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Abstract

The field of Natural Language Generation
(NLG) suffers from a severe shortage of labeled
data due to the extremely expensive and time-
consuming process involved in manual annota-
tion. A natural approach for coping with this
problem is active learning (AL), a well-known
machine learning technique for improving an-
notation efficiency by selectively choosing the
most informative examples to label. However,
while AL has been well-researched in the con-
text of text classification, its application to NLG
remains largely unexplored. In this paper, we
present a first systematic study of active learn-
ing for NLG, considering a diverse set of tasks
and multiple leading selection strategies, and
harnessing a strong instruction-tuned model.
Our results indicate that the performance of
existing AL strategies is inconsistent, surpass-
ing the baseline of random example selection
in some cases but not in others. We highlight
some notable differences between the classifi-
cation and generation scenarios, and analyze
the selection behaviors of existing AL strate-
gies. Our findings motivate exploring novel ap-
proaches for applying AL to generation tasks.

1 Introduction

Active learning (AL) (Cohn et al., 1996) is a well-
known machine learning approach for reducing
annotation effort, aiming to train models with less
data by selecting the most informative examples
to label. This paradigm was introduced and devel-
oped in the context of classification (Settles, 2009;
Lewis and Gale, 1994), and has been successfully
applied to machine learning problems from a wide
range of domains, including computer vision (Gal
and Ghahramani, 2016; Sener and Savarese, 2018;
Gissin and Shalev-Shwartz, 2019) and text classi-
fication (Zhang et al., 2017; Siddhant and Lipton,
2018; Prabhu et al., 2019; Ein-Dor et al., 2020).

∗These authors contributed equally to this work.

Figure 1: Statistical significance of AL benefits. The
plot depicts the results of paired Wilcoxon signed-rank
tests of AL performance, for each dataset-strategy com-
bination. Cells marked in green indicate that the AL
strategy significantly outperformed random selection for
the dataset, with p < .05 after Bonferroni correction.

Major advances in the architecture and scale
of machine learning models in general, and pre-
trained language models in particular, have given
rise to the emerging field of Natural Language Gen-
eration (NLG) (Li et al., 2021; Dong et al., 2022).
However, a major practical barrier in tackling NLG
tasks is the shortage of annotated data, exacerbated
by the increased burden of human annotation for
such tasks. As a paradigm for minimizing label-
ing effort, AL is a natural avenue for coping with
these challenges. Nevertheless, it has hardly been
studied in the context of NLG problems.

In this work, we explore the AL paradigm as
applied to NLG. Our aim is twofold: first, to exam-
ine how well AL strategies perform in NLG; and
second, to gain insight into how these strategies
operate in the unique context of text generation.
To this end, we conduct an extensive set of experi-
ments with leading AL strategies on various NLG
tasks, accompanied by a comprehensive analysis
of strategy behaviour. Our results reveal that these
AL strategies do not perform consistently across
different datasets and tasks (Figure 1), suggesting
that new AL methods are required to bring value in



this domain.
To the best of our knowledge, this is the first

systematic study of AL for NLG tasks. Moreover,
in this work we introduce strong instruction-tuned
models into the AL paradigm. In outlining the
behavior of existing strategies, we aim to lay the
groundwork for future research, leading to effective
use of AL in practical NLG scenarios.

2 Related Work

In the field of natural language processing, AL was
mainly studied for text classification (Ein-Dor et al.,
2020; Schröder et al., 2021; Margatina et al., 2021).

AL has also been successfully applied in the con-
text of neural machine translation (NMT), where
the focus is on low-resource pairs of languages
(Zhao et al., 2020; Liu and Yu, 2023). Some works
investigated strategies that are tailored specifically
for NMT, such as using a backward translator to
check round-trip translations (Haffari et al., 2009;
Zeng et al., 2019) or quality estimation (Chimoto
and Bassett, 2022). Zeng et al. (2019) conducted a
systematic comparison of different AL methods in
the context of NMT. Thus, we do not include NMT
in the present work and focus on NLG tasks that
had not been systematically explored.

