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Abstract

Bilingual Lexicon Induction (BLI) is a core task
in multilingual NLP that still, to a large extent,
relies on calculating cross-lingual word repre-
sentations. Inspired by the global paradigm
shift in NLP towards Large Language Models
(LLMs), we examine the potential of the lat-
est generation of LLMs for the development
of bilingual lexicons. We ask the following re-
search question: Is it possible to prompt and
fine-tune multilingual LLMs (mLLMs) for BLI,
and how does this approach compare against
and complement current BLI approaches? To
this end, we systematically study 1) zero-shot
prompting for unsupervised BLI and 2) few-
shot in-context prompting with a set of seed
translation pairs, both without any LLM fine-
tuning, as well as 3) standard BLI-oriented fine-
tuning of smaller LLMs. We experiment with
18 open-source text-to-text mLLMs of differ-
ent sizes (from 0.3B to 13B parameters) on two
standard BLI benchmarks covering a range of
typologically diverse languages. Our work is
the first to demonstrate strong BLI capabilities
of text-to-text mLLMs. The results reveal that
few-shot prompting with in-context examples
from nearest neighbours achieves the best per-
formance, establishing new state-of-the-art BLI
scores for many language pairs. We also con-
duct a series of in-depth analyses and ablation
studies, providing more insights on BLI with
(m)LLMs, also along with their limitations.

1 Introduction and Motivation

Bilingual Lexicon Induction (BLI), also known as
word translation, is a fundamental research topic
in multilingual NLP that aims to bridge the lexi-
cal gap between languages (Ruder et al., 2019). It
has a wide range of applications such as machine
translation (Artetxe et al., 2018b; Marchisio et al.,
2020; Chronopoulou et al., 2021) and cross-lingual
transfer learning, especially for low-resource lan-
guages (Sun et al., 2021; Zhou et al., 2021; Wang
et al., 2022). Over the past decade, state-of-the-art

(SotA) BLI approaches have been predominantly
supported by learning a cross-lingual word embed-
ding (CLWE) space, with which BLI is tackled via
nearest neighbour retrieval (Artetxe et al., 2018a;
Heyman et al., 2019; Peng et al., 2021; Li et al.,
2022a; Marchisio et al., 2022, inter alia).

Meanwhile, autoregressive text-to-text large lan-
guage models (LLMs) have emerged as the corner-
stone of cutting-edge NLP research (Raffel et al.,
2020; Brown et al., 2020; Ouyang et al., 2022;
Chowdhery et al., 2022). For example, multilin-
gual LLMs (mLLMs) have shown (sentence-level)
machine translation capabilities (Vilar et al., 2022;
Briakou et al., 2023), although they have not been
pretrained for machine translation in a supervised
manner. Motivated by the recent remarkable suc-
cess of (m)LLMs, in this work we investigate 1) the
potential of prompting and fine-tuning of mLLMs
for BLI and 2) how their capabilities compare
against and complement current BLI approaches.
We focus on how to expose word-level bilingual
knowledge and elicit word translations from multi-
lingual LLMs. To our best knowledge, we are the
first to leverage autoregressive mLLMs for BLI.1

We systematically study zero-shot and few-
shot prompting for BLI with off-the-shelf
encoder-decoder and decoder-only autoregressive
mLLMs (Radford et al., 2019; Raffel et al., 2020;
Brown et al., 2020), respectively. In the few-shot
scenario, we propose to incorporate in-context ex-
amples from nearest neighbours into the prompts
to boost the BLI performance. In order to guide the
mLLMs’ generation, we hand-craft ‘mask-filling-
style’ and ‘GPT-style’ templates catering to the
characteristics of different LLMs and conduct ex-
tensive template search for BLI. In addition to pro-

1We point out that the work of Li et al. (2022a) leverages
only the encoder part of mT5 (the decoder is dropped) in one
of their experiments to extract CLWEs for BLI. In contrast, our
experiments with mT5 utilise its full encoder-decoder structure
and generate the target words autoregressively, completely
different from CLWE-based approaches.
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viding a complete and effective pipeline for BLI
via prompting off-the-shelf mLLMs, we also in-
vestigate BLI-oriented fine-tuning with the LLMs’
own pretraining objectives, aiming at specialising
mLLMs into ‘few-shot word translators’.

We conduct extensive experiments on two stan-
dard BLI benchmarks, XLING (Glavaš et al., 2019)
and PanLex-BLI (Vulić et al., 2019), investigat-
ing the word translation capabilities of off-the-
shelf mLLMs (we adopt 18 models from 5 LLM
families) in various BLI setups. Our compre-
hensive comparisons between mLLMs confirm,
as expected, that 1) different LLM families dis-
play varying word translation capabilities and 2)
stronger BLI performance tends to be associated
with larger model sizes. To demonstrate the effec-
tiveness of our prompt-based approach, we bench-
mark our method against two SotA CLWE-based
baselines. Notably, our approach with LLaMA13B
outperforms the CLWE-based SotA on the XLING
dataset by a considerable margin, establishing new
SotA results on many language pairs in all BLI se-
tups. Meanwhile, we also identify two limitations
of BLI with mLLMs: 1) they are less competitive
on the PanLex-BLI benchmark for lower-resource
languages; 2) CLWE-based approaches usually sup-
port more languages than mLLMs. Finally, we run
a series of insightful ablations and discuss the use-
fulness of BLI-oriented fine-tuning. In short, our
work validates the BLI capabilities of mLLMs and
proposes new methodology for BLI. We hope that
the combination of our comprehensive analyses
and discussions, including on limitations, will pave
the way for the development of stronger BLI sys-
tems in the future. Our code is publicly available
at github.com/cambridgeltl/prompt4bli.

2 Related Work

Bilingual Lexicon Induction. Over the past
decade, predominant BLI approaches have relied
on the calculation of cross-lingual word embed-
dings (CLWEs) where, in the most popular BLI
variant, two transformation functions are learned
to respectively map source and target monolingual
static word embedding spaces into a shared cross-
lingual space (Xing et al., 2015; Lample et al.,
2018; Joulin et al., 2018; Artetxe et al., 2018a;
Alvarez-Melis and Jaakkola, 2018; Patra et al.,
2019; Mohiuddin et al., 2020; Glavaš and Vulić,
2020; Peng et al., 2021; Li et al., 2022a; Marchisio
et al., 2022). Then, relying on the learned CLWE

space, BLI has been conducted via nearest neigh-
bour retrieval. A detailed overview of different BLI
principles can be found, e.g., in the work of Ruder
et al. (2019).

More recently, researchers have attempted BLI
by leveraging encoder-only multilingual masked
language models (mMLMs) such as mBERT (De-
vlin et al., 2019) and XLM-R (Conneau et al., 2020)
whose neural architecture consists of only Trans-
former encoders (Vaswani et al., 2017). Gonen
et al. (2020) prompt mBERT with templates where
the target word is replaced with a ‘<mask>’ to-
ken, and the language modelling head of mBERT
outputs a subword token to fill the mask. This
method is theoretically flawed because it cannot
address the cases where the target word comprises
two or more subword tokens. Therefore, Gonen
et al. (2020) only evaluate BLI on a small set of
‘toy’ examples rather than standard BLI datasets. In
terms of performance, this method lags far behind
traditional BLI approaches. A more successful
way of leveraging mMLMs is to extract decontex-
tualised word representations from them (Zhang
et al., 2021). The strongest CLWEs for BLI so far
are learned via a two-stage contrastive approach
combining both static (e.g., fastText) and mMLM-
extracted features (Li et al., 2022a).2

Text-to-Text LLMs. Autoregressive LLMs have
established new state-of-the-art results on many
NLP tasks. The prominent model groups include
1) encoder-decoder LLMs such as BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020); 2) Ope-
nAI’s decoder-only GPT series such as GPT-2 (Rad-
ford et al., 2019), GPT-3 (Brown et al., 2020), and
InstructGPT (Ouyang et al., 2022); 3) other GPT-
like LLMs with specific improvements such as
Chinchilla (Hoffmann et al., 2022), PaLM (Chowd-
hery et al., 2022), and LLaMA LLM series (Tou-
vron et al., 2023).

Our work adopts five families of open-source
text-to-text multilingual LLMs for BLI, including
mT5 (Xue et al., 2021), mT0 (Muennighoff et al.,
2022), XGLM (Lin et al., 2022), mGPT (Shliazhko
et al., 2022), and LLaMA (Touvron et al., 2023).
We introduce each of these in more detail in §3.1.
Unlike the encoder-only MLMs, text-to-text LLMs
are theoretically capable of generating words con-
sisting of arbitrary numbers of subword tokens.

2Using mMLMs alone still underperforms purely fastText-
based methods since mMLMs are contextualised encoders
pretrained for sentence-level tasks (Li et al., 2022a).
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3 Methodology

BLI Task: Preliminaries and Terminology. As-
suming a bilingual scenario with a source language
Lx and a target language Ly with their respec-
tive vocabularies denoted as X and Y , the BLI
task is typically formulated as a standard informa-
tion retrieval task (Gaussier et al., 2004; Glavaš
et al., 2019). The goal is to rank the words from Y
with respect to their similarity to the input source
word wx. The vocabulary size for each language
is typically set to 200k (Li et al., 2022a), covering
the most frequent 200k word types in each lan-
guage. A bilingual lexicon then comprises a set of
one-to-one source and target word translation pairs
(Mikolov et al., 2013), and we denote a word pair
as π=(wx, wy) where wx ∈ X , wy ∈ Y .

