdhery
et al., 2022; Kojima et al., 2022). In most previous
works, a model’s reasoning capability is judged
by its performance on the end task (Huang and
Chang, 2022). However, this evaluation alone is
not ideal for understanding the reasoning ability of
models, as it implies a narrow view of correctness
solely based on the answer, and may confound the
model’s reasoning capabilities with unfaithful or
spurious reasoning shortcuts leading to the correct
answer (Creswell and Shanahan, 2022; Lyu et al.,
2023; Turpin et al., 2023). Thus, it is desirable to
complement answer-oriented evaluation with an in-
trinsic evaluation of the quality of reasoning chains.

For a more comprehensive evaluation, prior
works use human-written reasoning chains
from Entailment Bank (Dalvi et al., 2021),
StrategyQA (Geva et al., 2021), etc., to develop
supervised metrics that evaluate model-generated
reasoning chains with respect to human-written
ones (Clinciu et al., 2021; Welleck et al., 2022).
However, this evaluation strategy may be infeasible
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due to the time-consuming and expensive nature
of obtaining human-written chains (Welleck et al.,
2021; Tian et al., 2021; Han et al., 2022). Moreover,
the effectiveness of reference-based evaluations
heavily relies on the selection and coverage of
gold chains, which may not be unique (Dalvi et al.,
2021). Golovneva et al. (2023) took the first step
towards reference-free evaluation of reasoning
chains by developing metrics based on generic
reasoning errors like redundancy, hallucination,
etc. In this work, we further explore this direction
with the goal of formalizing desired properties
of reasoning chains and introducing additional
metrics to assess these properties effectively.

To evaluate reasoning chains in a reference-free
manner, we first define the characteristics of good
reasoning chains. In particular, we view reason-
ing chains as informal proofs that lead to the final
answer (Welleck et al., 2022; Jiang et al., 2023).
While reasoning chains operate over natural lan-
guage and may not adhere to the strict nature of
formal proofs (Welleck et al., 2021), they serve a
similar role in providing rationales for the final an-
swer. Conceptually, each step in a reasoning chain
should make a valid inference towards deriving the
answer by leveraging prior information (i.e., pre-
vious steps or input context). In this work, we for-
malize this concept and propose a framework, RE-
CEVAL (Reasoning Chain Evaluation) that defines
good reasoning chains based on two properties: (1)
Correctness: Each step generates a valid inference
based on the information present (a) within the step
(intra-step) and (b) past information present in the
input context or derived in previous steps (inter-
step); and (2) Informativeness: Each step provides
new information that is helpful towards deriving
the final answer (§3). Fig. 1 contains an example
where these properties are violated.

RECEVAL introduces a collection of reference-
free metrics that measure the correctness and in-
formativeness of reasoning chains (§4). To mea-
sure correctness, we decompose reasoning chains
into fine-grained components called Reasoning
Content Units (RCUs), representing specific claims
(as shown in Fig. 1). We measure informativeness
by computing the information gain from includ-
ing each step in the reasoning chain towards the
final answer. We develop these metrics using a
combination of Natural Language Inference mod-
els (Bowman et al., 2015; Williams et al., 2018)
and information-theoretic measures that rely on V-

information (Xu et al., 2020; Hewitt et al., 2021).
We evaluate RECEVAL against multiple

reference-free metrics (§6). Our meta-evaluation
procedure is based on correlation with automat-
ically perturbed and human-annotated errors
in English reasoning chains from Entailment
Bank (Dalvi et al., 2021), GSM-8K (Cobbe et al.,
2021), and DROP (Dua et al., 2019) respectively.
On Entailment Bank, our metrics exhibit the
highest correlation for 5 out of 6 error types,
e.g., significantly boosting correlation from
0.62 → 0.89 for hallucinations. Additionally,
on GSM-8K, and DROP, our metrics improve
correlation from 0.28 → 0.36, and 0.19 → 0.22
for the overall quality measure respectively,
excelling in identifying 5 out of 7 error types.
Next, we conduct an extensive analysis of our
metrics, showcasing how RCUs facilitate the
evaluation of correctness and how high-quality
human-written reasoning chains typically exhibit a
positive trend in information gain (§6.2). Finally,
we demonstrate that selecting high-scoring chains
based on RECEVAL enhances downstream task
performance (§6.3).

In summary, our contributions are:
1. Introducing RECEVAL, a framework that eval-

uates reasoning chains based on two desired
attributes: correctness and informativeness.

2. Proposing reference-free metrics to measure cor-
rectness and informativeness using NLI models
and V-information. These metrics effectively
identify various errors and surpass prior meth-
ods in meta-evaluation.

3. Conducting a comprehensive study of our met-
rics, demonstrating that RECEVAL can improve
the downstream performance of reasoning tasks.

2 Reasoning Chains: Preliminaries

In this section, we formally define the concepts of
reasoning chains, RCUs, and V-information.

Reasoning Chain. Given a natural language rea-
soning task, let X denote the input context de-
scribing the problem. We define a reasoning chain
R = {s(1), · · · , s(n)} as a multi-step rationale, con-
sisting of n steps, used to arrive at a predicted
answer â. Chains can be human-written or model-
generated (as in CoT prompting (Wei et al., 2022)).

Reasoning Content Unit (RCU). We assume
each step s(i) contains one or more claims, which
we refer to as Reasoning Content Units (RCUs),
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: [The northern hemisphere is a
kind of hemisphere of earth]

: [A hemisphere is a kind of place], so
[northern hemisphere is not a place on earth]

: [A place in summer has the most
sunlight], so  [northern hemisphere has the

most sunlight in summer]

Q: Which season receives the most hours
of sunlight in the Northern Hemisphere?

A: Summer

: The northern hemisphere is a
kind of hemisphere of earth

: A hemisphere is a kind of place, so the
northern hemisphere is a kind of place

: A place in summer has the most sunlight,
so northern hemisphere has the most sunlight

 in summer

Q: Which season receives the most hours
of sunlight in the Northern Hemisphere?

A: Summer

: The northern hemisphere is a kind of place
Intra-step Correctness

Evaluator

= 0.21

Inter-step Correctness
Evaluator

= 0.36

= 0.28

Informativeness
Evaluator

(a) (b)

Figure 2: Evaluation of a reasoning chain using the RECEVAL framework: (a) Correctness of the second step
using intra-correctentail and inter-correct metrics. Each step is divided into premise-RCUs and conclusion-RCU,
denoted by ‘[.]’. (b) Informativeness of the third step in relation to preceding steps using info-gainPVI (see §4).

shown in Fig. 2 via ‘[.]’. RCUs are conceptually
similar to Summary Content Units (SCUs) used
in fine-grained summary evaluation (Nenkova and
Passonneau, 2004; Shapira et al., 2019; Zhang and
Bansal, 2021). Visualizing a reasoning chain as a
sequence of steps and a step as a group of RCUs al-
lows for fine-grained analysis and verification of a
model’s reasoning abilities. The RCUs in a step s(i)

typically can be split into a single conclusion-RCU,
denoted by RCU(i)

c , and t other premise-RCUs, de-
noted by RCU(i)

p = {RCU(i)
pj}t

j=1, where t ≥ 0. For
example, in Fig. 2(a), step s(3) contains two RCUs:
the first (“a place ... most sunlight”) is the premise,
and the second (“northern ... in summer”) is the
conclusion. We discuss how to identify RCUs in
§4.4 and their usefulness to RECEVAL in §6.2.

Pointwise V-Information (PVI). In this paper,
we utilize V-Information, an information-theoretic
concept that we introduce briefly here (with addi-
tional details in Appendix A). Given two random
variables X and Y , Xu et al. (2020) propose an
empirical approximation of the conditional entropy
HV(Y |X) via a family of models V that estimates
their probability distribution. Thus, we compute
the amount of information in X about Y as:

IV(X → Y )=HV(Y |∅)−HV(Y |X)

Ethayarajh et al. (2022) propose pointwise V-
information (PVI) to measure the degree of usable
information present in individual data points (x, y):

PVI(x → y) = −log g′[∅](y) + log g[x](y)

using trained models g, g′ ∈ V . These models
take x or ∅ (e.g., empty string) as input to yield
the probability of generating y. This extends to
conditional PVI relative to an instance z as:

PVI(x → y|z) = − log g′[z](y) + log g[z, x](y)

Unless mentioned otherwise, we use T5-large (Raf-
fel et al., 2020) as our model family V .

3 Properties of Good Reasoning Chains

Reasoning chains are informal proofs leading to the
final answer. We propose evaluating their quality
based on correctness and informativeness.