There exists a wide variety of NLG tasks, and
these have attracted much attention in recent
years (Dong et al., 2022). Nevertheless, outside the
context of NMT there are very few works that apply
AL to NLG tasks (Zhang et al., 2022). Specifically,
for summarization, Gidiotis and Tsoumakas (2021,
2022) propose a Bayesian strategy in which they
select samples to label by optimizing the uncer-
tainty using the Monte Carlo BLEU variance met-
ric. More recently, Tsvigun et al. (2022) propose an
embedding-based method and show improvements
in certain summarization datasets. Paraphrase gen-
eration with LSTMs was reported in Karaoguz
(2018), where the authors use n-gram coverage
measures as their sampling strategy, aiming at cap-
turing the informativeness of source paraphrases.

Thus, while there have been some focused stud-
ies of AL in the context of a specific NLG task, in
this work we aim for a more systematic and com-
prehensive view, across multiple tasks and datasets.

3 Background

3.1 The Active Learning Scenario
Active learning is an iterative process that aims
to reduce labeling costs, by focusing the human

annotation effort on the most informative instances.
The AL setting assumes access to a large amount

of unlabeled data, and a limited annotation budget.
The core idea of AL is that the current model can
be leveraged to maximize the utility of the label-
ing budget; thus, the goal of an AL strategy is to
identify unlabeled examples whose annotation is
expected to yield the largest performance improve-
ment when used to train the model.

Differing approaches have been put forth for
predicting – given a set of unlabeled examples –
which of those examples would be most beneficial
as training examples for the model.

Broadly, much of the AL literature has focused
on two general directions: Representativeness and
Informativeness. Representativeness methods fo-
cus on the data distribution of the examples. As-
suming that an informative set of training examples
is one that accurately represents the overall pop-
ulation of instances, they aim to select a diverse
and representative set of examples for labeling. Un-
der the Informativeness umbrella, a key focus has
been on uncertainty. In the uncertainty-based ap-
proach, the core assumption is that examples for
which the model is least certain are the most infor-
mative for model training. Thus, uncertainty-based
strategies aim to estimate the uncertainty for each
unlabeled example u, and to choose those with the
highest model uncertainty.

3.2 AL in Generation vs. Classification

Text classification and text generation differ in
many important aspects. Next, we consider these
differences through the lens of AL strategies.

One major difference is that, for most NLG tasks,
there are multiple legitimate outputs for a given
input text. For example, in paraphrase generation,
there are many ways to rephrase a given sentence;
the ability to generate a diverse set of outputs is in
fact a desired attribute of the model.

Generally, in AL, a model’s uncertainty about an
example is considered a strong signal for informa-
tiveness; the underlying assumption is that exam-
ples where the model is uncertain are those where
it is prone to error, and would thus derive the most
benefit from supervision. However, uncertainty in
an NLG scenario – namely, a situation where the
model considers several outputs to be equally prob-
able – is not necessarily associated with errors, and
may even reflect a desirable propensity to generate
diverse generation outputs. Therefore, the family of



uncertainty-based active learning strategies, consid-
ered a top strategy for classification (Schröder et al.,
2021), may not be directly applicable to NLG.

Another fundamental difference between clas-
sification and generation is in the dimensionality
of the prediction space. In classification tasks, the
number of classes is typically small, ranging from
two classes, e.g., in the case of spam detection, up
to a few hundreds for intent detection tasks. In
contrast, in NLG, the number of possible “classes”
in predicting the next token is the vocabulary size
– which is typically O(104) – and correspondingly
the number of options to select from when gener-
ating a sequence of tokens is exponentially large.
The dimension of the prediction space is crucial
in the case of expected model change strategies,
which aim to directly estimate the effect an instance
would have on the model. While in classification
a strategy like Expected Gradient Length (Huang
et al., 2016) can compute the expected gradient
norms over the posterior distribution of labels, the
very large dimension of the prediction space in gen-
eration tasks makes this computation intractable.

4 Experimental Setup

This work aims to systematically study the appli-
cation of active learning to NLG. To this end, we
conduct a comprehensive set of experiments, ex-
ploring the behavior of the different families of AL
strategies across a wide range of NLG tasks.

4.1 Active Learning Setup

We use the pool-based active learning (Settles,
2009) variant, in batch mode.

At the beginning of the active learning process
for a dataset D, we start with a pre-trained base
model M0, a pool of unlabeled data UD and an
empty pool of labeled data LD.

At each active learning step i, the AL strategy
selects a batch of ni samples from UD for labeling;
these samples are removed from UD and added to
the labeled data pool LD, along with their ground-
truth labels. Then, the base model M0 is fine-tuned
on the labeled samples in LD, i.e., on all the data
labeled thus far, creating a new model Mi.