We assume a set DS of N available seed trans-
lation pairs, constituting the so-called seed dictio-
nary, which are used as the training set. Depending
on the number of training pairs, the task is usually
referred to as supervised BLI (typically, N ≥ 5K),
semi-supervised BLI (e.g., 0 < N ≤ 1K), and un-
supervised BLI (N = 0) in the literature (Artetxe
et al., 2018a; Zhao et al., 2020; Li et al., 2022a).
For convenience, we also refer to the unsupervised
setup as zero-shot BLI (N = 0) and denote the
setup with a handful of seed translation pairs as
few-shot BLI (N > 0), corresponding to how we
prompt mLLMs for BLI (we describe zero-shot and
few-shot prompts for BLI later in §3). A test set
DT , where DS ∩ DT = ∅, is used for evaluation.

In some cases, a source word may have more
than one ground-truth translation (i.e., there exist
two or more word pairs in a BLI dictionary that
share the same source word). Following previous
work (Lample et al., 2018; Glavaš et al., 2019; Li
et al., 2022a), we consider a prediction correct as
long as it is any of the ground-truth translations.
The BLI scores are reported based on the standard
Precision@K (P@K) BLI measure, where K de-
notes the length of the ranked list.

3.1 Prompting Multilingual LLMs for BLI

This study employs five families of mainstream
multilingual text-to-text LLMs (mLLMs): mT5,
mT0, XGLM, mGPT, and LLaMA.3 Based on their
model structures, we group these models into two

3We also experimented with mBART (Liu et al., 2020).
However, we do not report the results with mBART since its
BLI performance proved inferior in our preliminary investiga-
tions.

categories; in what follows, we briefly introduce
each of them and showcase some simple templates
used for ‘BLI-prompting’ the LLMs.

The first category includes mT5 and mT0, two
encoder-decoder LLM families that leverage the
full Transformer architecture (Vaswani et al., 2017).
Each model family comes in five different sizes,
and we evaluate all these ten models.
• mT5 (Xue et al., 2021) is pretrained on the mC4
dataset covering 101 languages. The LLM lever-
ages a span-corruption objective that tries to re-
construct consecutive spans of dropped-out tokens
replaced with special mask tokens.

• mT0 (Muennighoff et al., 2022) is a multitask-
finetuned mLLM based on instruction fine-tuning
from the original mT5 model. The fine-tuning is
conducted with English prompts on mT0’s xP3
dataset spanning 46 languages.4

For these two encoder-decoder style mLLMs, we
aim to derive prompts such that the first word of the
output sequence serves as its guess for wy. Cater-
ing to its span-corruption objective, for mT5 we
propose to design mask-filling-style English tem-
plates where ‘<mask>’ tokens are used as place-
holders for the target words. Here is an example
template: ‘The Lx word wx in Ly is <mask>.’,
where Lx, Ly, and wx are placeholders for the
source language, target language, and the input
source word, respectively.5 When a prompt based
on this template is fed into mT5, its decoder will
then output a sequence to fill the mask. Since mT0
is based on mT5, we found that mask-filling-style
prompts are also applicable to mT0. However, un-
like for mT5, the instruction-tuned mT0 fits tem-
plates without the ‘<mask>’ token.6 For simplic-
ity, we will denote all such templates without any
‘<mask>’ tokens as ‘GPT-style templates’.

The second model category comprises XGLM,
mGPT, and LLaMA as three decoder-only LLMs
pretrained with causal LM losses. Our experiments
involve five XGLM and two LLaMA models whose

4Among all the LLMs covered in our work, mT0 is the
only one trained for sentence-level translation tasks (machine
translation is one of the tasks during its multitask fine-tuning).
However, our experimental results reported later indicate that
this does not benefit BLI in our prompting setups.

5The ‘<mask>’ token for mT5 and mT0 is actually ‘<ex-
tra_id_0>’. Therefore, an example of an actual prompt would
be ‘The German word gebouw in French is <extra_id_0>.’.

6For instance, ‘The Lx word wx in Ly is’ may prompt
mT0 to output wy to complete the input sentence, and ‘How
do you say wx in Ly?’ would prompt mT0 to generate wy to
answer the question.

9579



model sizes are no larger than 13B parameters,
while mGPT only releases one model of size 1.4B.
Unlike encoder-decoder LLMs for conditional gen-
eration, the decoder-only causal LLMs first repeat
the input sequence in their output, and we construct
prompts that induce LLMs to produce wy immedi-
ately after the repeated input sequence.
• XGLM (Lin et al., 2022) offers multilingual
LLMs similar to GPT-3 (Brown et al., 2020) and is
reported to outperform GPT-3 of comparable size
in a series of tasks. The work builds a CC100-XL
dataset based on Conneau et al. (2020) and Wenzek
et al. (2020), and XGLM is pretrained with a subset
of it covering 30 languages.

• mGPT (Shliazhko et al., 2022) reproduces the
GPT-3 structure and is trained on 60 languages
using Wikipedia and C4 data (Raffel et al., 2020).

• LLaMA (Touvron et al., 2023) is a recently re-
leased SotA LLM family trained on trillions of
tokens exclusively from publicly available datasets;
it supports 20 languages. LLaMA also features its
efficient implementation, and it adopts a series of
recent improvements on normalisation, activation
functions, and positional embeddings.

Our decoder-only LLMs solely leverage GPT-
style prompts introduced above for mT0, since their
tokenisers usually do not support ‘<mask>’ tokens.

3.2 Retrieval-Augmented In-Context
Learning

In §3.1, we presented some simple zero-shot
prompts (i.e., prompts without in-context exam-
ples) for BLI. However, recent work highlights
the few-shot capabilities of modern LLMs (Brown
et al., 2020). Therefore, we also investigate few-
shot templates for improved BLI performance.7

We propose to retrieve the nearest neighbours of
a source word which we use to construct in-context
samples to boost BLI performance. More specifi-
cally, given DS and an input source word wx, we
extract n word pairs (wx

i , w
y
i ) ∈ DS , 1 ≤ i ≤ n,

such that wx
i , 1 ≤ i ≤ n are n nearest neigh-

bours of wx in the auxiliary static monolingual
word embedding space of X . This auxiliary space
is based on pretrained fastText word embeddings
(Bojanowski et al., 2017)8 and we use the cosine

7Note again that few-shot in-context learning does not
require any actual fine-tuning of LLMs. The word ‘learning’
here only refers to inserting in-context examples into the input
prompt sequence.

8See Appendix B for more details about the fastText WEs
used in our work.

similarity measure for the retrieval.9 We again
design mask-filling-style and GPT-style few-shot
templates for the mLLMs, as discussed in §3.1.
Similar to zero-shot prompts, for few-shot prompts
we also extract the first word after removing spe-
cial tokens (e.g., start-of-sentence, padding, and
‘<mask>’ tokens) and repeated input sequence (for
decoder-only models) as the prediction of wy.

3.3 Template Design and BLI Inference

Template Design. We hand-craft in total 102 En-
glish zero-shot and few-shot templates, respectively
listed in Tables 10 and 11 of Appendix C. A small
set of basic templates is fully manually designed,
and additional variants are then created by modi-
fying or replacing the punctuation (see the tables).
For each LLM, we search for its best zero-shot
template and best few-shot template on a randomly
chosen language pair (German, French) and fix the
template choices for experiments on all other lan-
guage pairs. The best template choices for each
LLM are provided in Table 12 (Appendix C).

BLI Inference. At inference, we adopt beam
search for both encoder-decoder and decoder-only
LLMs and make the generator return the final beam
ranked by their sequence scores. For each input
prompt corresponding to wx, we iterate through the
returned set of sequences, and for each sequence
we extract the word after removing any redundant
prefix content, as described in §3.2. The first word
extracted that appears in the target vocabulary is
returned as our prediction of wy.

3.4 BLI-Oriented Fine-Tuning

This work predominantly focuses on ‘learningless’
experiments based on zero-shot and few-shot in-
context setups with off-the-shelf mLLMs for BLI
without any fine-tuning. As a side experiment, we
also aim to fine-tune smaller-scale mLLMs, making
them specialise into few-shot word translators with
our few-shot prompts as input. Our training set is
still DS , but we now exclude retrieving an input
wx itself as an in-context example. We combine
the DS of each language pair with which we fine-
tune encoder-decoder mLLMs with mT5’s span-
corruption loss and fine-tune decoder-only LLMs
with the standard causal LM objective.

9For the rare cases where an in-context source word re-
trieved may have more than one translation in DS , we only
keep the target word with the highest word frequency in fast-
Text’s training data.
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4 Experimental Setup

Training and Evaluation Data. Our experiments
adopt two standard and publicly available BLI
datasets, also used in a body of very recent BLI
research (Vulić et al., 2020; Sachidananda et al.,
2021; Aboagye et al., 2022; Li et al., 2022a,b; Vulić
et al., 2023). 1) XLING (Glavaš et al., 2019) pro-
vides BLI dictionaries covering 8 languages and
56 BLI directions. Among these 8 languages, 5
are supported by all of our mLLMs: English (EN),
French (FR), German (DE), Italian (IT), and Rus-
sian (RU). Therefore, §5 mainly focuses on and
reports results on all the 20 = 5 × 4 BLI direc-
tions for the 5 languages.10 For each language
pair, XLING provides a test set DT of 2K transla-
tion pairs. It also provides training sets DS of 5K
and 1K translation pairs, where the former is the
superset of the latter. For brevity, we denote the
cases |DS | = 5K, |DS | = 1K, and |DS | = 0 as
the 5K setup, 1K setup, and unsupervised setup,
respectively.11 2) PanLex-BLI (Vulić et al., 2019)
offers BLI lexicons spanning 15 lower-resource
languages and all 210 BLI directions. We select
three languages that are supported by most of our
mLLMs: Bulgarian (BG), Catalan (CA), and Hun-
garian (HU). The test set size of PanLex-BLI is also
2K; under the lower-resource assumption, we only
focus on unsupervised and 1K BLI setups.