Correctness. For a reasoning chain to be correct,
every step must be correct. Further, we say a
step s(i) is correct if its corresponding conclusion
RCU(i)

c is correct. Two factors contribute to step
correctness: (1) intra-step correctness, which eval-
uates if RCU(i)

c is correct based on the premise units
RCU(i)

p within the step, and (2) inter-step correct-
ness, which evaluates if RCU(i)

c is correct given the
previous context (input X and previous steps s(<i)).
Intuitively, intra-step correctness evaluates consis-
tency of claims within the step, while inter-step cor-
rectness measures global consistency. In Fig. 2(a),
RCU(2)

c in s(2) does not follow from RCU(2)
p ,

incorrectly concluding that northern hemisphere
is not a place on earth and also contradicts RCU(1)

c .

Informativeness. In addition to correctness, we
also evaluate the complementary property of infor-
mativeness. This property measures the helpfulness
and importance of each reasoning step in produc-
ing the final answer. Not all (plausible) inferences
made in a step are equally relevant to the question
at hand, so informativeness captures how much a
particular step contributes towards getting closer to
the answer. Fig. 2(b) demonstrates the role of infor-
mativeness. While the third step s(3) does not alter
correctness, it also does not move us closer to the
answer beyond the second step. Thus, evaluating
reasoning based on informativeness helps identify
issues such as repetition or redundancy.

Next, we describe the technical details of our
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metrics that evaluate every reasoning step by itself
(intra-step correctness), how it relates to the input
and prior steps (inter-step correctness), and how it
aids in solving the problem (informativeness).

4 RECEVAL: Evaluation Metrics

We now introduce our RECEVAL (Reasoning
Chain Evaluation) framework that builds upon the
desired properties of reasoning chains.

4.1 Evaluation of Intra-Step Correctness
We propose two methods to measure the intra-step
correctness of a reasoning step based on two com-
plementary views of correctness.

Entailment-based Intra-Step Correctness. Our
first method aims to capture correctness by com-
puting the entailment probability of the conclusion-
RCU (RCU(i)

c ) given the premise-RCUs (RCU(i)
p )

within a step s(i) as follows:

intra-correct(i)entail = Pentail(RCU(i)
p ; RCU(i)

c )

The premise-RCUs are concatenated and the en-
tailment probability Pentail is computed using an
off-the-shelf NLI model (Laurer et al., 2022). We
strictly define entailment, whereby a conclusion-
RCU neutral to the premise-RCUs receives a low
probability. This design choice accounts for incor-
rect reasoning steps that may contain hallucinations
or unsupported non-factual claims.

PVI-based Intra-Step Correctness. Our pre-
vious method requires strict entailment between
premise-RCUs and conclusion-RCU. However, in
natural language, reasoning steps can be informal
and still be considered correct with some premise-
RCUs omitted. To allow for such flexibility, we
introduce a relaxed criterion that evaluates the ease
of drawing a conclusion from the premise. Using
PVI (introduced in §2), we evaluate the ease of
generating a conclusion-RCU based on the useful
information already present in the premise-RCUs.
Formally, we express our metric as:

intra-correct(i)PVI = PVI(RCU(i)
p → RCU(i)

c )

4.2 Evaluation of Inter-Step Correctness
The aforementioned methods assess local correct-
ness based on premise-RCUs within a step. In rea-
soning chains with numerous steps, it is crucial to
ensure that any new conclusion-RCU remains con-
sistent with all known information, whether in the
input X or in all prior conclusion-RCUs RCU(<i)

c .
To measure this ‘global’ inter-step correctness, we

verify the absence of contradictions between the
current RCU(i)

c and prior information, including X
and RCU(<i)

c . For example, Fig. 2(a) for step s(2),
we evaluate the consistency of RCU(2)

c with RCU(1)
c .

Similar to §4.1, we utilize an NLI model to obtain
the contradiction probability (Pcontr.), to calculate:
inter-correct(i) = 1−maxr(Pcontr.(r; RCU(i)

c ))

where, r ∈ X ∪ {RCU(j)
c }i−1

j=1. We evaluate only
conclusion-RCUs, excluding premise-RCUs from
prior steps due to their overlap with input context
X . Empirically, we verify that excluding premise-
RCUs does not impact performance.

4.3 Evaluation of Informativeness
As mentioned in §2, a good reasoning chain not
only ensures correctness but also promotes infor-
mativeness towards the final answer. To compute
this metric, we employ conditional PVI (see §2).

PVI-based Information Gain. In order to cap-
ture the contribution of a reasoning step, we mea-
sure the gain in information after adding it to the
chain (constructed so far). A large positive gain
indicates that the step makes predicting the answer
easier. For instance, the low value of information
gain of step s(3) in Fig. 2(b) suggests that the step is
redundant. Inspired by Chen et al. (2022), who use
conditional PVI relative to the question and gold an-
swer, we compute information provided by a step
s(i) toward the predicted answer â, conditioned on
the previous steps s(<i), denoted as:

info-gain(i)
PVI = PVI(s(i) → â|s(<i))

4.4 RECEVAL: Overall Algorithm
We now describe our overall RECEVAL algorithm
based on the aforementioned step-level metrics.

Identifying RCUs. We begin by splitting each
step into constituent RCUs using an off-the-shelf
Semantic Role Labeling (SRL) model that decom-
poses sentences into semantic triplets with ‘subject-
verb-object’ frames (Shi and Lin, 2019; Zhang
and Bansal, 2021). Multiple frames are gener-
ated for each sentence, from which we extract non-
overlapping frames as our units. These extracted
RCUs within each step are classified as premise or
conclusion RCUs based on their location within the
sentence and sentence structure (see Appendix A).

Overall Reasoning Chain Evaluation. After
decomposing a step into RCUs, we assess their
correctness and informativeness using the met-
rics outlined in §4. The step-level evaluations are
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then combined to determine the overall quality of
the reasoning chain. Following Golovneva et al.
(2023), we posit a reasoning chain is only as good
as its least correct or least informative step, i.e., for
each metric we use ‘min’ aggregation across steps
(see Algorithm 1 in Appendix A). These chain-
level scores for each metric facilitate the identifica-
tion of different error types (results in §6).

Additional implementation details of RECEVAL

including model checkpoints, identifying RCUs,
and computing PVI are present in Appendix A.

5 Meta-Evaluation Setup

We evaluate a metric’s ability to detect errors in
reasoning chains using the meta-evaluation frame-
work used by Golovneva et al. (2023). For each
error category, we compute the correlation between
ground-truth annotations (§5.1) and metrics (§5.2).

5.1 Meta-Evaluation: Datasets

We use three datasets, Entailment Bank (EB), GSM-
8K, and DROP to evaluate RECEVAL. EB is a
deductive reasoning dataset containing multi-step
reasoning chains. Golovneva et al. (2023) emulate
reasoning errors on EB via programmatic perturba-
tions (henceforth referred to as EB-regular) creat-
ing errors such as hallucinations (HALL), negation
(NEG), swap (SWAP), verbatim repetition (REP).
Conversely, using the same error categories, we
generate more realistic and challenging errors by
applying perturbations on intermediate inferences
(referred to as EB-challenge). This also includes in-
teresting variations of informativeness errors such
as adding a paraphrase of a step (PAR), or a sen-
tence irrelevant to the reasoning problem (RED). In
both versions, we consider only one error at a time.

GSM-8K contains grade school math word prob-
lems requiring mathematical reasoning. We evalu-
ate model-generated CoT steps (Wei et al., 2022)
using human judgments from Golovneva et al.
(2023). DROP (Dua et al., 2019) contains discrete
reasoning questions over a paragraph. We evalu-
ate reasoning chains generated by Golovneva et al.
(2023) using GPT-3 (Brown et al., 2020) against
human judgement annotations. These annotations
include evaluations for factuality issues (FACT),
logical deduction errors (LOGIC), hallucinations
(HALL), redundant or irrelevant information (RED),
unnecessary paraphrasing (REP), commonsense er-
rors (COM), and arithmetic errors (MATH). Further-
more, the dataset contains two overall scores mea-

suring the quality (QUAL) and coherence (COH)
of the reasoning chain on a Likert scale. Note that
in GSM-8K and DROP, a single model-generated
reasoning chain can contain multiple errors.

For a summary of errors, refer to Table 19 (Ap-
pendix B). Additional details about both datasets
including examples are also present in Appendix B.

5.2 Meta-Evaluation: Baselines
Following Golovneva et al. (2023), we choose
baseline text-generation metrics measuring n-gram
match (ROUGE-2 Lin (2004)), and model-based
metrics such as BERTScore (Zhang* et al., 2020),
BARTScore (Yuan et al., 2021), and CTC (Deng
et al., 2021). Each metric compares the reasoning
chain R (as a paragraph) with the input context X .
We also compare against semantic similarity (SS),
alignment (SA), and logical inference (LI) metrics
from ROSCOE. For ROSCOE-SA, and -SS, we use
the fine-tuned text-similarity models (Golovneva
et al., 2023). We further group the reference-free
metrics from ROSCOE that measure redundancy
(repetition-token and -step) as ROSCOE-REP. This
enables a direct comparison with ROSCOE on two
desired properties: correctness and informativeness.
To evaluate correctness, we compare with ROSCOE-
SA, -SS, and -LI, while for informativeness, we
compare with ROSCOE-SA, -SS, and -REP.