This process is repeated N times, where at each
step the AL strategy can utilize the predictions over
the unlabeled pool of the previous model Mi−1, in
order to select the next batch of examples.

For runtime considerations, we restrict the size
of the unlabeled pool UD to 10K examples ran-

domly sampled from the training set of D.
Altogether, we report results of 18 AL steps be-

tween 0 and 1000 labeled examples: 10 batches of
20, followed by 8 batches of 100. As our focus is
on a practical scenario of small annotation budgets,
we opted to sample the first iterations (i.e., 0− 200
training examples) more densely, to gain a detailed
view of the behavior of AL in this area.

4.2 Base Model

To represent a practical scenario of applying
AL over strong pretrained models, we use the
instruction-tuned FLAN-T5 Large1 as the base
model for our experiments. This model was trained
on a wide range of language tasks, including many
NLG tasks, and has been shown to exhibit better
performance and faster convergence in downstream
task fine-tuning (Longpre et al., 2023). As this base
model was trained using instruction-tuning (Wei
et al., 2022), we formulate each NLG task as a sim-
ple natural language instruction that is given to the
model. The instruction prompts for each task are
listed in Appendix A.2.

To ensure an appropriate simulation of the AL
process, we only experiment on datasets that were
not included in the FLAN-T5 training data2.

Note that the use of a strong base model with
zero-shot capabilities allows for starting the AL
process from an empty labeled data pool LD.
This is unlike the traditional AL setup, where a
randomly-selected seed LD is required to jump-
start the process.

4.3 Tasks and Datasets

We consider four prominent tasks in NLG: para-
phrase generation, style transfer (formality), sum-
marization, and question generation. We chose 2
or 3 representative datasets for each task. As men-
tioned above, we avoid datasets that were used to
fine-tune FLAN.

The datasets for each task are listed in Table 1,
and a full description of the datasets can be found
in Appendix A.1.

4.4 Active Learning Strategies

We test a representative group of AL strategies,
covering different data acquisition approaches. Fol-
lowing Zhang et al. (2022), we divide AL query

1https://huggingface.co/google/flan-t5-large
2https://github.com/google-research/FLAN/blob/

main/flan/v2/flan_collection_info.csv

https://huggingface.co/google/flan-t5-large
https://github.com/google-research/FLAN/blob/main/flan/v2/flan_collection_info.csv
https://github.com/google-research/FLAN/blob/main/flan/v2/flan_collection_info.csv


Task Datasets Metric
Paraphrase MSCOCO, iBLEU
Generation Parabank v1.0/v2.0
Summarization DebateSUM, Reddit TL;DR ROUGE-L
Question Gen. NewsQA, MLQA BLEU
Formality GYAFC-E&M, GYAFC-F&R G-Score

Table 1: Datasets and evaluation metrics.

strategies into two broad categories - representa-
tiveness and informativeness strategies.

Where necessary, we adapt the strategy imple-
mentation to accommodate the NLG scenario. Note
that certain types of AL strategies are inherently un-
suitable for NLG. Specifically, gradient-based AL
methods like EGL (Huang et al., 2016) or BADGE
(Ash et al., 2020) cannot be straightforwardly ap-
plied to NLG, due to the sequential nature of NLG.

4.4.1 Representativeness Strategies

For batch-mode AL, the AL variant we use in this
study, the relevant representativeness strategies are
those that aim to optimize the diversity and repre-
sentativeness of the selected batch. We take greedy
Core-Set and IDDS as examples of this family.

Core-Set (Sener and Savarese, 2018) aims to
increase representativeness by selecting instances
with maximal distance from the labeled pool. We
follow the greedy method described in Sener and
Savarese (2018). As in our scenario we start from
an empty labeled data pool, for the first AL step
we modify this strategy to enable it to be applied
without labeled data. For details see Appendix A.5.

In-Domain Diversity Sampling (IDDS) aims
to select diverse instances while avoiding outliers
(Tsvigun et al., 2022). IDDS scores for an example
strike a balance between a large mean distance
of the example from the instances in the labeled
pool, and a small mean distance from those in the
unlabeled pool.

The above strategies rely on vector representa-
tions for each instance; following Ni et al. (2022),
we calculate these representations as the hidden
state of the last layer of the encoder, averaged
across input tokens.

4.4.2 Informativeness Strategies

Informativeness strategies rank unlabeled exam-
ples according to measures that estimate example
informativeness, where model uncertainty is often
a proxy of informativeness. We take MTE as an ex-
ample of an uncertainty sampling strategy, and MC
Dropout which is a disagreement-based strategy.