Main Experiments. In our main experiments, we
prompt 18 off-the-shelf models from 5 mLLM fam-
ilies mentioned in §3.112 for BLI without any fine-
tuning13 and systematically evaluate their BLI per-
formance in three different BLI setups on XLING
and PanLex-BLI datasets introduced above. In
5K and 1K setups, 5-shot in-context learning is
adopted for our mLLMs, while in the unsupervised
setup, zero-shot prompts are used. We compare
the BLI scores between different mLLMs from the
perspectives of LLM family and model size, and
we also benchmark their performance against two
SotA CLWE-based baselines, introduced later. Se-
lected results are summarised in §5.1 while full and

10However, in the appendix, we also provide the results
with the remaining 3 languages: Croatian (HR), Finnish (FI),
and Turkish (TR).

11Related work often also refers to the 5K and 1K cases as
supervised and semi-supervised BLI setups, respectively (Li
et al., 2022a).

12A summary concerning the detailed information of each
mLLM is available in Appendix B.

13Experiments on BLI-oriented fine-tuning for a selection
of mLLMs are discussed later.

detailed BLI scores are reported in Appendix D.

Side Experiments. We conduct a series of addi-
tional experiments to further understand the BLI
capabilities of mLLMs. 1) We investigate how the
BLI performance is related to the number of in-
context examples (5K and 1K setups). 2) As an ab-
lation study, we validate the usefulness of (our pro-
posed) in-context samples extracted from nearest
neighbours by comparing with randomly sampled
in-context examples. 3) Finally, we fine-tune some
of our relatively smaller-scale LLMs, including
mT5base, mT5large, XGLM564M, and XGLM1.7B on
our 5-shot templated BLI data (XLING) and fur-
ther study the effectiveness of our BLI-oriented
fine-tuning (5K and 1K setups). The training set
includes all XLING language pairs, where the 5K
and 1K setups have 271, 754 and 55, 228 training
instances respectively.

Hyperparameters. We first introduce our hyper-
parameters for BLI inference. In our main experi-
ments, we adopt n = 5 14 while in side experiments
we further investigate and compare using different
numbers of in-context examples n. Concerning the
generation of output sequences, we adopt a beam
size of 5 for all LLMs, and the maximum sequence
length is 5 for encoder-decoder models and 5 plus
the input sequence length for decoder-only mod-
els which first repeat the input sequence before
generating new content. As for encoder-decoder
LLMs, we use an evaluation batch size of 100 for
smaller models and 8 for larger models as listed
in Table 8 (Appendix B). Since the pretraining of
decoder-only LLMs usually does not see padding
tokens, we adopt a batch size of 1.15 Following
prior work (Li et al., 2022a,b), all our hyperparam-
eters are tuned on (German, French), a randomly
selected language pair.

For ‘BLI-oriented’ fine-tuning, we use the
XLING data combining all language pairs, and
the batch size is 16 for XGLM1.7B and 32
for mT5base,large and XGLM564M. We use
AdamW (Loshchilov and Hutter, 2019) with be-
tas = (0.9, 0.98) and a weight decay of 0.1. The
learning rate is 2e-6 for mT5base, 1e-6 for mT5large,
and 5e-8 for XGLM564M; concerning XGLM1.7B,
5e-9 is adopted for the 5K setup and 2e-8 for the
1K setup. All the hyperparameters are tuned on

14Unless otherwise stated, we report 5-shot BLI results
throughout our experiments.

15We found that a larger batch size may cause a drop in the
BLI performance.

9581



the same randomly chosen language pair (German,
French). Each LLM is fine-tuned for at most 20
epochs capped at 12 hours on 1×80GB A100 GPU.

Baselines. We adopt the following two SotA
CLWE-based approaches as our baselines; both
are open-source. We follow their original sug-
gested hyperparameter choices respectively for 5K
(supervised), 1K (semi-supervised), and unsuper-
vised BLI setups, and we re-verify that the hyper-
parameters recommended are (near-)optimal. The
Cross-domain Similarity Local Scaling (CSLS) re-
trieval (Lample et al., 2018) is adopted as recom-
mended in the baselines.
• VECMAP (Artetxe et al., 2018a) is one of the
most representative BLI approaches based on static
CLWEs. It induces fastText-based CLWEs in vari-
ous BLI supervision setups, and is notable for its
effective self-learning mechanism, especially in
weakly supervised and unsupervised BLI setups.

• CONTRASTIVEBLI (Li et al., 2022a) refines
CLWEs with a two-stage contrastive learning pro-
cedure and reports the currently highest CLWE-
based BLI scores on XLING and PanLex-BLI
in 5K and 1K BLI setups. We adopt its
strongest CLWEs derived with both fastText and
mBERT (Devlin et al., 2019). CONTRASTIVEBLI

does not support unsupervised BLI.

BLI Evaluation. Following previous work, we
report the standard Precision@1 (P@1) scores both
for our methods and for baseline methods.16

5 Results and Discussion

5.1 Main Results

Comparison between mLLMs. We compare the
average BLI scores on 20 XLING BLI directions
derived from all our 18 models from 5 LLM fam-
ilies in Figure 1. In all (5K, 1K, and zero-shot)
BLI setups, the same general trends are observed.
1) As expected, within the same mLLM family,
larger models usually present stronger BLI ca-
pabilities, although exceptional cases exist (e.g.,
XGLM7.5B underperforms XGLM4.5B). 2) For
encoder-decoder models, we find that mT5 outper-
forms mT0, showing that the instruction fine-tuning
of mT0 does not benefit BLI in our experimental
setups; 3) LLaMA models achieve the strongest
BLI performance among our 5 model families.

16P@1 is the most authoritative metric for BLI. Other mea-
sures such as P@5 and Mean Reciprocal Rank (MRR) show
similar trends (Lample et al., 2018; Li et al., 2022a).

[5K Setup] VECMAP CONTRASTIVEBLI mT5xxl mT0xxl XGLM4.5B mGPT LLaMA13B

DE→ ∗ 47.65 54.02 49.1 35.73 48.43 37.44 56.44
∗ →DE 47.34 53.64 46.37 32.66 46.56 32.47 54.78
EN→ ∗ 53.54 60.26 59.36 44.2 61.2 45.69 69.0
∗ →EN 57.38 60.97 57.34 41.48 56.08 45.15 62.35
FR→ ∗ 53.36 58.51 53.46 39.7 54.31 44.02 60.81
∗ →FR 56.74 60.83 57.29 41.9 57.12 43.97 65.18
IT→ ∗ 53.52 58.6 52.34 36.73 51.37 40.57 58.66
∗ →IT 55.61 59.88 55.43 40.67 55.86 47.06 64.4
RU→ ∗ 46.74 52.13 49.88 34.09 50.08 38.25 56.26
∗ →RU 37.74 48.21 47.72 33.75 49.76 37.33 54.45

Avg. 50.96 56.71 52.83 38.09 53.08 41.2 60.23

[1K Setup] VECMAP CONTRASTIVEBLI mT5xxl mT0xxl XGLM4.5B mGPT LLaMA13B

DE→ ∗ 44.44 51.79 46.02 33.57 46.9 35.98 53.82
∗ →DE 44.0 48.92 43.62 30.58 44.06 31.9 53.36
EN→ ∗ 47.7 55.11 56.19 40.01 59.3 44.55 68.27
∗ →EN 55.74 59.66 52.86 39.6 53.51 43.18 57.06
FR→ ∗ 48.47 55.33 49.46 37.03 51.08 42.82 58.35
∗ →FR 54.88 58.65 54.51 38.88 56.74 43.9 63.26
IT→ ∗ 49.08 55.92 48.49 33.78 49.97 39.86 56.06
∗ →IT 53.4 57.08 51.75 38.15 54.19 45.38 62.57
RU→ ∗ 43.61 50.17 46.69 32.71 48.67 37.46 52.75
∗ →RU 25.3 44.02 44.1 29.9 47.42 36.31 53.01

Avg. 46.66 53.66 49.37 35.42 51.18 40.13 57.85

[Zero-Shot] VECMAP CONTRASTIVEBLI mT5xxl mT0xxl XGLM4.5B mGPT LLaMA13B

DE→ ∗ 44.44 - 35.76 29.31 38.37 22.65 43.3
∗ →DE 43.95 - 42.4 31.75 40.76 21.36 47.53
EN→ ∗ 47.76 - 50.94 36.48 51.01 28.6 54.44
∗ →EN 55.8 - 43.16 38.77 44.75 25.78 52.34
FR→ ∗ 48.24 - 42.37 35.66 45.24 30.73 51.01
∗ →FR 54.96 - 46.04 32.16 45.79 32.49 53.87
IT→ ∗ 48.97 - 38.84 30.97 39.08 27.4 48.04
∗ →IT 53.27 - 45.68 37.4 46.81 34.79 53.09
RU→ ∗ 43.63 - 42.05 32.19 40.85 21.49 46.82
∗ →RU 25.08 - 32.69 24.5 36.45 16.46 36.76

Avg. 46.61 - 41.99 32.92 42.91 26.18 48.72

Table 1: Main results on 20 XLING BLI directions in
5K, 1K, and zero-shot (unsupervised) setups. Off-the-
shelf mLLMs are used without any fine-tuning. Average
P@1×100% scores of each language going to and from
other 4 languages are reported. ‘-’: CONTRASTIVEBLI
does not support unsupervised BLI.