5.3 Meta-Evaluation: Correlation Measure
After scoring reasoning chains with either RECE-
VAL or baseline metrics, we evaluate whether the
scores indicate the presence or absence of each er-
ror type. We again follow past work to employ
Somer’s-D correlation (Somers, 1962), i.e., we as-
sess a metric S against the random variable denot-
ing the chain’s error status (E ∈ 0, 1). Somer’s-D
correlation, computed using Kendall’s τ coefficient,
is defined as: DSE = τ(E,S)/τ(E,E). When
multiple metrics are available (as in ROSCOE or
RECEVAL), we compute the correlation with each
variant and report the highest correlation obtained.

6 Results and Discussion

6.1 Effectiveness of RECEVAL

In this section, we present our main meta-
evaluation results on EB, GSM-8K, and DROP.

Entailment Bank. Table 1 presents the meta-
evaluation results for different error types in the
EB-challenge dataset. Our RECEVAL metrics out-
perform text-generation baselines on both correct-
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Metric HALL NEG SWAP

ROUGE-2 -0.01 -0.02 0.14
BERTScore 0.09 0.02 0.07
BARTScore 0.00 -0.01 0.07
CTC 0.09 -0.04 -0.05

ROSCOE-SA 0.62 0.40 0.22
ROSCOE-SS 0.34 0.40 0.09
ROSCOE-LI 0.20 0.82 0.16

RECEVAL-correctness 0.89 0.88 0.39

(a) Correctness

Metric REP PAR RED

ROUGE-2 0.43 0.21 0.11
BERTScore 0.24 0.16 0.12
BARTScore 0.11 0.12 0.08
CTC 0.24 0.14 0.10

ROSCOE-SA 0.83 0.64 0.51
ROSCOE-SS 0.81 0.62 0.54
ROSCOE-REP 0.83 0.64 0.48

RECEVAL-informativeness 0.66 0.68 0.67

(b) Informativeness

Table 1: Meta-evaluation (Somer’s D) on EB-challenge (test). Table 16 in Appendix C shows similar trends on
EB-regular. We bold the highest and underline the second-highest correlation values (higher correlation is better).

Metric QUAL COH COM FACT HALL RED REP LOGIC MATH

ROUGE-2 0.09 0.14 0.06 0.10 0.17 -0.02 0.56 0.03 0.11
BERTScore 0.19 0.23 0.12 0.13 0.20 0.13 0.94 0.15 0.13
BARTScore 0.01 0.03 -0.05 0.04 -0.25 -0.26 0.42 0.00 -0.55
CTC -0.09 -0.15 -0.08 -0.11 0.01 -0.37 0.57 -0.11 -0.09

ROSCOE-SA 0.20 0.19 0.19 0.08 0.22 0.39 0.79 0.18 0.44
ROSCOE-SS 0.20 0.17 0.17 0.14 0.25 0.51 0.87 0.15 0.23
ROSCOE-LI 0.28 0.26 0.18 0.34 0.22 0.35 0.98 0.22 0.09
ROSCOE-REP 0.20 0.19 0.19 0.14 0.25 0.51 0.87 0.18 0.44

RECEVAL-correctness 0.36 0.31 0.21 0.37 0.28 0.40 0.63 0.25 0.24
RECEVAL-informativeness 0.30 0.29 0.19 0.26 0.26 0.55 0.87 0.21 0.32

Table 2: Meta-evaluation (Somer’s D) on GSM-8K (test) with human-annotated errors from Golovneva et al. (2023).

ness and informativeness-based errors by up to
0.09 → 0.89, and 0.21 → 0.68 respectively. In
terms of correctness, Table 1a shows that RECE-
VAL outperforms ROSCOE improving correlation
from 0.62 → 0.89, and 0.22 → 0.39 on hallu-
cinations, and swap errors respectively. For in-
formativeness, from Table 1b, we observe that
RECEVAL outperforms all baselines for complex
errors like paraphrasing and redundancy by at
least 0.64 → 0.68 and 0.54 → 0.67 respectively.
While RECEVAL yields higher correlation com-
pared to text-generation metrics for verbatim repeti-
tion (REP), ROSCOE achieves the best performance.
Similar trends are observed in the evaluation on
EB-regular, as shown in Table 16 in Appendix C.

GSM-8K. Table 2 shows the meta-evaluation re-
sults for GSM-8K. RECEVAL outperforms base-
line metrics on the majority of error types. Com-
pared to text-generation metrics, we achieve higher
correlations across all error types. Notably, our
metrics show higher correlations on overall qual-
ity (QUAL) and coherence (COH), outperforming
ROSCOE-LI and ROSCOE semantic metrics by up
to 0.28 → 0.36 and 0.20 → 0.36 respectively. We
also obtain higher correlations on commonsense

(COM), factuality (FACT), hallucination (HALL),
and logical (LOGIC) errors by up to 0.06. In
terms of informativeness, our metric yields highest
correlation on RED and performs comparably to
ROSCOE on REP errors. Our metrics are not specif-
ically designed for arithmetic errors, which can be
better handled using calculators or ROSCOE-REP.
However, we leave this study for future work.

DROP. We observe similar trends on the DROP
dataset, shown in Table 3, even though it primar-
ily consists of single-step rationales (< 20% ratio-
nales are multi-step). RECEVAL outperforms all
the baseline text-generation metrics and achieves
matching if not better correlations compared to
ROSCOE on overall QUAL and COH measures.
Specifically, we obtain higher correlations on com-
monsense, factuality, hallucination, and logical
errors by up to 0.08. Additionally, we also im-
prove correlations on RED errors when compared
to ROSCOE (0.80 → 0.83).

6.2 Analysis of RECEVAL Metrics

We analyze our RECEVAL metrics on EB dataset
by addressing the following research questions.
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Metric QUAL COH COM FACT HALL RED REP LOGIC

ROUGE-2 0.14 -0.15 0.49 0.32 -0.28 -0.72 -0.44 0.03
BERTScore 0.13 -0.12 0.49 0.28 -0.18 -0.65 -0.04 0.00
BARTScore -0.09 -0.39 0.58 0.16 -0.45 -0.84 -0.89 -0.23
CTC -0.03 -0.10 -0.07 0.33 -0.04 -0.62 -0.09 -0.09

ROSCOE-SA 0.19 -0.31 0.44 0.51 -0.06 -0.57 -0.60 0.10
ROSCOE-SS 0.11 0.36 0.46 0.22 0.16 0.80 0.91 0.05
ROSCOE-LI 0.20 0.24 0.46 0.39 -0.01 0.08 0.70 0.01
ROSCOE-REP 0.07 0.36 -0.14 0.17 0.45 0.80 0.91 0.05

RECEVAL-correctness 0.22 0.32 0.52 0.54 0.49 0.21 -0.12 0.16
RECEVAL-informativeness 0.20 0.36 0.14 0.51 0.48 0.83 0.89 0.12

Table 3: Meta-evaluation (Somer’s D) on DROP (test) with human-annotated errors from Golovneva et al. (2023).

Method intra-correct inter-correct

HALL NEG SWAP HALL NEG SWAP

w/o RCUs - - - 0.12 0.83 0.11
our RCUs 0.71 0.84 0.37 0.14 0.90 0.16
gold RCUs 0.89 0.94 0.54 0.16 0.96 0.16

Table 4: Comparison of correctness metrics in RECE-
VAL on EB-challenge (dev split) with different RCU
selection. Specifically, we use intra-correctentail.

How do RCU design choices affect correctness
evaluation? We examine the impact of different
RCU design choices on correctness metrics (§4).
We compare variants using (i) identified RCUs, (ii)
no RCUs (treating a step as a whole), and (iii) gold
RCU annotations (oracle setting). Gold RCUs are
extracted using reasoning trees from the EB dataset
(details in Appendix D). Results in Table 4 show the
crucial role of RCU decomposition in RECEVAL,
enabling accurate identification of hallucinations
and swap errors. Gold RCUs improve correctness
metrics and yield higher correlation across errors
(up to 0.20). Nevertheless, our identified RCUs
bolster correctness evaluation, and future work can
bridge the gap between the two settings.