Mean Token Entropy (MTE) selects instances
the model is least certain about, according to the
max-entropy decision rule. For NLG, the notion of
max-entropy is expanded by taking the mean over
the entropies of each generated token, as in Zhao
et al. (2020).

Monte Carlo Dropout (MC Dropout) selects
instances the model is least certain about, by har-
nessing model stochasticity (Gal and Ghahramani,
2016). For NLG, instance uncertainty is estimated
using Monte Carlo BLEU variance (Gidiotis and
Tsoumakas, 2021; Xiao et al., 2020). In this ap-
proach, after stochasticity is induced by activating
dropout, the uncertainty of a specific sample is es-
timated by how different its generated outputs are
in terms of their BLEU score.

4.5 Evaluation Metrics

We use standard automatic metrics to evaluate the
tasks, as summarized in Table 1. For paraphrase
generation we use iBLEU (Sun and Zhou, 2012);
for summarization and question generation, we use
ROUGE-L (Lin and Och, 2004), and BLEU (Pap-
ineni et al., 2002), respectively. To evaluate the for-
mality transfer task, we follow Xu et al. (2018) and
use G-Score, the geometric mean of the formality-
score and BERTScore (Zhang et al., 2020) with
the reference text; further details can be found in
Appendix A.6.

4.6 Implementation Details

We base our training and inference implementation
on Hugging Face Transformers (Wolf et al., 2019)
v4.26 and pytorch (Paszke et al., 2019) v2.0. Each
experiment was repeated 5 times, with each rep-
etition using a different random seed on a single
NVIDIA A100 GPU. Thus, we performed a total
of 4050 training and inference runs (9 datasets ×
5 strategies × 18 iterations × 5 repetitions) for the
main experimental results.

To keep the computation budget manageable, we
opted for a single base model and standard set of
hyperparameter values. In each AL step, the base
model was fine-tuned for 3 epochs over LD, using
the adafactor optimizer (Shazeer and Stern, 2018)
with a constant learning rate of 5× 10−5, and train
batch size of 8.

5 Results

For each dataset, we report performance metrics
across 18 AL iterations – i.e., the performance of



Figure 2: AL performance for selected datasets. The lines depict the evaluation performance of the different
selection strategies along the AL process. Each line represents an average (± 95% Bootstrapped CI) over 5
experimental repetitions. In this plot we focus on the range of up to 500 labeled examples. Plots for all datasets, for
the full range of 1000 examples, are shown in Appendix A.3.

models fine-tuned on different amounts of labeled
instances – comparing results between different
active learning strategies.

In addition, we report the performance when
using the baseline of Random selection - randomly
sampling the batch of examples to be added to the
labeled data pool at each iteration.

Figure 2 depicts AL results for two of the
datasets tested, Parabank1.0 and GYAFC-F&R. As
can be seen in the figure, for these datasets we do
not see a clear advantage to any of the AL strate-
gies tested; moreover, the various AL strategies do
not seem to outperform the baseline of randomly
selecting instances for labeling. These plots are
representative of the overall pattern of results we
see across tasks and datasets, with none of the AL
strategies convincingly overtaking the others across
datasets. Individual plots for all the datasets tested
are shown in Appendix A.3.

A recurring pattern in the results is that most of
the performance gains from supervision occur in
the first few AL iterations, and at times even in the
first AL iteration, where the model is trained on just
20 labeled instances. Thus, it appears the FLAN
base model needs only a small number of examples
to learn the basic premise of the target generation
task; while larger amounts of labeled data are of
course beneficial, the few-shot performance of this
model across datasets is quite strong.

In Figure 3 we present the full distribution of the
performance of the various AL strategies relative
to the random selection baseline, for each of the 4
NLG tasks. Overall, across tasks, datasets, AL iter-
ations and experiment repetitions, the behavior of

all the strategies tested is strikingly similar to that
of random selection. Granted, there are specific
instances where a strategy outperforms random se-
lection for a specific dataset (for example, see the
MC Dropout strategy over the Reddit TL;DR data);
however, we find no consistent pattern of benefits
to using AL, even within a specific NLG task.