XLING: Main Results. In Table 1, we report
the BLI performance of the strongest single model
from each LLM family (full results for each of
the 18 LLMs are available in Appendix D). Our
results on 20 XLING BLI directions reaffirm the
leading position of LLaMA where the LLaMA13B
variant achieves the highest overall average BLI
scores in all BLI setups, also outperforming CON-

TRASTIVEBLI, the previous CLWE-based SotA on
the same dataset. We speculate that LLMs are more
adept at few-shot learning: LLaMA13B outper-
forms VECMAP by circa 10 P@1 points in few-shot
setups, but only by about 2 points in the zero-shot
setup. It is also worth mentioning that in 5K and
1K setups, mT5xxl and XGLM4.5B beat VECMAP

although they underperform CONTRASTIVEBLI; how-
ever, in the zero-shot setup they still cannot match
VECMAP.

PanLex-BLI: Main Results. We present our re-
sults on lower-resource languages from PanLex-
BLI in Table 2. We also provide here only one
strongest model of each LLM family, while the
full results from all 18 LLMs are available in Ap-
pendix D). This time, LLaMA13B still outperforms
other LLMs, but we report here XGLM7.5B instead
which beats XGLM4.5B. Unlike for XLING, we
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Figure 1: Averaged BLI score versus model size (0.3B to 13B): (left) |DS |=5K; (middle) |DS |=1K; (right) |DS |=0.

find that traditional CLWE-based approaches still
outperform LLM-elicited BLI in general. This may
reveal that current SotA mLLMs (size≤13B) still
lack strong word translation capabilities for a large
number of languages and language pairs, even for
those they currently cover.

Put simply, while current mLLMs do exhibit
strong performance for arguably high-resource lan-
guages (from XLING), they still have deficien-
cies with lower-resource languages as well as
with their portability to a much larger number of
languages, currently covered by more traditional
BLI approaches (Li et al., 2022a). We leave to
future work the investigation of larger mLLMs
(e.g., LLaMA30B) for BLI with lower-resource lan-
guages and languages unseen by the mLLMs.

Statistical Significance. We conduct χ2 test com-
paring LLaMA13B against the strongest single base-
line in each BLI setup (i.e., CONTRASTIVEBLI in few-
shot setups and VECMAP in the zero-shot setup) on
the average BLI performance over 20 XLING and
6 PanLex-BLI BLI directions respectively, and we
estimate the p-values as follows. 1) On XLING, p
is 2.8e-23 in the 5K setup, 8.5e-32 in the 1K setup,
and 4.3e-9 in the zero-shot setup. 2) For PanLex-
BLI, p is 1e-4 in the 1K setup and 1.9e-35 in the
zero-shot setup. The p-values show that our main
findings are clearly statistically significant.17

5.2 Further Analyses

n-Shot Prompting. To better understand the in-
fluence of the number of in-context examples,
we pick mT5large (an encoder-decoder LLM) and
LLaMA13B (a decoder-only LLM) and run exper-
iments ranging from 0-shot to 10-shot. Figure 2
depicts their average BLI scores on 20 XLING
BLI directions in 5K and 1K setups, respectively.
The results clearly demonstrate the usefulness of
in-context learning. Even when having only one in-
context example (one-shot), the same model vari-

17By convention, p < 0.05: statistically significant; p <
1e-3: statistically highly significant.

[1K Setup] VECMAP CONTRASTIVEBLI mT5xxl mT0xxl XGLM7.5B mGPT LLaMA13B

BG→CA 39.66 43.93 38.67 31.72 40.19 - 41.71
CA→BG 33.54 40.06 36.2 22.72 40.23 - 41.53
BG→HU 38.77 44.62 36.17 25.46 - 23.61 36.57
HU→BG 36.52 43.03 36.98 24.02 - 28.17 43.2
CA→HU 35.47 41.44 32.43 22.21 - - 35.3
HU→CA 39.88 47.14 37.68 29.59 - - 46.04

Avg. 37.31 43.37 36.36 25.95 - - 40.72

[Zero-Shot] VECMAP CONTRASTIVEBLI mT5xxl mT0xxl XGLM7.5B mGPT LLaMA13B

BG→CA 39.6 - 28.04 28.86 28.5 - 32.77
CA→BG 33.6 - 21.47 16.83 20.17 - 27.03
BG→HU 39.24 - 27.26 24.07 - 7.23 23.61
HU→BG 36.46 - 22.47 16.94 - 9.85 26.5
CA→HU 34.09 - 24.59 22.93 - - 24.53
HU→CA 37.79 - 25.47 24.48 - - 38.17

Avg. 36.8 - 24.88 22.35 - - 28.77

Table 2: Main results on 6 PanLex-BLI BLI directions
in 1K and zero-shot (unsupervised) setups. Off-the-shelf
mLLMs are used without any fine-tuning. P@1×100%
scores are reported. ‘-’: 1) a language is not supported
by the LLM; 2) CONTRASTIVEBLI does not support
unsupervised BLI.
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Figure 2: BLI scores averaged over 20 BLI directions
from XLING with respect to the number of in-context
examples n (0 to 10), with mT5large and LLaMA13B in
both 5K and 1K BLI setups.

ant outperforms its zero-shot results by ∼ 5 P@1
points. However, with higher values for n (i.e.,
n ≥ 5), the gains become saturated.

Ablation Study. One key contribution of our work
is that we propose to extract in-context examples
from nearest neighbours. To validate the effec-
tiveness of this approach, we conduct an essential
ablation study where we use randomly sampled
in-context examples instead. As with our main ex-
periments, we present average scores on 20 BLI
directions from only one best LLM from each LLM
family, and full results on all LLMs are available
in Appendix D. Our results in Table 3 demonstrate
the following. 1) The nearest neighbour-based ‘NN
(*K)’ scores for every LLM outperform the ‘Ran-
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dom (*K)’ scores by a salient margin: this shows
the effectiveness of in-context examples from near-
est neighbours. 2) ‘Random (*K)’ outperforms
‘Zero-Shot’, showing that even randomly picked
in-context examples can benefit BLI. 3) ‘NN (5K)’
outperforms ‘NN (1K)’, which means that better
in-context examples can be retrieved from a larger
(and more varied) 5K seed dictionary.18 We further
show that these findings are statistically significant
via χ2 test and report the p-values in Table 4.

mT5xxl mT0xxl XGLM4.5B mGPT LLaMA13B

NN (5K) 52.83 38.09 53.08 41.2 60.23
NN (1K) 49.37 35.42 51.18 40.13 57.85

Random (5K) 46.93 34.97 49.85 38.88 56.85
Random (1K) 45.93 33.90 49.92 38.38 56.11

Zero-Shot (Unsupervised) 41.99 32.92 42.91 26.18 48.72

Table 3: Ablation results. Averaged BLI scores
(P@1×100%) on 20 XLING BLI directions. Rows 1-2:
5-shot prompting with in-context examples extracted
from NN in DS of size 5K and 1K. Rows 3-4: 5-shot
prompting with random in-context examples in DS of
size 5K and 1K. Row 5: zero-shot prompting without
any in-context examples.

p-value mT5xxl mT0xxl XGLM4.5B mGPT LLaMA13B

NN (5K) vs. Random (5K) 1.3e-60 1.9e-19 2.4e-19 4.7e-11 1.41e-21
NN (1K) vs. Random (1K) 9.3e-22 9.1e-6 4.6e-4 6.4e-7 1.1e-6

Random (5K) vs. Zero-Shot 1.7e-43 1.8e-9 1.4e-83 1e-311 8.4e-114
Random (1K) vs. Zero-Shot 2.4e-28 3.9e-3 3.2e-85 5.8e-289 2.8e-94

NN (5K) vs. NN (1K) 5.8e-22 1.3e-14 1.2e-7 2.5e-3 1.7e-11

Table 4: Statistical significance associated with Table 3.
We conduct χ2 tests and report p-values.