How does the amount of previous information
impact inter-step correctness? In inter-step cor-
rectness (§4.2), we evaluate if a given step contra-
dicts any conclusion-RCUs from prior steps or the
input context X . We explore the impact of prior in-
formation on inter-step correctness by considering
k preceding steps. We analyze three variants with
k = 1, 2, and all in Table 5. We observe that using
only immediately preceding steps (i.e., k = 1, 2)
leads to a decrease in correlation by up to 0.11 for
hallucination and negate errors. Thus, evaluating
inter-step correctness with respect to all previous
steps is crucial for identifying potential errors.

What constitutes a step and how does its gran-
ularity impact RECEVAL’s effectiveness? Un-

Metric HALL NEG SWAP

inter-correct (k = 1) 0.08 0.79 0.14
inter-correct (k = 2) 0.10 0.84 0.17
inter-correct (k = all) 0.14 0.90 0.16

Table 5: Comparison of inter-correct metric with vary-
ing prior information (number of preceding steps de-
noted by k) on dev split of EB-challenge.

Step Granularity HALL NEG SWAP

Step = RCU 0.46 0.87 0.28
Step = sentence (as in RECEVAL) 0.86 0.90 0.38
Step =R 0.17 0.32 0.13

Table 6: Comparing correctness metrics in RECEVAL
for varying step boundaries on EB-challenge (dev split).

like formal proofs, it is not straightforward to de-
marcate the step boundaries in natural language
reasoning chains. To demonstrate the impact of
step boundaries on reasoning evaluation, in Table 6
we compare three settings: (i) each RCU as a step,
(ii) each sentence as a step, and (iii) the entire rea-
soning chain as a single step. Both extreme bound-
aries lead to decreased correlation across errors.
RCU-level boundaries result in lower correlations
on HALL and SWAP errors. Treating the entire
chain as a step yields lower correlations on all er-
rors, focusing only on the final conclusion. Hence,
choosing appropriate step boundaries is crucial for
evaluating multi-step rationales, and considering
each sentence as a step proves effective in practice.

How does informativeness vary across steps?
To further test our informativeness metric, we in-
vestigate whether human-written reasoning chains
exhibit positive information gain for each step, and
how they compare to chains with uninformative
steps. We note that even for good reasoning chains,
each step individually may not always be more
informative than the previous step but approxi-
mately, a collection of every few consecutive steps
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Chain k = 1 k = 2 k = 3

Uninformative (REP) 36.4 69.4 80.7
Uninformative (PAR) 35.3 70.5 81.4
Uninformative (RED) 38.6 73.4 82.8
Gold 72.7 87.7 92.0

Table 7: % of APIk chains in dev split of EB-challenge.

Model Method REP PAR RED

GPT-2 XL (1.5B) info-gainPVI 0.67 0.66 0.65
info-gainLL 0.58 0.60 0.60

LLaMA-7B info-gainLL 0.69 0.70 0.68

Table 8: Comparison of info-gain metric using trained
PVI models and pretrained LMs on EB-challenge (dev).

should show such behavior. Thus, we introduce a
metric called Approximately Positive Information-
gain (API). We say that for a reasoning chain R,
APIk(R) = 1, if for every k consecutive steps in
the chain, these steps as a single unit are more in-
formative than the preceding step. Formally, this is
defined as

∑
i+k−1

j=i
info-gain(j)

PVI >0, ∀s(i)∈R and 0
otherwise. Table 7 shows that 72% of gold chains
have positive information-gain for all steps (i.e.,
API1=1), considerably higher than uninformative
chains (38%). We also observe that 87% of gold
reasoning chains have positive gains for two con-
secutive steps (i.e., API2=1), and as high as 92%
for three consecutive steps (i.e., API3=1). Thus,
almost all high-quality reasoning chains demon-
strate (approximately) positive information gain
which is effectively captured by our info-gainPVI

metric. It is also able to distinguish between infor-
mative and uninformative chains. Further analysis
of informativeness trends is present in Appendix E.

How does the underlying probability model af-
fect info-gain? In §4.3, computing conditional
PVI requires fine-tuned models to learn text distri-
butions from reasoning steps. In the absence of
gold reasoning steps for training, we propose an
alternative called info-gainLL that computes log-
likelihood of steps directly from a pretrained LM
like GPT-2 XL.2 Comparing both approaches in Ta-
ble 8, we find that info-gainPVI achieves higher cor-
relations (by at least 0.05) across errors. Although
fine-tuned LMs are more effective, the correspond-
ing pretrained LMs can also be used to measure in-
formativeness. However, using a larger pretrained
LM such as LLaMA-7B (Touvron et al., 2023) can

2We use GPT-2 XL instead of T5-large as the latter is not
an auto-regressive LM and cannot reliably be used to estimate
log-likelihood without finetuning.

Method Error Types

inter-correct HALL NEG SWAP
w/ NLI Model 0.89 0.88 0.39
w/ GPT-3.5-turbo 0.86 0.91 0.38

info-gainLL REP PAR RED
w/ GPT-2 XL 0.50 0.56 0.53
w/ GPT-3.5-turbo 0.54 0.58 0.56

Table 9: Using prompted LLM GPT-3.5 turbo to com-
pute inter-step correctness (top) and informativeness
(bottom) metrics on 50 dev instances from EB.

more than compensate for this performance gap,
achieving the highest correlation in Table 8.

6.3 Utilizing RECEVAL for Evaluating and
Improving Downstream Tasks

Applying RECEVAL in Diverse Scenarios. We
consolidate our findings with different models and
sub-metrics by making some recommendations on
how to use RECEVAL in various evaluation set-
tings. We sugggest using the NLI model by Laurer
et al. (2022) for evaluating correctness, as it consis-
tently performs well. For evaluating informative-
ness in tasks with gold reasoning chains, like EB,
we advise using a T5-Large model. This choice
aligns with other automatic metrics in (Chen et al.,
2022; Golovneva et al., 2023). Otherwise, when
gold reasoning chains are unavailable, we suggest
opting for a larger pretrained LM like LLaMA-7B.

Recent results on using GPT-3.5 with RECEVAL.
Some recent works focus on using large language
models (LLMs) for evaluating text-generation out-
puts (Fu et al., 2023a; Liu et al., 2023) and self-
verification (Kadavath et al., 2022; Ling et al.,
2023). Inspired by this, we conduct a small-scale
study to investigate if prompted LLMs, such as
GPT-3.5-turbo (Ouyang et al., 2022), can be in-
corporated within RECEVAL on a subset of 50
reasoning chains from the EB dataset. To measure
correctness and informativeness, we prompt the
model to output a real-valued score between 0 to 1
as the probability of entailment and the probability
of generating the answer respectively (details in
Appendix A). Table 9 shows that instead of using
pretrained models for which logits are available,
we can also extend RECEVAL by prompting state-
of-the-art LLMs such as GPT-3.5-turbo. We under-
score that the core concept of evaluating for cor-
rectness and informativeness remains robust and
general, regardless of the underlying LM used –
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Method Accuracy (%)

Greedy Decoding 17.3

Sampling + ROSCOE (LI) 19.0
Sampling + ROSCOE (SA, SS) 17.8
Sampling + ROSCOE (REP) 18.6

Sampling + RECEVAL (correctness) 19.6
Sampling + RECEVAL (informativeness) 18.7
Sampling + RECEVAL (both) 20.5

Table 10: Applying RECEVAL to improve downstream
task performance on GSM-8K using FLAN T5-XXL.

even as more advanced models emerge.

RECEVAL improves Downstream Task Per-
formance. Finally, we also examine if higher-
quality reasoning chains (ranked using our met-
rics) yield improvements in downstream task per-
formance with CoT prompting. To this end, gener-
ate reasoning chains for GSM-8K using FLAN T5-
XXL (Chung et al., 2022). We sample 20 reasoning
chains that are scored using metrics from RECE-
VAL or ROSCOE, and we select the chain with the
lowest cumulative rank (details in Appendix A).
We compare with ROSCOE in three settings: (i)
ROSCOE-LI (best performance on overall measures
in Table 2), (ii) ROSCOE-REP (analogous to infor-
mativeness), and (iii) non-repetition metrics from
ROSCOE-SA and ROSCOE-SS (analogous to correct-
ness).3 Table 10 shows that RECEVAL improves
QA accuracy by 3.2% over greedy decoding when
considering both correctness and informativeness.
Using only correctness or informativeness leads
to improvements of 2.3% and 1.4%, respectively.
In comparison, different combinations of ROSCOE

metrics improve accuracy by up to 1.7%. This
highlights a complementary benefit of evaluation
metrics for reasoning chains. Further research can
explore combining these metrics with other sam-
pling strategies (Wang et al., 2023; Fu et al., 2023b)
to enhance the reasoning capability of LLMs.

7 Related Work

Traditional text generation evaluation metrics use
n-gram overlap (Papineni et al., 2002; Lin, 2004;
Banerjee and Lavie, 2005), embeddings (Zhao
et al., 2019; Zhang* et al., 2020; Sellam et al.,
2020), information alignment (Deng et al., 2021),
paraphrases (Thompson and Post, 2020), or text-
generation models (Yuan et al., 2021; Fu et al.,

3We did not observe further accuracy improvements by
combining all ROSCOE metrics.