To better quantify these results, we perform a
Wilcoxon signed-rank test, comparing each strat-
egy to the random selection baseline (refer to Ap-
pendix A.4 for details). Figure 1 shows the results
of the significance testing. As can be seen, none of
the strategies exhibit a clear benefit for the tasks of
paraphrase generation and formality transfer, and
results for question generation and summarization
are somewhat mixed. Notably, both Core-Set and
MC Dropout fail to provide benefits across more
than one dataset.

6 Analysis

Given the failure to systematically outperform the
random baseline, in this section we examine the dif-
ferent AL strategies by the properties of the batches
they select, aiming to gain insights into how they
operate. In line with the two families of strate-
gies we survey, our analyses focus on notions of
representativeness (§6.1) and uncertainty (§6.2).

We perform a comparative analysis of the strate-
gies, using the random strategy as a reference point.
This analysis also serves as a sanity check, to vali-
date that the properties exhibited by the different
strategies are aligned with their expected behavior.

To ensure all strategies are compared with the



Figure 3: Dataset/Strategy Summary. The plots depict the relative gains of each strategy with respect to the random
selection baseline. Gains are computed as the performance difference with respect to the zero-shot performance.
Relative gains are computed as the percentage change between the gains of the AL strategy and the gains of random
selection. Each point represents the relative gain between a given strategy and random selection for a particular
setting – i.e., at a specific iteration and for a specific experimental repetition. Thus, for each dataset-strategy
combination 90 points are shown (18 AL iterations × 5 repetitions). The distribution patterns reveal that although
in some cases, a strategy might beat random selection, no strategy consistently outperforms the random baseline.

same initial conditions, this analysis is performed
solely for the first AL iteration, where all strate-
gies rely on the same base model and the same
unlabeled set UD. Each strategy makes its own
selection of 100 examples3 for labeling from UD.

6.1 Diversity and Outliers

Two properties that are known in the literature to
impact the effectiveness of AL strategies, at least
in the context of classification, are the diversity and
the propensity for outliers of the batches selected
for annotation (Kee et al., 2018). Thus, we examine
these two properties in the selected batches.

For the purpose of analyzing these properties,
we define the input example representation as the
average of the input tokens’ embeddings over the
last encoder hidden state (Ni et al., 2022), as done

3To obtain a more accurate estimate of strategy behavior,
we use a larger initial batch size than for the results in §5.

for the representativeness strategies in §4.4.1.

Outliers: A known issue with AL strategies,
particularly those focusing on uncertainty, is their
tendency to select outliers that do not faithfully
represent the overall data distribution. To mea-
sure the severity of the outlier problem, we use
the density in representation space of points in the
selected batches. Specifically, following Ein-Dor
et al. (2020), we rely on the KNN-density measure
proposed by Zhu et al. (2008), where the density of
an instance is quantified by the average (Euclidean)
distance between the instance in question and its K
nearest neighbors within UD. We define the outlier-
score of a batch by the average KNN-density of
its instances (K = 10), where high density corre-
sponds to a low outlier-score.

Diversity: Choosing a batch of diverse examples
is often better than choosing one containing very
similar and perhaps redundant examples. We define



Figure 4: Strategy selection characteristics. The plots depict the outlier score (left, lower is better) and diversity
(right, higher is better) of the batches selected by the different AL strategies, as well as the Oracle strategy of §6.2.2.

the Diversity of a batch B as the average Euclidean
distance of its instances from the center.

The diversity and outlier-score of the different
strategies are depicted in Figure 4. As expected,
Core-Set, a batch-aware strategy, which was de-
signed to increase diversity, is characterized by
batches with the highest diversity. It is also charac-
terized by the highest outlier score, in line with the
tendency of the greedy version of Core-Set to select
outliers (Sener and Savarese, 2018). In contrast,
IDDS, which explicitly attempts to avoid outliers
(Tsvigun et al., 2022), correspondingly has a low
outlier-score, and also a relatively low diversity.
Meanwhile, the uncertainty strategies exhibit diver-
sity and outlier scores that are closer to those of the
random selection baseline, indicating that they do
not suffer from severe diversity or outlier issues.

6.2 Uncertainty and Model Performance

The major premise underlying uncertainty-based
AL is that the information gained by labeling an
example is higher if the current model’s prediction
on this example is erroneous. Thus, relying on
the potential association between uncertainty and
error rate, uncertainty-based strategies aim to find
examples from the unlabeled data that are more
prone to errors (Lewis and Gale, 1994).

The failure of the uncertainty-based strategies ex-
amined here to consistently outperform the random
baseline, raises the question if – and to what extent
– they are applicable to the generation scenario.