BLI-Oriented Fine-Tuning. The fine-tuning ex-
periments, due to computational constraints, are
conducted on four relatively smaller-scale LLMs.
Table 5 reports each model’s average performance
on 20 XLING BLI directions before and after fine-
tuning. We run fine-tuning experiments three times
with different random seeds and report both mean
scores and standard deviations. We only observe
salient gains on mT5 models and XGLM564M in
the 5K setups. For XGLM1.7B in both setups and
all models in the 1K setup, the gains are smaller
or even non-existent. Even in the 5K setup, the
tuned mT5base still cannot match the off-the-shelf
mT5large, and the tuned mT5large underperforms
mT5xl (cf. Table 18 in Appendix D). This may
indicate some of the limitations of our proposed

18We also observe a slight edge of ‘Random (5K)’ over
‘Random (1K)’, and we speculate this might have to do with
how XLING’s test set and seed dictionaries were created. In
fact, the 1K seed dictionary contains the most frequent 1K
words, and the test set words include less frequent 2K words.

mT5base mT5large XGLM564M XGLM1.7B

Fine-Tuned (5K) 36.11±0.531 46.68±0.058 28.94±0.026 40.92±0.005

Off-The-Shelf (5K) 28.33 43.25 24.51 39.49

Fine-Tuned (1K) 25.61±0.307 38.48±0.193 25.6±0.123 39.59±0.017

Off-The-Shelf (1K) 24.91 38.84 24.18 38.86

Table 5: Comparisons between mLLMs before and
after BLI-oriented fine-tuning. Averaged BLI scores
(P@1×100%) on 20 XLING BLI directions.

BLI-oriented fine-tuning (i.e., training the mLLMs
on BLI data with their own pretraining objectives)
and may indicate the following. 1) With the current
training approach and a fixed amount of computa-
tional budget, one may prioritise adopting off-the-
shelf larger LLMs (with in-context learning) rather
than training smaller-scale ones. 2) In future work,
other training objectives and strategies should be
investigated for improved BLI performance with
mLLMs. As another future research avenue, it is
also worth extending the training to larger mLLMs
and adopting novel fine-tuning techniques such as
prompt tuning (Lester et al., 2021), adapters (Li
et al., 2020, 2023) and LoRA (Hu et al., 2022).

Templates. Now, we additionally provide some
preliminary findings from our template search.19

1) Models from the same mLLM family may tend
to prefer the same template. For example, Table 12
(Appendix C) shows that all five XGLM models
prefer the same best zero-shot template and four
of them share one best few-shot template. This
phenomenon is to some extent seen also on mT5
(zero-shot and few-shot), mT0 (zero-shot and few-
shot), and LLaMA (few-shot). This should be due
to the same training data, training strategy, and
model architecture adopted for all models in the
same LLM family. 2) As already mentioned in
§3.1, mT0 is compatible with both mask-filling-
style and GPT-style templates: Table 12 shows that
some mT0 models prefer templates with ‘<mask>’
and others do not. 3) Under the ‘GPT-style’ tem-
plates, decoder-only models all prefer templates for
sentence completion while some of the instruction-
tuned mT0 models prefer questions with ‘?’.

5.3 Further Discussion

Few-Shot Learning for BLI. Our main results
demonstrate that few-shot learning derives consis-
tent gains over zero-shot prompting. For instance,
HR→EN and IT→EN saw 345 and 272 cases in

19Since we conduct template search only on a random lan-
guage pair, these findings are yet to be verified by future work
for other language pairs.
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their test sets respectively where few-shot learning
makes the correct prediction but zero-shot learning
fails (positive cases). There are only 85 and 87
cases where zero-shot prompting beats few-shot
prompting (negative cases). We present 8 posi-
tive examples and 4 negative examples for each
of HR→EN and IT→EN, comparing five-shot (5K
setup) and zero-shot results with LLaMA13B in Ta-
ble 19 (Appendix E). For instance, ‘gušter (HR)
→ lizard (EN)’ and ‘sezam (HR) → sesame’ are
two positive cases, their in-context examples being
five different animal names and five plant names,
which may help LLaMA13B to narrow down the
scope of the target word to animal and plant names
respectively. Similarly, ‘valcer (HR) → waltz (EN)’
(a positive case) is associated with five in-context
examples related to either music or dance. How-
ever, few-shot learning does not always help. For
example, in ‘eventuale (IT) → eventual (EN)’ and
‘scopre (IT) → discovers (EN)’ translation tasks,
the LLM seems to make a mistake due to directly
copying one of the words provided in the in-context
examples, whereas zero-shot prompting predicts
the correct answers.

BLI for EN and non-EN Languages. It is notewor-
thy that the volume of data in English for mLLM
pretraining often exceeds that in any other language
(e.g., mT5, mT0, and LLaMA), and thus mLLMs
may be biased, favouring BLI directions involving
EN. However, we did not identify very clear clues
indicating that their BLI performance is (heavily)
biased. In fact, in the 5K setup (see Table 1), al-
though ‘EN→∗’ surpasses ‘non-EN→∗’ in absolute
BLI scores (for each of our LLMs and also CLWE-
based baselines), we meanwhile observe that 1)
mT0xxl achieves lower average score in ‘∗→EN’
than ‘∗→FR’, and 2) for LLaMA13B, ‘∗→EN’ lags
behind both ‘∗→FR’ and ‘∗→IT’. Moreover, as
an example, the LLaMA13B model supports 6 lan-
guages resulting in 30 BLI directions, and 20 of
them are between non-EN languages. LLaMA13B
outperforms CLWE-based SotA in 16/20 cases and
in 18/20 cases respectively in the 5K and 1K setups
for the non-EN pairs (cf. Tables 13 and 14). How-
ever, we again note that this might hold only for
high-resource languages such as the ones covered
in XLING.

Impact Statement. Here, we discuss the potential
impact of our study on the following two aspects.
1) On future BLI research. Our work minimises the
technical gap between BLI and prompt-based learn-

ing and opens up new possibilities for BLI research.
In fact, LLM prompting provides a generic and
straightforward way of leveraging external knowl-
edge for BLI. While we have demonstrated the
effectiveness of in-context word translation exam-
ples, external information such as word definition,
parts-of-speech, spelling, and sentence translation
pairs can also be integrated into text prompts. 2)
On NMT and other related fields. Recent work has
incorporated word translation pairs into text tem-
plates to prompt LLMs for sentence-level neural
machine translation (NMT) and demonstrates that
the bilingual lexical ‘hints’ lead to significant gains
in NMT (Ghazvininejad et al., 2023; Jones et al.,
2023). While a ground-truth bilingual dictionary
can be leveraged, BLI is able to provide word trans-
lations for language pairs and words not covered in
existing bilingual lexica.20 Our work can provide
strong word translation pairs for lexicon-enhanced
MT, and the improved MT may further benefit,
e.g., the field of cross-lingual transfer learning via
TRANSLATE-TRAIN/TEST approaches (Conneau
et al., 2018; Li et al., 2023).

6 Conclusion

This paper presents the first study on bilingual lexi-
con induction (BLI) with multilingual text-to-text
large language models (mLLMs). We develop the
methodology to prompt mLLMs for BLI, conduct
extensive template search, and systematically ex-
periment with 5 representative mLLM families (18
models) on a variety of zero-shot and few-shot BLI
tasks. Relying on off-the-shelf mLLMs, our ex-
periments on the standard XLING dataset offer
strong performance in all BLI setups, where our
proposed few-shot prompting with in-context ex-
amples from nearest neighbours outperforms the
strongest CLWE-based SotA by a considerable
margin. However, our study also points out that
prompting-based methods still need to be success-
fully extended to lower-resource languages. Fi-
nally, we conduct a series of in-depth analyses
covering variants of our few-shot prompting and
preliminary investigations on BLI-oriented fine-
tuning. Our key findings and comprehensive anal-
yses may pave the way for the development of
stronger mLLM-based BLI systems in the future.

20Moreover, given an input word, BLI can offer multiple
plausible translations for the downstream NMT to consider,
and we speculate this may, to some extent, increase the diver-
sity of MT output.
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Limitations

First, most recently released state-of-the-art
mLLMs are still unable to support as many lan-
guages as static word embeddings, which currently
limits their wider portability. For instance, LLaMA
supports 20 languages and XGLM supports 30 lan-
guages, while fastText provides pretrained static
WEs for 294 languages that can be used for the
induction of static CLWEs.21 Intuitively, this is be-
cause training LLMs that support more languages
would require higher computational costs (with
more training data and typically larger model sizes).
We hope that researchers in the future can pretrain
and release mLLMs that support a larger set of
linguistically diverse languages, which can thus
probably extend the success of our approach to
more languages and language families.

Second, our work did not investigate open-
source LLMs with more than 13B parameters22 due
to a large number of experiments conducted com-
bined with our limited computing resources, and
we did not evaluate any closed-source LLMs. Quite
a few tech companies and AI research labs have
been training LLMs with 100+B and even 500+B
parameters. We encourage interested readers who
have access to adequate computing resources or
specific closed-source LLMs to take a step further
and investigate if larger LLMs can provide an even
stronger BLI performance than reported in this par-
ticular work, following the recipe presented in this
work.

Third, as also discussed in other BLI work (Li
et al., 2022b), existing BLI datasets did not control
the synonyms and polysemy well and to a sufficient
detail. In fact, when constructing BLI datasets, it
is very difficult to collect all correct translations
for each source word. Therefore, one limitation
of BLI evaluation is that it cannot give credit to
correct answers that are not included in the ground-
truth translation set, and evaluation is typically con-
ducted out-of-context. Constructing finer-grained
BLI datasets with the help of qualified annotators
(e.g., linguists, typologists and bilingual speakers)
is beyond the scope of this work.
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A Languages

Family Language Code LLMs

IE:Germanic
English EN mT5,mT0,XGLM,mGPT,LLaMA
German DE mT5,mT0,XGLM,mGPT,LLaMA

IE:Romance
Catalan CA mT5,mT0,XGLM,LLaMA
French FR mT5,mT0,XGLM,mGPT,LLaMA
Italian IT mT5,mT0,XGLM,mGPT,LLaMA

IE:Slavic
Bulgarian BG mT5,mT0,XGLM,mGPT,LLaMA
Croatian HR LLaMA
Russian RU mT5,mT0,XGLM,mGPT,LLaMA

Turkic Turkish TR mT5,mT0,XGLM,mGPT

Uralic
Finnish FI mT5,mT0,XGLM,mGPT

Hungarian HU mT5,mT0,mGPT,LLaMA

Table 6: Languages covered in our experiments with
their ISO 639-1 codes and the mLLM families that sup-
port that language, categorized by language family. IE
= Indo-European.