2023a), and are suitable for comparing machine-
generated text to target text in tasks like summa-
rization and machine translation. However, they
are inadequate for evaluating reasoning chains with
a coherent sequence of steps leading to the final
answer. Additionally, relying on references makes
them unsuitable for reference-free evaluation.

Some prior works on evaluating reasoning
chains propose metrics based on specific con-
struction and domain of datasets, making them
less generalizable. For example, FOLIO (Han
et al., 2022) and PrOntoQA (Saparov and He,
2023) use a fixed grammar to convert natural
language reasoning chains to symbolic proofs
that are evaluated using gold proofs. Dalvi et al.
(2021) compare model-generated reasoning trees
to gold reasoning trees. Closest to our work,
Golovneva et al. (2023) proposed ROSCOE, a suite
of reference-free and reference-based metrics that
measure semantic alignment, similarity, and logical
inference in reasoning chains. Building upon their
work, we first formally define desired properties
of good reasoning chains (i.e., correctness and
informativeness) and then propose reference-free
metrics (using RCUs and V-information) that
outperform ROSCOE across datasets.

8 Conclusion

We present RECEVAL, a framework for evaluating
reasoning chains based on correctness and infor-
mativeness. We propose reference-free metrics for
measuring these properties that are based on entail-
ment and PVI, leveraging granular claims in reason-
ing chains called Reasoning Content Units (RCUs).
Our approach considerably outperforms previous
baseline metrics, as shown by meta-evaluation on
multiple datasets. We also perform detailed analy-
sis of our metrics and demonstrate that RECEVAL

is effective in various settings, and leads to down-
stream improvement in task performance.
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Limitations

An interesting assumption for future work to ad-
dress is that all knowledge typically needed to eval-
uate the correctness of a reasoning step is explic-
itly present as part of the input or the intermediate
reasoning steps. In scenarios where correctness de-
pends on implicit knowledge, we rely on the choice
of underlying models (described in Appendix A)
which are built on top of pre-trained LMs and
are known to capture a lot of background knowl-
edge (Petroni et al., 2019; Roberts et al., 2020).
However, inferences that rely on substantial im-
plicit knowledge may not be best evaluated through
current metrics. While current evaluation frame-
works focus on evaluating the quality of model-
generated reasoning chains, Wei et al. (2022) note
that the chain itself may not faithfully reflect the
internal reasoning process of the model. This re-
mains an open question for future work to address.
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A RECEVAL: Background and Details

In this section, we provide background for comput-
ing V-information and describe additional imple-
mentation details of RECEVAL (Algorithm 1).

Background on V-Information Let X and
Y denote two random variables. Their con-
ditional entropy is defined as H(Y |X) =
E[− logP (Y |X)] (Shannon, 1948). However,
computing it requires knowledge of the true joint
distribution of X and Y which can be infeasible
in practice. As an alternative, Xu et al. (2020) pro-
pose V-conditional entropy using a model family
V that learns to map from X to Y . It is defined as:

HV(Y |X) = inf f∈V Ex,y∼X,Y (−log f [x](y))
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Each f ∈ V models the conditional distribution
Pf (Y |X). Thus, the model f̃ ∈ V , minimizing the
above expectation, is optimized using a negative
log-likelihood objective. Building on top of it, Xu
et al. (2020) propose V-information (also known as
V-usable information) which measures the amount
of available information contained in X about Y
that can be extracted using V . It is defined as:

IV(X → Y ) = HV(Y |∅)−HV(Y |X)

Here, we denote the models used to compute
HV(Y |X) and HV(Y |∅) (minimizing expecta-
tion) as g and g′ respectively.4 Ethayarajh et al.
(2022) propose pointwise V-information (PVI) to
measure the degree of usable information present
in individual data points (x, y) as:

PVI(x → y) = −log g′[∅](y) + log g[x](y)

Similarly, conditional PVI relative to instance z is
defined as:

PVI(x → y|z) = − log g′[z](y) + log g[z, x](y)

At a high level, we use PVI to extract the amount
of information present within and across reasoning
steps, as discussed in detail in §4.1 and §4.3. Our
use of PVI is consistent with Padmakumar and He
(2021), who use a pointwise information metric to
evaluate the relevance of summary sentences.

Use of External Tools. We use three categories
of models: (i) Semantic Role Labeling (SRL) mod-
els for identifying RCUs, (ii) NLI models that mea-
sure entailment or contradiction in §4.1 and §4.2,
and (iii) pretrained language models that form the
model family V when computing PVI (in §4.1 and
§4.3). To identify RCUs, we use out-of-the-box
SRL models available in AllenNLP (Gardner et al.,
2018; Shi and Lin, 2019) based on the BERT ar-
chitecture (Devlin et al., 2019) (345M parameters).
For detecting entailment or contradictions, we use
a state-of-the-art NLI model (Laurer et al., 2022)
with checkpoint available at Huggingface (Wolf
et al., 2020).5 We use the T5-large model (Raf-
fel et al., 2020) as the model family V (770M pa-
rameters) finetuned on the gold reasoning chains

4Consistent with established notation in V-information
work, f [x](y) denotes Pf (y|x) where f is a model. When
x = ∅, we compute the probability of generating y directly.

5NLI model available at: https:
//huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

(refer to paragraph below for details). Note that
we use the original code for all text-generation
metrics listed in §5.2. Specifically, rouge scores
are computed using the python rouge-score pack-
age. To compute Somer’s D correlation, we use the
somersd function from the scipy package.

RCU Computation. As mentioned in §4.4, we
use an SRL model to decompose a sentence into
multiple ‘subject-verb-object’ frames. After ob-
taining a list of frames (often overlaping) from
a sentence, we sort the frames by length and se-
lect a disjoint subset until any remaining frame is
already contained in the sentence formed by the
selected frames. From each frame, we remove mod-
ifiers (denoted by a separate tag) that contain a verb
(checked using a PoS-tagging model from nltk)
as it would also be identified as a separate frame.
Once the RCUs are identified, we classify them
into premise-RCUs or conclusion-RCUs based on
the location in the sentence and rules based on the
type of subordinating conjucntion (detected using
PoS-tag). Typically, conclusion-RCU occurs at the
very end of the sentence, but in case of ‘because’
or ‘since’ the RCU immediately following the con-
junction is taken as the premise.

For instance, consider this example step from
GSM-8K: “[ The boots cost $5 more than both
pairs of heels together ], so [ the boots cost 99
+ 5 = $104 ].” Here, the two RCUs are joined
using “so” and thus the first RCU is the premise
and the second is the conclusion. In a different
example, “[ Allen’s current age is 11/18*162 = 99
] since [ the fraction of the ratio that represents
Allen’s age is 11/18 ].” Here, the first RCU is the
conclusion and the second one is the premise based
on the conjunction “since”. Even if the sentence
began with “since”, we would identified the RCU
immediately following it to be the premise.

PVI Training. Similar to Chen et al. (2022), we
use the T5-large model (Raffel et al., 2020) as the
predictive model family V that is finetuned on gold
reasoning chains using the train split of each dataset
(with dev splits used for model selection). How-
ever, in our case, the model is trained to gener-
ate the conclusion-RCUs or the entire reasoning
step (instead of the label in a classification task
as done in Ethayarajh et al. (2022); Chen et al.
(2022)). We compute log-probability over the text
sequence as the length-normalized average of log-
probabilities over all tokens (Brown et al., 2020).
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Input Context (X ) Gold Reasoning Chain Orig. Perturbations Our Perturbations

The moon is a kind of moon.
Earth is a kind of planet.
Moons orbit planets. Grav-
ity causes orbits. What
keeps the Moon orbiting
Earth?

Moon orbits planets and
earth is a kind of planet, so
moon orbits earth. Grav-
ity causes orbits, so gravity
causes the moon to orbit the
earth.

Moon orbits planets and
earth is not a planet, so
moon orbits earth. Gravity
causes orbits, so gravity
causes the moon to orbit the
earth.

Moon orbits planets and
earth is a kind of planet, so
moon does not orbit earth.
Gravity causes orbits, so
gravity causes the moon to
orbit the earth.

ROSCOE-SS Score: 0.86 ROSCOE-SS Score: 0.24 ROSCOE-SS Score: 0.67
RECEVAL Score: 0.91 RECEVAL Score: 0.21 RECEVAL Score: 0.25

Classifying means group-
ing objects by their proper-
ties. Shape is a property of
appearance of an object. A
galaxy is a kind of object.
What feature is used to clas-
sify galaxies?