In order for the uncertainty approach to succeed,
two conditions must be fulfilled: First, that the
strategies are able to identify subsets of the unla-

beled examples with a larger error rate; and second,
that labeling examples with larger model errors is
in fact more beneficial for training the model. The
following analyses examine these two conditions.

6.2.1 Selecting Error-prone Examples
In classification, there exists a clear association be-
tween uncertainty and prediction errors. Here we
examine whether a similar association also holds
in generation; and specifically, whether examples
that are scored higher by the uncertainty strategies
are associated with poor generated outputs, as mea-
sured by the automatic evaluation metrics.

To this end, we obtain the generation predictions
of the base model for all the instances in the un-
labeled pool UD. Then, we compute the average
evaluation score of the model generations that cor-
respond to instances in the selected batch B, and
compare them to the average score over the en-
tire unlabeled pool. The results of this analysis
for the various AL strategies are presented in Fig-
ure 5. As expected, batches selected by the MC
Dropout uncertainty strategy are characterized by
lower evaluation scores. The other uncertainty ap-
proach, MTE, exhibits a similar tendency but is
less consistent across datasets.

Thus, there is some association between gener-
ation performance and uncertainty. Nevertheless,
there are no consistent performance gains from the
uncertainty strategies.

6.2.2 Are Error-prone Examples Informative?
So far, we have established that the uncertainty
strategies do tend to capture poor generation per-
formance. However, in order for this to be reflected



Figure 5: Strategy selections by relative generation
performance. The plot compares AL strategies in terms
of the relative model generation performance over the
batches selected by the strategy. Relative performance
is defined as the difference between the average perfor-
mance over the batch and the average performance over
the full unlabeled pool UD, measured in standard devi-
ations. Results are averaged across datasets. A large
negative value indicates that the examples selected by
the strategy are associated with poor model generation
outputs.

in AL gains, the basic assumption that low perfor-
mance examples are more useful to the model must
be satisfied.

To test the validity of this assumption more
directly, we implement an “illegal” AL strategy,
named Oracle, that has direct access to the evalua-
tion metric scores with respect to the ground-truth
references, and selects the examples with the lowest
evaluation scores (as seen in Fig. 5). If the afore-
mentioned assumption is valid, Oracle is expected
to yield optimal learning progress, as measured by
the corresponding evaluation metric.

However, the results of this experiment, as
shown in Appendix A.3, indicate that the Oracle
strategy generally performs very poorly.

Thus, we see that the basic assumption of uncer-
tainty sampling – that labeling examples with poor
model output will be most beneficial for improving
the model – does not necessarily hold in NLG.

To conclude, we have shown that uncertainty-
based strategies are able to select error-prone in-
stances; However, even optimal selection is not a
guarantee of gains in model training, as demon-
strated by the Oracle strategy.

7 Discussion

In this work, we examined the effectiveness of var-
ious active learning strategies across multiple NLG

tasks. Through rigorous experimentation and anal-
ysis, we have shown that no AL strategy system-
atically demonstrates a clear superiority over the
random baseline in terms of NLG quality.

Our findings indicate that despite the potential
promises and advancements in active learning tech-
niques, when it comes to NLG, the inherent com-
plexity and diversity of human language poses sig-
nificant challenges. AL strategies, which aim to
improve efficiency by actively selecting informa-
tive data points for labeling, may not effectively
capture the intricacies of language structure, seman-
tics, and context required for generating coherent
and meaningful text.

Our results provide a wider and somewhat con-
trasting perspective to previous works. While previ-
ous papers had typically reported the effectiveness
of AL on a specific dataset and task, our compre-
hensive analysis – spanning multiple datasets and
tasks – suggests that the potential gains reported
before are not very robust, hence do not show up in
a consistent manner. Thus, while our experiments
were done on a single base model and hyperparam-
eter setting, they indicate that existing AL methods
cannot be assumed to work out-of-the-box.

The failures of existing AL methods for NLG
cannot easily be associated with a single underlying
factor. More likely, there are multiple issues at play
that violate some of the premises and assumptions
of AL strategies that were designed with classifi-
cation in mind. Some of these potential causes –
for instance, the complex relation between model
uncertainty and erroneous outputs – reflect a fun-
damental difference between the tasks of classifi-
cation and generation. Others, however, may be
more a question of degree. For instance, the out-
put space for generation is overwhelmingly larger
than that of a typical classification task, and is also
characterized by a large degree of label imbalance,
properties that may lead to difficulties in capturing
informative examples. Notably, similar issues exist
in some multi-label classification tasks, which also
exhibit difficulties with leveraging AL (Wang and
Liu, 2023; Wertz et al., 2022).