B Reproducibility Checklist

• BLI Data: We adopt two publicly available BLI
datasets.23 24

• Static Word Embeddings: Following the
datasets’ own recommendations and other previ-
ous work, we use the XLING-preprocessed fast-
Text WEs trained on Wikipedia25 for XLING data
and fastText WEs trained on Common Crawl +
Wikipedia26 for PanLex-BLI, and the WEs are
trimmed to the most frequent 200K words for each
language. For fair comparisons, we use the same
set of fastText WEs both for the retrieval of near-
est neighbours (in-context examples) and for the
CLWE-based baselines.

• Pretrained LLMs and Parameter Counts: All
the LLMs used in our experiments are publicly
available from the huggingface.co model hub.
We summarise their model identifiers and model
sizes in Table 7. Please refer to each LLM’s own
copyright and licence before downloading, using,
fine-tuning, or redistributing any LLM.

• Source Code: Our code is publicly available at
https://github.com/cambridgeltl/prompt4b
li.

• Computing Infrastructure: We have run our
code on Wilkes3, a GPU cluster hosted by Re-

23https://github.com/codogogo/xling-eval
24https://github.com/cambridgeltl/panlex-bli
25https://fasttext.cc/docs/en/pretrained-vecto

rs.html
26https://fasttext.cc/docs/en/crawl-vectors.h

tml

search Computing Services at the University of
Cambridge, where each run leverages a single
Nvidia 80GB A100 GPU and 32× CPU cores.

• Software: Slurm 20.11.9, Python 3.9.7, PyTorch
1.10.1+cu113, Transformers 4.28.1.

• Runtime (Wall Time): We present the average
inference time on one single BLI direction (i.e.,
circa 2, 000 word pairs in an XLING test set; the
time required for loading the LLM and the dataset
is not included) for each LLM in Table 8. The per-
epoch training time for BLI-oriented fine-tuning is
provided in Table 9.

• Hyperparameter Search: As introduced in §3.3
and §4, our template selection and all our hyperpa-
rameter search are conducted on a single randomly
chosen language pair (German, French), following
previous work (Li et al., 2022a,b). The learning rate
for LLM fine-tuning is selected from [1e− 9, 5e−
9, 1e−8, 2e−8, 1e−7, 1e−6, 2e−6, 2e−5, 1e−3].

• Significance: We have discussed the significance
of our main results and ablation results in the
last paragraph of §5.1 and in Table 4 respectively,
which demonstrates that our findings are statisti-
cally significant.

• Randomness: Our main experiments are com-
pletely deterministic since we rely on off-the-shelf
LLMs without any fine-tuning, nearest neighbour
retrieval for in-context examples (a deterministic
retrieval algorithm), and the deterministic beam
search. The randomness only exists in two parts of
our side analysis. First, we use random in-context
examples in our ablation study, and we verify our
findings with statistical tests in Table 4. Second,
the fine-tuning experiments do have randomness,
and we run fine-tuning three times for each model,
reporting both average BLI performance and the
standard deviation.

• Carbon Footprint: All the experiments involved
in this project including hyperparameter tuning,
template search, BLI inference, and BLI-oriented
fine-tuning of our LLMs consume circa 1, 650
A100 GPU hours. Based on a publicly available
‘machine learning emissions calculator’ (Luccioni
et al., 2019)27 and our computational infrastructure,
we estimate that our work causes the emission of
circa 200kg CO2 equivalents.

27https://mlco2.github.io/impact/#compute
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LLM Model ID Number of Parameters

mT5small "google/mt5-small" 300, 176, 768
mT5base "google/mt5-base" 582, 401, 280
mT5large "google/mt5-large" 1, 229, 581, 312
mT5xl "google/mt5-xl" 3, 742, 619, 648
mT5xxl "google/mt5-xxl" 12, 921, 057, 280

mT0small "bigscience/mt0-small" 300, 176, 768
mT0base "bigscience/mt0-base" 582, 401, 280
mT0large "bigscience/mt0-large" 1, 229, 581, 312
mT0xl "bigscience/mt0-xl" 3, 742, 619, 648
mT0xxl "bigscience/mt0-xxl" 12, 921, 057, 280

XGLM564M "facebook/xglm-564M" 564, 463, 616
XGLM1.7B "facebook/xglm-1.7B" 1, 732, 907, 008
XGLM2.9B "facebook/xglm-2.9B" 2, 941, 505, 536
XGLM4.5B "facebook/xglm-4.5B" 4, 552, 511, 488
XGLM7.5B "facebook/xglm-7.5B" 7, 492, 771, 840

mGPT "sberbank-ai/mGPT" 1, 417, 596, 928

LLaMA7B "huggyllama/llama-7b" 6, 738, 415, 616
LLaMA13B "huggyllama/llama-13b" 13, 015, 864, 320

Table 7: LLMs used in our experiments with their hugg
ingface.co model IDs and model sizes.

LLM Batch Size (Inference) 0-Shot 5-Shot

mT5small 100 6s 7s
mT5base 100 7s 8s
mT5large 100 8s 12s
mT5xl 8 45s 50s
mT5xxl 8 52s 83s

mT0small 100 5s 6s
mT0base 100 6s 7s
mT0large 100 8s 14s
mT0xl 8 46s 50s
mT0xxl 8 57s 78s

XGLM564M 1 213s 225s
XGLM1.7B 1 228s 237s
XGLM2.9B 1 343s 366s
XGLM4.5B 1 336s 394s
XGLM7.5B 1 382s 461s

mGPT 1 192s 210s

LLaMA7B 1 328s 463s
LLaMA13B 1 434s 636s

Table 8: Inference time (in seconds) of each LLM with
0-Shot and 5-Shot prompts respectively.

LLM Batch Size (Training) 5K Setup 1K Setup

mT5base 32 17 min 4 min
mT5large 32 38 min 8 min

XGLM564M 32 24 min 5 min
XGLM1.7B 16 80 min 15 min

Table 9: Per-epoch training time (in minutes) of each
LLM with 5-Shot prompts in 5K and 1K setups respec-
tively.

C Templates

We summarise all our zero-shot templates in Ta-
ble 10 and few-shot templates in Table 11: these
102 templates constitute our ‘template pool’. Each
of Tables 10 and 11 is split into two parts for mask-
filling-style and GPT-style templates respectively
as introduced in §3.1 and §3.2. In addition, we
list the best zero-shot template and the best few-
shot template for each of our 18 LLMs in Table 12.
Again, as already mentioned in §3.3, our template
selection is conducted on a randomly chosen lan-
guage pair (German, French) where for few-show
templates, the in-context examples are derived from
a seed dictionary of size 5K. While we do not have
enough computational resources to calculate and do
not have enough space to present the performance
of each template for each LLM on each XLING
BLI direction (102× 18× 56 = 102, 816 scores),
in the last paragraph of §5.2 we have discussed
some preliminary findings only from our template
search.

D Full BLI Results

Here we present our full results on both XLING
and PanLex-BLI. Table 13, 14, and 16 are our re-
sults on all 56 XLING BLI directions in 5K, 1K,
and zero-shot (unsupervised) BLI setups respec-
tively. Table 15 and 17 are results for PanLex-BLI
lower-resource languages (6 BLI directions) in 1K
and zero-shot (unsupervised) BLI setups. Note that
an (m)LLM usually cannot support every language,
and we use ‘-’ to denote this scenario. Throughout
this paper, our expression ‘a language is not sup-
ported by an LLM’ means that the language is not
used for pretraining the LLM even if the LLM’s to-
keniser may still be able to tokenise possibly many
input sentences in the language. Table 18 shows
the full ablation results for each of our 18 mLLMs.