Classifying means group-
ing objects by their proper-
ties. Shape is a property of
appearance of an object, so
shape can be used to classify
objects. A galaxy is a kind
of object, so galaxies can be
classified by shape.

Classifying means grouping
objects by their properties.
Comets orbits are elliptical,
so shape can be used to clas-
sify objects. A galaxy is a
kind of object, so galaxies
can be classified by shape.

Classifying means group-
ing objects by their prop-
erties. Shape is a property
of appearance of an object,
so classification is a kind of
process. A galaxy is a kind
of object, so galaxies can be
classified by shape.

ROSCOE-SS Score: 0.89 ROSCOE-SS Score: 0.31 ROSCOE-SS Score: 0.58
RECEVAL Score: 0.84 RECEVAL Score: 0.18 RECEVAL Score: 0.22

Table 11: Differences in our perturbations to ones used in Golovneva et al. (2023) for errors NEG (top) and HALL
(bottom). Overlapping text in input context and reasoning chains is underlined and perturbations are shown in
red. For NEG with original perturbations, sentence embeddings of the perturbed overlapping sentence will be very
different, leading to decrease in sentence similarity (does not occur in our perturbations). For HALL, shortcut is to
check for facts missing from the input context by drop in sentence similarity (does not occur in our perturbations).
This is also reflected in the ROSCOE and RECEVAL (intra-step) correctness scores for each reasoning chain.

For intra-correctPVI, g is a model trained to gener-
ate y = RCU(i)

c from x = RCU(i)
p and g′ is trained

to generate y = RCU(i)
c directly. Using the train

split of a reasoning dataset, we pool all steps from
all reasoning chains. Each step is then decomposed
into RCUs and constitutes one data point (x, y) for
training the aforementioned models. The input to
the model (used to generate y) could be template,
i.e. “[X] -> ”, and “None -> ”, or a natural
language sentence, “[X], so ”, and “So, ” for g
and g′ respectively. Here, [X] represents the con-
catenated premise units RCU(i)

p (via ‘and’). We find
no significant change in performance when using
the template or a natural language sentence. We
use the latter to report performances in §6. For
info-gain, the model g is trained to generate y = â
given [z, x] = s(≤i) and the training data are partial
reasoning chains conditioned to generate the pre-
dicted answer. Since input to g′ is z = s(<i), the
input instances for g and g′ overlap. Thus, we can
use the same model for both g and g′ as done by
Chen et al. (2022). Note that â denotes the final
answer sentence. So, â corresponds to the hypothe-
sis sentence already provided in the EB dataset. In
case of GSM-8K, we construct â by concatenating
the question and the predicted answer, i.e., “[Q]
Answer: [A]” where [Q], and [A] are placehold-
ers for question and predicted answer respectively.
Throughout training the hyperparameters used are:

learning-rate of 3e−5, 10 train epochs, with weight
decay of 0.1 (all other hyperparameters are set to
default). After training we select the model check-
point (at epoch level) corresponding to the lowest
‘rougeL’ score on the dev split.

Range of RECEVAL Metrics. Our
intra-correctentail and inter-correct scores
fall in the range [0, 1] where 0 indicates failure and
1 indicates perfect score. By construction, PVI

can be positive, negative, or 0 which also applies
to intra-correctPVI and info-gainPVI. Positive PVI

indicates a step is correct or informative, whereas
negative (or zero) values indicate otherwise. Future
works can explore normalization techniques to
limit the range of these scores. Furthermore,
informativeness of a step in a reasoning chain is an
inherently subjective criterion that also depends on
the underlying reasoning problem. Therefore, the
info-gainPVI values of steps in different reasoning
chains corresponding to different problem state-
ments can be very different. Future work can also
aim to address this variability.

Downstream Performance on GSM-8K. In
§6.3, we use the FLAN T5-XXL model (11B pa-
rameters) to sample 20 diverse reasoning chains for
each problem in the test set (with temperature of
0.7). Since both ROSCOE and RECEVAL contain
multiple metrics, we use a simple aggregation strat-

10080



You are given two types of phrases: a premise and 
a hypothesis, from a reasoning step. Based on the
phrases, rate how well the premise entails the
hypothesis on a scale of 0-1. 1 indicates perfect
entailment and 0 indicates no entailment at all. 
 
Premise: {premise-RCUs}  
Hypothesis: {conclusion-RCU}  
Score: 

You are given a partial section of a reasoning chain
and a model's predicted answer. On a scale of 0-1,
rate how likely is the model to arrive at the answer
based on the aforementioned steps. 0 indicates not
at all likely and 1 indicates the answer directly
follows from the steps.  

Steps: {steps}  
Answer: {predicted_answer}  
Likelihood: 

Correctness Eval Prompt Informativeness Eval Prompt

Figure 3: Prompts used to compute correctness and informativeness metrics in RECEVAL with GPT-3.5-turbo.

egy for selecting reasoning chains. We select the
chain with the highest scores on all metrics wher-
ever possible. If such a chain does not exist, we
rank chains based on each metric and select the
chain with the lowest cumulative rank.

Prompts used with GPT-3.5-tubro. In §6.3, we
described how to use RECEVAL with prompted
LLMs. The prompts are shown in Figure 3 and
were designed using a dev set of 10 reasoning
chains from EB dataset.

B Datasets and Errors

We expand on the dataset descriptions provided in
§5.1, and explain various error types. A glossary
of error types is present in Table 19.

B.1 Entailment Bank
As described in §5.1, due to the construction of
Entailment Bank, there is an overlap between R
and X . Therefore, if perturbations are applied to
this overlapping information then it can spuriously
lead to high correlation for any metric comparing R
with X based on sentence-embeddings or n-grams.
This happens because in gold or unperturbed chains
there is high degree of overlap due to exact match
and in the perturbed chains the overlap goes down
significantly. However, if perturbations are applied
to information not contained in X , gold chains do
not have high degree of overlap to begin with, and
thus is a more challenging setting for evaluating
metrics. Therefore, different from Golovneva et al.
(2023), we only apply perturbations to facts/parts
of the reasoning chain not in the input context.

We provide examples illustrating this phe-
nomenon in Table 11. For negation errors, if we
negate an overlapping source fact, comparing the
chain with input the context leads to a direct drop

in sentence similarity. We remove this shortcut by
negating facts not contained in the input context.
For hallucination errors, if a source fact is hallu-
cinated, one can detect hallucinations by simply
checking if a source fact is missing (drop in cu-
mulative sentence similarity when compared to X ).
We remove this shortcut by only applying hallu-
cination perturbations to intermediate facts not in
X . Additionally, instead of sampling hallucinated
text from other reasoning problems, we sample
hallucinated text from irrelevant sentences or dis-
tractors provided for each instance in Entailment
Bank (Task 2). This leads to higher word overlap
between hallucinated text and input context.

Perturbations are first applied to intermediate
nodes in the reasoning tree and then converted into
a natural language reasoning chain. While bor-
rowing error types from Golovneva et al. (2023),
we make the following three additional changes:
Firstly, the hallucinated text is sampled from dis-
tractors. Secondly, swap errors are introduced be-
tween the intermediate node and its parents, so that
we can ensure incoherence in the reasoning chain.
Thirdly, repetition errors are implemented by re-
peating an intermediate node twice (parent of the
second node is the first node). Instead of verbatim
repetition, we also introduce adding a paraphrase
using a Pegasus-based model (Zhang et al., 2020)6

and an irrelevant but true sentence to the reasoning
chain. So in case of Fig. 2(b), instead of verbatim
repetition “the northern hemisphere is a kind of
place”, we would add text like “the norther hemi-
sphere is a sort of location” and “daylight is when
the sun shines” for PAR and RED errors respec-
tively.

6Checkpoint: https://huggingface.co/tuner007/
pegasus_paraphrase
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Input Context Reasoning Chain

Tina buys 3 12-packs of soda for a party. Including Tina, 6
people are at the party. Half of the people at the party have
3 sodas each, 2 of the people have 4, and 1 person has 5.
How many sodas are left over when the party is over?

[ Tina buys 3 12-packs of soda for 3*12=36 sodas ]. [ 6
people attend the party ], so [ half of them is 6/2= 3 people
]. [ Each of those people drinks 3 sodas ], so [ they drink
3*3=9 sodas ]. [ Two people drink 4 sodas ], which means
[ they drink 2*4=8 sodas ]. With [ 1 person drinking 5 ],
[ that brings the total drank to 5+9+8+3=25 sodas ]. As
[ Tina started off with 36 sodas ], that means [ there are
36-25=11 sodas left ].

Every day, Wendi feeds each of her chickens three cups
of mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the chick-
ens their feed in three separate meals. In the morning,
she gives her flock of chickens 15 cups of feed. In the
afternoon, she gives her chickens another 25 cups of feed.
How many cups of feed does she need to give her chickens
in the final meal of the day if the size of Wendi’s flock is
20 chickens?