In this work we combine AL with a strong
instruction-tuned model, highlighting the impor-
tance of the base model used. The behavior ob-
served here, where much of the performance gain
is achieved with a small number of training exam-
ples, is encouraging with respect to the practical
scenario of a limited labeling budget; at the same



time, this may entail new AL approaches that fo-
cus on small batches or on bringing value to the
selection of a single batch of few-shot instances.

In our view, the takeaway from our results is not
that the paradigm of active learning should be aban-
doned. The goal of reducing manual annotation
efforts remains as relevant as ever, all the more so
for the particularly expensive annotation process
associated with NLG. Rather, our hope is that these
results will stimulate new efforts in devising novel
AL strategies and approaches, ones that are specif-
ically designed for the NLG scenario, and suited
for strong instruction-tuned base models.

Limitations

Generally, there are some inherent gaps between
AL experiments such as those conducted here and
the ultimate goal of achieving label efficiency with
a human in the loop. As outlined in Margatina
and Aletras (2023), prominent gaps between aca-
demic AL studies and practical AL applications
include the potential effects of differing dataset
qualities, as well as of temporal drifts in data distri-
butions, that are characteristic of real-world data;
additionally, while practitioners may pursue hyper-
parameter tuning for their trained model, this is not
feasible in the context of a large AL study like the
present work. Perhaps most crucially, given that
the AL experiments are performed on fully-labeled
datasets, here we only look at the selection of ex-
amples for labeling, and not at the labeling process
itself. Specifically, it is plausible that the exam-
ples selected by an AL strategy would prove to be
more difficult for a human annotator, and/or that
different labelers will write very different outputs
for the selected instances. Such questions, which
are highly relevant for NLG, are beyond the scope
of this work.

In this study we report AL behavior for more
practical labeling budgets, ranging between 20 and
1000 training examples. The effects of AL strate-
gies when working with larger scales of labeled
NLG data may be quite different than the pattern
of results shown here.

Finally, as is common in NLG, we rely on au-
tomatic metrics to evaluate model performance.
While these metrics are likely correlated to human
judgements of task performance, the metrics may
suffer from various artifacts and biases, and thus
provide only a partial window into the true model
performance.
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A Appendix

A.1 Datasets and Tasks

Paraphrase Generation

Paraphrase generation datasets include pairs of an
input text and its paraphrase, typically created by
automatic alignment. To ensure high-quality can-
didate samples, we followed Dong et al. (2021),
and kept only pairs where the BERTScore (Zhang
et al., 2020) between the input and the paraphrase
is higher than 0.8.

MSCOCO: This dataset consists of 123K images,
each being associated with at most five human-
labeled captions (Lin et al., 2014). Following pre-
vious studies, we consider different captions of the
same image as paraphrases. After applying the
filtering we were left with more than 13K samples.

Parabank1.0 and Parabank2.0: contain clusters
of sentential paraphrases, produced from a bilin-
gual corpus using lexical constraints to the NMT
decoding procedure (Hu et al., 2019a) or negative
constraints, inference sampling, and clustering (Hu
et al., 2019b) respectively. These datasets are com-
posed of an average of 5 paraphrases in every clus-
ter and close to 80 and 100 million pairs in total.
After filtering we were left with around 50K sam-
ples pairs in each of the datasets.

Formality transfer

The Formality task is defined as the transition from
informal to formal style.

GYAFC: The dataset was obtained from Rao
and Tetreault (2018), and it contains 106K formal-
informal pairs of sentences. Informal sentences
were extracted from Yahoo Answers from two cat-
egories – “Entertainment & Music (E&M)” and
“Family & Relationships (F&R)”. The parallel for-
mal sentences were produced with crowd workers.
Due to its way of creation, it is considered a high-
quality dataset, and hence no further filters were
applied. Using the categories, we split GYAFC
into two datasets, GYAFC-E&M and GYAFC-F&R,
each with around 52K samples.

Summarization

DebateSUM: This dataset (Roush and Balaji, 2020)
consists of around 187K arguments, with corre-
sponding evidence texts and extractive summaries
that were compiled by experts (competitors within
the National Speech and Debate Association). We
consider the evidence extracts as the input texts and
the arguments as the target abstractive summaries.