E Translation Examples

To illustrate how few-shot learning improves
BLI, we present some of our BLI results with
LLaMA13B in Table 19 comparing five-shot and
zero-shot prompting on HR→EN and IT→EN BLI
test sets.
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Mask-Filling-Style Templates (Zero-Shot Prompting)

1 The word 'wx' in Ly is: <mask>. 2 The word wx in Ly is: <mask>.
3 The word 'wx' in Ly is: <mask> 4 The word wx in Ly is <mask>
5 The Lx word wx in Ly is: <mask>. 6 The Lx word wx in Ly is <mask>.
7 The Lx word 'wx' in Ly is: <mask>. 8 The Lx word 'wx' in Ly is <mask>.
9 The Lx word wx in Ly is: <mask> 10 The Lx word wx in Ly is <mask>
11 The Lx word 'wx' in Ly is: <mask> 12 The Lx word 'wx' in Ly is <mask>
13 'wx' in Ly is: <mask>. 14 wx in Ly is: <mask>.
15 'wx' in Ly is: <mask> 16 wx in Ly is: <mask>
17 What is the translation of the word 'wx' into Ly? <mask>. 18 What is the translation of the word wx into Ly? <mask>.
19 What is the translation of the Lx word 'wx' into Ly? <mask>. 20 What is the translation of the Lx word wx into Ly? <mask>.
21 The translation of the word 'wx' into Ly is <mask>. 22 The translation of the word wx into Ly is <mask>.
23 The translation of the Lx word 'wx' into Ly is <mask>. 24 How do you say 'wx' in Ly? <mask>.
25 How do you say wx in Ly? <mask>. 26 How do you say the Lx word 'wx' in Ly? <mask>.
27 How do you say the Lx word wx in Ly? <mask>. 28 Translate the word 'wx' into Ly: <mask>.
29 Translate the word wx into Ly: <mask>. 30 Translate the word wx into Ly: <mask>
31 Translate wx into Ly: <mask>. 32 Translate the Lx word wx into Ly: <mask>.
33 Translate the Lx word wx into Ly: <mask> 34 Translate from Lx to Ly: wx-> <mask>.
35 Translate from Lx to Ly: wx-> <mask> 36 Translate from Lx to Ly: wx=> <mask>.
37 Translate from Lx to Ly: wx=> <mask>

GPT-Style Templates (Zero-Shot Prompting)

38 The word 'wx' in Ly is: 39 The word wx in Ly is:
40 The word wx in Ly is 41 The Lx word wx in Ly is:
42 The Lx word wx in Ly is 43 The Lx word 'wx' in Ly is:
44 The Lx word 'wx' in Ly is 45 'wx' in Ly is:
46 wx in Ly is: 47 Translate the word 'wx' into Ly:
48 Translate the word wx into Ly: 49 Translate from Lx to Ly: wx->
50 Translate from Lx to Ly: wx=> 51 Translate wx into Ly:
52 Translate the Lx word wx into Ly: 53 Translate the Lx word 'wx' into Ly:
54 What is the translation of the word 'wx' into Ly? 55 What is the translation of the word wx into Ly?
56 The translation of the word 'wx' into Ly is 57 The translation of the word wx into Ly is
58 The translation of the Lx word 'wx' into Ly is 59 The translation of the Lx word wx into Ly is
60 How do you say 'wx' in Ly? 61 How do you say wx in Ly?
62 How do you say 'wx' in Ly: 63 How do you say wx in Ly:
64 How do you say the Lx word 'wx' in Ly? 65 How do you say the Lx word wx in Ly?
66 Q: What is the Ly translation of wx A:

Table 10: Our 66 templates for zero-shot prompting. These include 37 mask-filling-style templates (template
IDs: 1 ∼ 37) and 29 GPT-style templates (template IDs: 38 ∼ 66). In our experiments, the ‘<mask>’ token is
‘<extra_id_0>’ for mT5 and mT0.
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Mask-Filling-Style Templates (Few-Shot Prompting)

67 Translate from Lx to Ly: wx
1 ->wy

1 wx
2 ->wy

2 wx-> <mask>.
68 Translate from Lx to Ly: wx

1 ->wy
1 , wx

2 ->wy
2 , wx-> <mask>.

69 Translate from Lx to Ly: wx
1 ->wy

1 wx
2 ->wy

2 wx-> <mask>
70 Translate from Lx to Ly: wx

1 ->wy
1 , wx

2 ->wy
2 , wx-> <mask>

71 Translate from Lx to Ly: wx
1=>wy

1 wx
2=>wy

2 wx=> <mask>.
72 Translate from Lx to Ly: wx

1=>wy
1 , wx

2=>wy
2 , wx=> <mask>.

73 Translate from Lx to Ly: wx
1=>wy

1 wx
2=>wy

2 wx=> <mask>
74 Translate from Lx to Ly: wx

1=>wy
1 , wx

2=>wy
2 , wx=> <mask>

75 The word wx
1 in Ly is wy

1 . The word wx
2 in Ly is wy

2 . The word wx in Ly is <mask>.
76 The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is <mask>.

77 The Lx word 'wx
1 ' in Ly is 'wy

1 '. The Lx word 'wx
2 ' in Ly is 'wy

2 '. The Lx word 'wx' in Ly is '<mask>'.
78 The Lx word wx

1 in Ly is wy
1 , The Lx word wx

2 in Ly is wy
2 , The Lx word wx in Ly is <mask>.

GPT-Style Templates (Few-Shot Prompting)

79 Translate from Lx to Ly: wx
1 ->wy

1 wx
2 ->wy

2 wx->
80 Translate from Lx to Ly: wx

1 ->wy
1 , wx

2 ->wy
2 , wx->

81 Translate from Lx to Ly: wx
1=>wy

1 wx
2=>wy

2 wx=>
82 Translate from Lx to Ly: wx

1=>wy
1 , wx

2=>wy
2 , wx=>

83 The word wx
1 in Ly is wy

1 . The word wx
2 in Ly is wy

2 . The word wx in Ly is
84 The word wx

1 in Ly is wy
1 . The word wx

2 in Ly is wy
2 . The word wx in Ly is:

85 The Lx word wx
1 in Ly is wy

1 . The Lx word wx
2 in Ly is wy

2 . The Lx word wx in Ly is
86 The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is:

87 The word wx
1 in Ly is wy

1 , The word wx
2 in Ly is wy

2 , The word wx in Ly is
88 The word wx

1 in Ly is wy
1 , The word wx

2 in Ly is wy
2 , The word wx in Ly is:

89 The Lx word wx
1 in Ly is wy

1 , The Lx word wx
2 in Ly is wy

2 , The Lx word wx in Ly is
90 The Lx word wx

1 in Ly is wy
1 , The Lx word wx

2 in Ly is wy
2 , The Lx word wx in Ly is:

91 The word 'wx
1 ' in Ly is wy

1 . The word 'wx
2 ' in Ly is wy

2 . The word 'wx' in Ly is
92 The word 'wx

1 ' in Ly is wy
1 . The word 'wx

2 ' in Ly is wy
2 . The word 'wx' in Ly is:

93 The Lx word 'wx
1 ' in Ly is wy

1 . The Lx word 'wx
2 ' in Ly is wy

2 . The Lx word 'wx' in Ly is
94 The Lx word 'wx

1 ' in Ly is wy
1 . The Lx word 'wx

2 ' in Ly is wy
2 . The Lx word 'wx' in Ly is:

95 The word 'wx
1 ' in Ly is wy

1 , The word 'wx
2 ' in Ly is wy

2 , The word 'wx' in Ly is
96 The word 'wx

1 ' in Ly is wy
1 , The word 'wx

2 ' in Ly is wy
2 , The word 'wx' in Ly is:

97 The Lx word 'wx
1 ' in Ly is wy

1 , The Lx word 'wx
2 ' in Ly is wy

2 , The Lx word 'wx' in Ly is
98 The Lx word 'wx

1 ' in Ly is wy
1 , The Lx word 'wx

2 ' in Ly is wy
2 , The Lx word 'wx' in Ly is:

99 The word wx
1 in Ly is wy

1 . The word wx
2 in Ly is wy

2 . How do you say wx in Ly?
100 The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . How do you say the Lx word wx in Ly?

101 The word 'wx
1 ' in Ly is wy

1 . The word 'wx
2 ' in Ly is wy

2 . How do you say 'wx' in Ly?
102 The Lx word 'wx

1 ' in Ly is wy
1 . The Lx word 'wx

2 ' in Ly is wy
2 . How do you say the Lx word 'wx' in Ly?

Table 11: Our 36 templates for few-shot prompting. For simplicity, we present only two in-context examples in
each template. These include 12 mask-filling-style templates (template IDs: 67 ∼ 78) and 24 GPT-style templates
(template IDs: 79 ∼ 102). In our experiments, the ‘<mask>’ token is ‘<extra_id_0>’ for mT5 and mT0.
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LLM Best Template (Zero-Shot)

mT5small The word 'wx' in Ly is: <mask>.
mT5base Translate the word 'wx' into Ly: <mask>.
mT5large The Lx word 'wx' in Ly is: <mask>.
mT5xl The Lx word 'wx' in Ly is: <mask>.
mT5xxl The Lx word 'wx' in Ly is: <mask>

mT0small Translate from Lx to Ly: wx=> <mask>.
mT0base Translate from Lx to Ly: wx=> <mask>.
mT0large Q: What is the Ly translation of wx A:
mT0xl How do you say the Lx word 'wx' in Ly?
mT0xxl How do you say the Lx word 'wx' in Ly?