If [ each chicken eats 3 cups of feed per day ], then for 20
chickens [ they would need 3*20=60 cups of feed per day
]. If [ she feeds the flock 15 cups of feed in the morning
], and [ 25 cups in the afternoon ], then [ the final meal
would require 60-15-25=20 cups of chicken feed ].

Table 12: Example of reasoning chains in GSM-8K dataset with identified RCUs shown as ‘[ . ]’.

Input Context Reasoning Chain Error ROSCOE-REP RECEVAL

John has 3 boxes. Each box is 5
inches by 6 inches by 4 inches. The
walls are 1 inch thick. What is the
total inner volume of all 3 boxes?

Each box is 5*6*4 = «5*6*4=120»120
cubic inches. So they have a total
of 120*3 = «120*3=360» 360 cubic
inches. So the total volume is 360*1
= «360*1=360»360 cubic inches. An-
swer: 360

REP 0.46 0.12

Mary is an avid gardener. Yesterday,
she received 18 new potted plants
from her favorite plant nursery. She
already has 2 potted plants on each
of the 40 window ledges of her large
country home. Feeling generous,
she has decided that she will give
1 potted plant from each ledge to
friends and family tomorrow. How
many potted plants will Mary re-
main with?

Mary has 2 potted plants on each of the
40 window ledges, for a total of 2*40 =
«2*40=80»80 potted plants. She has 18
new potted plants, for a total of 80+18
= «80+18=98»98 potted plants. She is
giving away 1 potted plant from each
of the 40 window ledges, for a total of
1*40 = «1*40=40»40 plants. She will be
remaining with 98-40 = «98-40=58»58
potted plants. Answer: 58

None 0.01 0.68

Table 13: Qualitative comparison between ROSCOE (REP) and RECEVAL (info-gainPVI) scores on GSM-8K.

B.2 GSM-8K

We directly use the human-annotated reasoning
chains for GSM-8K collected by Golovneva et al.
(2023). We refer readers interested in the data col-
lection process, and details about each error type
to Appendix F of their paper (c.f. Table 15). In Ta-
ble 12, we provide some examples of gold (human-
written) reasoning chains in GSM-8K along with
our identified RCU annotations. Note that while
EB-challenge is constructed such that a perturbed
reasoning chain only contains one error at a time,
errors in GSM-8K dataset can co-occur as it con-
tains model-generated errors that can be diverse.

C Additional RECEVAL Meta-Evaluation

EB-Regular. We evaluate the performance of all
metrics on the originally perturbed sentences (EB-
regular) in Table 16. While the relative trends be-
tween RECEVAL and other baselines remain the
same, we find that ROSCOE’s correlation values
on HALL, NEG and SWAP are much higher than
Table 1a where the aforementioned shortcuts do
not exist. Furthermore, correlation values of text-
generation metrics on HALL errors also decrease
when spurious shortcuts are removed. Nevertheless,
RECEVAL outperforms baselines on correctness
errors. Note that we do not consider grammar, miss-
ing errors from Golovneva et al. (2023). This is
mainly because missing steps involve a confounder
and are hard to evaluate in a reference-free manner.

10082



Metric HALL NEG SWAP

ROUGE-1 0.01 0.02 0.13
ROUGE-2 -0.01 -0.02 0.14
ROUGE-L -0.04 0.01 0.10
BERTScore 0.09 0.02 0.07
BARTScore 0.00 -0.01 0.07
PRISM 0.27† 0.03 0.08
CTC Relevancy 0.09 -0.04 -0.05
CTC Consistency 0.00 -0.05 -0.03

ROSCOE-SA 0.62† 0.40† 0.22†

ROSCOE-SS 0.34† 0.40† 0.09
ROSCOE-LI 0.20† 0.82† 0.16

RECEVAL-intra-correctentail 0.71† 0.86† 0.38†

RECEVAL-intra-correctPVI 0.89† 0.14 0.39†

RECEVAL-inter-correct 0.45† 0.88† 0.22†

(a) Correctness

Metric REP PAR RED

ROUGE-1 0.45† 0.26† 0.15
ROUGE-2 0.43† 0.21† 0.11
ROUGE-L 0.08 0.09 0.10
BERTScore 0.24† 0.16† 0.12
BARTScore 0.11 0.12 0.08
PRISM 0.15 0.11 0.09
CTC Relevancy 0.24† 0.14 0.10
CTC Consistency 0.25† 0.15 0.12

ROSCOE-SA 0.83† 0.64† 0.51†

ROSCOE-SS 0.81† 0.62† 0.54†

ROSCOE-REP 0.83† 0.64† 0.48†

RECEVAL-info-gainPVI 0.66† 0.68† 0.67†

(b) Informativeness

Table 14: Meta-evaluation (Somer’s D) on EB-challenge (test). Webold the highest and underline the second-highest
correlation (higher correlation is better). †Correlation values are statistically significant (p < 0.05).

Metric QUAL COH COM FACT HALL RED REP LOGIC MATH

ROUGE-1 0.12 0.20† 0.07 0.16 0.27 0.04 0.22 0.07 0.23
ROUGE-2 0.09 0.14 0.06 0.10 0.17 -0.02 0.56 0.03 0.11
ROUGE-L 0.17† 0.27† 0.19† 0.17 0.18 0.05 0.56 0.12 0.21
BERTScore 0.19† 0.23† 0.12 0.13 0.20 0.13 0.94 0.15 0.13
BARTScore 0.01 0.03 -0.05 0.04 -0.25 -0.26 0.42 0.00 -0.55†

PRISM -0.11 -0.07 -0.10 -0.04 -0.39 -0.46† -0.09 -0.17 -0.34
CTC Relevancy -0.09 -0.15† -0.08 -0.11 0.01 -0.37† 0.57 -0.11 -0.09
CTC Consistency -0.16† -0.20† -0.21† -0.13 -0.01 -0.32† 0.56 -0.17 -0.02

ROSCOE-SA 0.20† 0.19† 0.19† 0.08 0.22 0.39† 0.79 0.18† 0.44
ROSCOE-SS 0.20† 0.17† 0.17 0.14 0.25 0.51† 0.87 0.15† 0.23†

ROSCOE-LI 0.28† 0.26† 0.18 0.34† 0.22 0.35 0.98 0.22† 0.09
ROSCOE-REP 0.20† 0.19† 0.19† 0.14 0.25 0.51† 0.87 0.18 0.44

RECEVAL-intra-correctentail 0.36† 0.27† 0.21† 0.24† 0.27 0.21 0.63 0.23† 0.18
RECEVAL-intra-correctPVI 0.34† 0.27† † 0.19† 0.21† 0.28† 0.10 0.46 0.25† 0.24
RECEVAL-inter-correct 0.32† 0.31† 0.21† 0.37† 0.26 0.40 0.63 0.22† 0.10
RECEVAL-info-gainPVI 0.30† 0.29† 0.19† 0.26† 0.26 0.55† 0.87 0.21† 0.32

Table 15: Meta-evaluation (Somer’s D) on GSM-8K (test). †Correlation values are statistically significant (p < 0.05).

Further, grammar issues that do not alter correct-
ness can be measured easily by grammar-checking
metrics used in ROSCOE-LC.

Additional Baselines. Tables 1 and 2 contain a
subset of baselines used by Golovneva et al. (2023)
as described in §5.2. We include additional text-
generation baselines for EB and GSM-8K in Ta-
bles 14 and 15 respectively and explicitly indicate
correlation values that are statistically significant.
These include metrics such as ROUGE-1, ROUGE-
L (Lin, 2004), PRISM (Thompson and Post, 2020),
CTC Consistency (Deng et al., 2021). Furthermore,
in Tables 14a and Tables 15 we also report perfor-
mance of individual correctness metrics in RECE-
VAL, namely intra-correctentail, intra-correctPVI,

and inter-correct on the test splits. Note that in
Tables 2 and 15, ROSCOE outperforms RECEVAL

on REP errors. However, the relative frequency of
REP errors is very low. Therefore, label imbalance
results in spurious correlation between REP and
overall coherency COH when using ROSCOE-LI.

D RECEVAL Correctness Metrics

In this section, we provide additional details and ab-
lations about the correctness metrics in RECEVAL

as discussed in §6.2.