Reddit TL;DR (openAI): The Reddit TL;DR
dataset (Völske et al., 2017) contains more than
3 million reddit posts along with human-written
summaries composed by the original posters. We
use a subset of this dataset introduced by Stiennon
et al. (2020), which consists of more than 123K
posts and summaries with higher quality (removed
duplications, removed summaries with certain lev-
els of profanity, etc.). Summaries contain between
24 and 48 tokens.

Question Generation

Question answering datasets are also used for the
Question generation task, where given a context
and an answer the model is asked to generate a
question that leads to this answer.

NewsQA: a collection of more than 100K human-
generated questions and answers. Questions are
posed by crowd workers on a set of news articles
from CNN, and the relevant span is annotated as
the answer (Trischler et al., 2017).

MLQA: a multilingual question answering
dataset, with questions generated by the crowd
over English paragraphs from Wikipedia that were
found to have corresponding parallel paragraphs
in other languages. Professional translators then
translate these questions into all target languages,
and answer spans are annotated within the aligned
contexts. In this work, we use the English subset
only, which consists of 12K pairs (Lewis et al.,
2020).

A.2 Instructional Prompts

Table 2 reports all prompt templates used for the
different tasks.

A.3 Full Active Learning Plots

Figure 6 presents the active learning performance
(§5) of all of the datasets tested.

Figure 7 depicts the full results for the Oracle
strategy from the analysis section (§6.2.2).



Task Prompt
Paraphrase generation Here is a text: {input text}

Write a paraphrase for this text:
Summarization* Here is a text: {document text}

Write a short summary for this text:
Question generation Here is some context: {context}

And an answer: {answer}
Given the context, write a question that leads to this answer:

Formality Here is an informal text: {informal text}
Write this text in a formal manner:

Table 2: Prompts. *The summarization prompt was used only for the DebateSum dataset, as the Reddit TL;DR dataset
includes its own prompts.

A.4 Statistical Significance Analysis

We perform a statistical significance analysis to
evaluate the benefits of the different AL strategies
in comparison to random selection.

Following Ein-Dor et al. (2020), we opt for the
Wilcoxon signed-rank test due to its non-parametric
nature. To calculate the p-value for a strategy S
over dataset D, we compare the performance of
the relevant evaluation metric (Table 1) for all pairs
(Sij , Rij), such that R is the Random selection
strategy, i = (1...18) is the iteration index, and
j = (1...5) is the experiment repetition number.
We apply a Bonferroni correction to adjust for the
multiple strategies examined.

A.5 Core-Set Adaptation

As stated in §4.4, we adapt the greedy Core-Set
algorithm from Sener and Savarese (2018) for the
scenario of starting with a zero-shot base model
and an empty initial labeled pool LD.

The original algorithm starts from a seed of la-
beled data, and then relies on it in order to greedily
choose unlabeled examples one at a time to add to
the labeled pool. In this work we begin with an
empty pool LD. Thus, for the first AL iteration of
the Core-set strategy, we jump-start this process by
randomly selecting a single unlabeled example to
serve as the initial seed. We then use this single
example as LD and apply the standard Core-Set
algorithm for selecting n1 − 1 instances, where n1

is the batch size of the first iteration. The subse-
quent AL iterations of Core-Set are selected using
the standard algorithm.

A.6 Evaluation metrics
Formality: To obtain formality scores for
model outputs, we train classifiers by fine-tuning
DeBERTa-v3 once over the GYAFC-E&M dataset,
and once over GYAFC-F&R (to accuracies of
92%); these classifiers are used to evaluate the
level of formality of the unseen dataset, respec-
tively. Then, we follow Xu et al. (2018) and use
G-Score of the formality score and BERTScore
(Zhang et al., 2020) with the reference text.



Figure 6: AL performance. The lines depict the evaluation performance of the different selection strategies along
the AL process. Each line represents an average (± 95% Bootstrapped CI) over 5 experimental repetitions.



Figure 7: AL performance of an “Oracle” strategy. The lines depict evaluation performance along the AL process.
The Oracle strategy is exposed to ground-truth labels, and selects examples based on poor performance on the
automatic task evaluation metric. Each line represents an average (± 95% Bootstrapped CI) over 5 experimental
repetitions. For the sake of presentation, in these plots we focus on the range of up to 500 labeled examples.