Oracle RCUs. In §6.2, we evaluate our identi-
fied RCUs with gold RCUs using entailment trees
from Entailment Bank. Given an intermediate node,
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Method REP HALL NEG SWAP

ROUGE-1 0.39 0.41 0.03 0.06
ROUGE-2 0.36 0.39 0.11 0.09
ROUGE-L 0.21 0.19 0.01 0.23
BERTScore 0.26 0.41 0.15 0.17
BARTScore 0.03 0.06 0.08 0.18
PRISM 0.23 0.45 0.03 0.16
CTC Relevancy 0.26 0.06 0.03 0.04
CTC Consistency 0.31 0.16 -0.05 -0.02

ROSCOE-SS (fine-tuned) 0.51 0.51 0.54 0.04
ROSCOE-SA (fine-tuned) 0.82 0.85 0.92 0.61
ROSCOE-LI -0.04 0.40 0.91 -0.05

RECEVAL-correctness 0.09 0.89 0.94 0.64
RECEVAL-informativeness 0.79 0.31 0.04 0.10

Table 16: Comparison of Somer’s D correlation scores
using baseline text-generation metrics, ROSCOE, and
our metrics on perturbations to Entailment Bank by
Golovneva et al. (2023).

Method HALL NEG SWAP

inter-correct 0.14 0.90 0.16
inter-correct (+ premises) 0.15 0.87 0.13
inter-correctconcat 0.14 0.89 0.22

Table 17: Comparison of different variants of
inter-correct metric by including premises and con-
catenation instead of pair-wise comparison on dev split
of EB-challenge.

we decompose it into RCUs by picking the largest
SRL frame (including modifiers). For the premise-
RCUs, we find all RCUs from its parent nodes.
This ensures that all the premise-RCUs used to
form the conclusion are included when measur-
ing correctness and avoids any irrelevant sentences
(which are neutral when measuring entailment and
independent from an information-theoretic perspec-
tive). This explains why using gold RCUs boosts
the performance on intra-step-correctness.

Variants of inter-correct. As described in
§4.2, we perform pair-wise comparison wit all prior
information in X and conclusion-RCUs from pre-
ceding steps. Due to high overlap in information
contained in premise-RCUs and X , we did not
measure correctness with respect to premises. Al-
ternative to pair-wise comparison, one can also
concatenate all prior information and check for con-
tradiction directly (denoted by inter-correctconcat).
We compare these three different implementations
of inter-step correctness in Table 17. We find that
the performance of concatenation and pair-wise
variants is comparable across all error types. As
expected, we observe similar performance of inter-

Method k HALL NEG SWAP

inter-correctno-contr. all 0.14 0.89 0.22

inter-correctno-contr. 2 0.10 0.84 0.20
inter-correctentail 2 0.56 0.73 0.32
inter-correctPVI 2 0.84 0.10 0.34

inter-correctno-contr. 1 0.08 0.79 0.15
inter-correctentail 1 0.52 0.66 0.31
inter-correctPVI 1 0.81 0.05 0.26

intra-correctno-contr. 0 0.02 0.82 0.08
intra-correctentail 0 0.71 0.84 0.37
intra-correctPVI 0 0.86 0.16 0.38

Table 18: Comparison of different views of correctness
based on current step and preceding k steps on dev
split of EB-challenge. Note that inter-correctno-contr.
is same as inter-correctconcat.

step correctness when including premise-RCUs
across all errors.

Different views of correctness. In §4.1 and §4.2,
we present three views of correctness: (i) entail-
ment, (ii) using PVI framework, and (iii) lack of
contradictions. The first two are used to com-
pute intra-correct and the last is used to com-
pute inter-correct. As described in §4.1, correct-
ness can be measured using various viewpoints
(e.g., based on entailment or PVI). Then in Ta-
ble 18 (bottom section), we compare all three
views of correctness to compute intra-correct and
conclude intra-correctPVI, and intra-correctentail
work best with hallucination and negate errors
respectively (with comparable performance on
swap). Thus, we conclude that intra-correctentail
and intra-correctPVI have different degrees of ef-
fectiveness depending on the type of error and
can be used in a complementary way. Now, we
extend this analysis to evaluate how these three
views of correctness compare when evaluating
inter-step correctness. Since PVI and entailment
variants concatenate information, to maintain uni-
formity, we use inter-correctconcat for this analy-
sis. We observe that the best performance on nega-
tion errors is obtained by inter-correctno-contr.
with k = all, whereas for the rest best perfor-
mance is obtained using intra-correctPVI (k = 0).
Further, we find that inter-correctPVI works best
to identify hallucinations (and swaps), whereas
inter-correctno-contr. is best for negation across
all values of k. Lastly, inter-correctentail corre-
lates well across error types for different values
of k. This leads to a unified correctness metric
wherein different methods differ in the view of cor-
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Error Dataset Description Correctness Informativeness

HALL All Hallucinations: Step contains information not
provided in the input context, could be irrelevant
but makes the step wrong.

✓ ✗

REP All For EB: Step contains verbatim repetition of
information already in previous steps. For GSM-
8K and DROP: Step contains verbatim repetition
or paraphrasing of information already present.
The step could be dropped without impacting
correctness.

✗ ✓

RED All Additional step in the reasoning chain contain-
ing information irrelevant to solving the problem.
The information itself could be factual and con-
sistent with input context.

✗ ✓

PAR EB Additional step contains paraphrasing of infor-
mation already in the reasoning chain.

✗ ✓

NEG EB Compared to the gold chain, step contains nega-
tion of information altering the correctness.

✓ ✗

SWAP EB Information within the step is swapped in order,
altering the overall correctness.

✓ ✗

QUAL GSM-8K , DROP Likert score (1-5), measures overall quality of
reasoning chain and how well it answers the
question.

✓ ✓

COH GSM-8K, DROP Likert score (1-5), measures overall coherence
of the reasoning chain, i.e. if it makes sense and
is non-contradictory.

✓ ✓

COM GSM-8K, DROP If the step contains any commonsense or general
world knowledge related mistake.

✓ ✗

FACT GSM-8K, DROP Step contains information that contradicts some
information in the input context.

✓ ✗

LOGIC GSM-8K, DROP Step contains errors in logical deduction, could
be contradictory to previous steps or not enough
support or evidence, relates to coherence.

✓ ✗

MATH GSM-8K Arithmetic or math equation errors in the step. ✓ ✗

Table 19: Glossary of types of errors in EB-challenge and GSM-8K and how it relates to desired correctness
and informativeness properties of good reasoning chains. Note that ‘✓’ and ‘✗’ denote the expected impact on
correctness and informativeness in general. The actual impact depends on the reasoning chain and the exact error.

rectness employed and the number of preceding
steps k considered.

E Informativeness and Approximately
Positive Information Gain (API)

Fig. 4 qualitatively shows how informativeness
changes when adding a repeated (uninformative)
step to gold reasoning chains in EB. As expected
we see a sharp dip in our metric indicative of nega-
tive or minimally positive information gain.

API. In §6.2, we introduce API to quantify the
trend of informativeness across steps in a reasoning
chain. A reasoning chain is APIk across steps if for
every k contiguous steps, these steps as a whole are
more informative than the preceding steps. Based
on the PVI framework, a reasoning chain would
be APIk if PVI(s(i:i+k−1) → â|s(<i)) > 0, ∀s(i) ∈
R. Below we show how to evaluate this quantity

directly in terms of our metric info-gainPVI.

PVI(s(i:i+k−1) → â|s(<i))

= log g[s(<i+k)](â)− log g[s(<i)](â) (∵ g = g′)

= log g[s(<i+k)](â)− log g[s(<i+k−1)](â)

+ log g[s(<i+k−1)](â) · · · − log g[s(<i+1)](â)

+ log g[s(<i+1)](â)− log g[s(<i)](â)

= PVI(s(i+k−1) → â|s(<i+k−2)) + · · ·
+ PVI(s(i) → â|s(<i)) (using definition in §4.3)

=
i+k−1∑

j=i

info-gain(j)PVI

How does info-gain vary based on the number
of preceding steps? Finally, we are interested
in analyzing the effect of the number of past steps
conditioned on for computing info-gain. Instead of
measuring the gain relative to all the preceding rea-
soning steps, we also consider using only k preced-
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Figure 4: Trends in information gain of steps across gold and uninformative (REP) reasoning chains from EB-
challenge. The position of the added uninformative step is highlighted in red on the x-axis and via ‘⋆’ marker.

Method REP PAR RED

info-gainPVI (k = 1) 0.65 0.66 0.64
info-gainPVI (k = 2) 0.70 0.69 0.68
info-gainPVI (k = all) 0.65 0.64 0.63

Table 20: Comparison of informativeness metric of RE-
CEVAL on dev split of EB-challenge using different
amounts prior steps (k) in the reasoning chain.

ing steps to compute information gain. In Table 20,
we find that using k = 2 prior steps outperforms
k = 1 consistently with nearly 0.04 higher corre-
lation across error types. However, using all prior
steps is comparable to k = 1 step. We suspect that
the distinction between informative and uninforma-
tive chains becomes more pronounced when the
reasoning chain is truncated and some of the re-
quired information for reasoning is absent from the
context. Thus, we use k = 2 to compute info-gain
in our final experiments in §6.1.
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