XGLM564M The Lx word wx in Ly is:
XGLM1.7B The Lx word wx in Ly is:
XGLM2.9B The Lx word wx in Ly is:
XGLM4.5B The Lx word wx in Ly is:
XGLM7.5B The Lx word wx in Ly is:

mGPT Translate the Lx word wx into Ly:

LLaMA7B The Lx word wx in Ly is:
LLaMA13B Translate from Lx to Ly: wx=>

LLM Best Template (Few-Shot)

mT5small The word wx
1 in Ly is wy

1 . The word wx
2 in Ly is wy

2 . The word wx in Ly is <mask>.
mT5base The word wx

1 in Ly is wy
1 . The word wx

2 in Ly is wy
2 . The word wx in Ly is <mask>.

mT5large The Lx word wx
1 in Ly is wy

1 . The Lx word wx
2 in Ly is wy

2 . The Lx word wx in Ly is <mask>.
mT5xl The Lx word wx

1 in Ly is wy
1 , The Lx word wx

2 in Ly is wy
2 , The Lx word wx in Ly is <mask>.

mT5xxl The Lx word wx
1 in Ly is wy

1 , The Lx word wx
2 in Ly is wy

2 , The Lx word wx in Ly is <mask>.

mT0small The word 'wx
1 ' in Ly is wy

1 . The word 'wx
2 ' in Ly is wy

2 . How do you say 'wx' in Ly?
mT0base The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is

mT0large The Lx word 'wx
1 ' in Ly is 'wy

1 '. The Lx word 'wx
2 ' in Ly is 'wy

2 '. The Lx word 'wx' in Ly is '<mask>'.
mT0xl The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is:

mT0xxl The Lx word wx
1 in Ly is wy

1 , The Lx word wx
2 in Ly is wy

2 , The Lx word wx in Ly is:

XGLM564M The word wx
1 in Ly is wy

1 . The word wx
2 in Ly is wy

2 . The word wx in Ly is
XGLM1.7B The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is

XGLM2.9B The Lx word wx
1 in Ly is wy

1 . The Lx word wx
2 in Ly is wy

2 . The Lx word wx in Ly is
XGLM4.5B The Lx word wx

1 in Ly is wy
1 . The Lx word wx

2 in Ly is wy
2 . The Lx word wx in Ly is

XGLM7.5B The Lx word wx
1 in Ly is wy

1 . The Lx word wx
2 in Ly is wy

2 . The Lx word wx in Ly is

mGPT The Lx word wx
1 in Ly is wy

1 . The Lx word wx
2 in Ly is wy

2 . The Lx word wx in Ly is

LLaMA7B The Lx word 'wx
1 ' in Ly is wy

1 . The Lx word 'wx
2 ' in Ly is wy

2 . The Lx word 'wx' in Ly is
LLaMA13B The Lx word 'wx

1 ' in Ly is wy
1 . The Lx word 'wx

2 ' in Ly is wy
2 . The Lx word 'wx' in Ly is

Table 12: The best template for each LLM respectively for zero-shot and few-shot prompting. For simplicity, we
present only two in-context examples in each template in the few-shot setup.
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[5K Setup] VECMAP CONTRASTIVEBLI mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

DE→FI 33.59 44.65 7.82 11.79 25.56 31.72 35.63 0.63 4.49 3.91 15.81 27.18 20.55 31.61 35.89 32.97 39.96 19.67 - -
FI→DE 38.73 47.03 10.98 17.76 32.79 37.89 41.99 2.52 7.09 6.15 19.81 27.75 16.5 31.48 40.25 40.04 40.15 24.96 - -
DE→FR 50.44 55.56 14.08 23.53 39.12 47.1 51.07 2.45 10.28 11.95 28.95 36.83 19.72 34.95 43.09 49.5 48.57 37.04 56.13 59.68
FR→DE 47.75 53.29 12.78 21.11 37.35 41.54 44.49 2.17 7.71 7.4 21.68 32.95 14.38 27.42 40.82 45.89 42.89 31.45 51.58 53.75
DE→HR 32.08 42.41 - - - - - - - - - - - - - - - - 39.65 44.08
HR→DE 37.24 48.29 - - - - - - - - - - - - - - - - 43.08 46.71
DE→IT 50.55 54.77 12.26 22.27 36.67 43.45 48.15 1.41 6.26 7.2 24.36 35.47 18.41 32.81 43.77 48.51 45.23 39.96 53.63 57.75
IT→DE 47.29 53.8 11.78 19.28 34.88 38.81 43.67 2.58 7.49 7.03 20.31 28.94 14.06 26.1 36.74 41.55 38.4 29.15 47.86 51.52
DE→RU 34.38 46.79 8.61 22.33 35.16 41.84 43.24 0.0 0.37 0.26 17.63 31.82 19.77 34.85 41.99 44.08 44.03 32.19 47.57 49.45
RU→DE 43.32 49.71 10.11 21.9 37.3 41.17 44.21 1.52 4.61 8.38 21.11 29.39 14.56 24.83 40.54 43.84 41.44 31.22 48.35 50.39
DE→TR 27.18 38.86 7.3 12.31 25.2 29.53 36.41 1.46 4.54 4.49 15.18 21.44 13.15 19.25 28.59 30.41 31.92 22.9 - -
TR→DE 29.93 40.95 8.31 13.26 28.75 32.48 38.18 1.6 6.28 5.38 17.2 24.87 11.08 18.8 26.09 32.11 28.86 24.07 - -
EN→DE 51.0 57.75 16.8 30.25 45.9 49.35 53.1 3.3 8.55 8.45 25.5 39.35 21.15 38.6 52.5 54.95 50.3 38.05 62.3 63.45
DE→EN 55.24 58.95 19.51 30.26 42.62 49.5 53.94 0.37 9.65 12.0 29.94 38.81 29.11 42.31 47.94 51.64 51.17 40.58 57.28 58.89
EN→FI 37.75 47.15 9.6 18.75 34.25 40.8 44.65 1.3 4.35 3.4 19.15 30.25 25.4 39.9 48.1 41.7 48.65 21.3 - -
FI→EN 43.51 50.55 10.98 21.97 36.63 43.51 48.82 0.16 4.83 6.36 21.39 34.05 28.64 44.19 50.24 46.14 53.18 27.59 - -
EN→FR 63.1 67.2 23.95 39.5 55.6 62.45 66.8 5.0 15.5 16.95 38.75 50.95 32.35 55.95 63.8 67.8 66.75 50.25 72.95 76.25
FR→EN 62.75 65.49 27.16 42.42 50.75 57.84 61.41 0.47 14.85 17.95 37.4 47.28 40.87 54.22 57.37 60.99 60.01 50.44 64.82 67.3
EN→HR 34.05 47.2 - - - - - - - - - - - - - - - - 48.15 54.7
HR→EN 39.08 49.08 - - - - - - - - - - - - - - - - 48.13 51.03
EN→IT 60.4 65.6 21.45 38.3 54.75 61.75 63.85 2.3 5.9 6.35 34.05 48.0 29.7 51.1 60.65 64.55 62.9 52.4 71.4 74.0
IT→EN 62.17 65.27 20.26 35.35 47.03 54.32 59.43 0.31 10.8 14.42 33.49 43.0 34.68 48.17 53.23 57.73 57.11 48.63 63.05 64.44
EN→RU 39.65 50.5 11.85 29.6 45.6 52.8 53.7 0.2 0.35 0.25 22.0 38.5 30.95 46.4 54.0 57.5 55.05 42.05 58.3 62.3
RU→EN 49.35 54.16 12.31 29.39 43.16 51.86 54.58 0.16 4.3 11.05 27.76 36.83 30.12 43.79 52.28 53.95 53.64 40.96 56.1 58.77
EN→TR 32.05 44.75 10.55 20.65 35.45 40.15 45.05 2.65 4.2 3.8 18.6 27.05 16.9 29.35 38.4 40.6 40.85 31.05 - -
TR→EN 39.24 44.78 9.42 20.77 32.43 39.51 44.36 0.16 3.83 7.61 18.0 30.4 19.81 33.07 39.24 39.83 42.17 29.71 - -
FI→FR 38.26 45.24 8.57 18.5 35.47 42.35 46.51 1.63 6.2 5.83 24.54 32.05 20.91 37.94 46.66 45.45 48.77 28.69 - -
FR→FI 34.3 43.2 6.93 12.42 27.32 34.2 37.61 0.83 3.16 2.64 15.99 25.3 20.49 29.07 39.16 35.28 42.52 19.66 - -
FI→HR 31.58 38.31 - - - - - - - - - - - - - - - - - -
HR→FI 31.72 39.56 - - - - - - - - - - - - - - - - - -
FI→IT 37.99 46.3 10.3 17.5 32.16 39.83 44.51 1.52 6.78 5.25 21.97 30.06 21.86 36.57 44.04 44.09 47.08 27.75 - -
IT→FI 34.32 43.57 7.7 11.73 25.22 32.09 35.09 0.88 4.55 4.29 16.18 23.41 17.26 29.35 36.43 31.47 40.67 18.35 - -
FI→RU 34.16 40.99 6.36 16.34 30.53 38.05 41.04 0.05 0.53 0.68 15.55 27.01 19.23 36.1 42.3 39.99 44.82 24.38 - -
RU→FI 33.53 40.91 4.56 13.51 26.72 34.31 35.57 0.37 1.94 2.78 14.14 24.1 16.29 27.45 34.36 34.47 40.81 18.54 - -
HR→FR 40.24 49.29 - - - - - - - - - - - - - - - - 46.66 50.34
FR→HR 33.21 44.08 - - - - - - - - - - - - - - - - 40.3 46.51
HR→IT 40.24 48.97 - - - - - - - - - - - - - - - - 46.87 50.6
IT→HR 34.32 44.75 - - - - - - - - - - - - - - - - 38.5 44.75
HR→RU 37.98 46.4 - - - - - - - - - - - - - - - - 43.29 46.87
RU→HR 39.5 45.47 - - - - - - - - - - - - - - - - 40.07 45.42
IT→FR 65.89 67.86 16.43 31.63 49.87 56.59 59.84 2.53 12.56 13.49 34.83 44.03 23.67 41.76 53.44 58.81 55.71 49.04 63.51 66.77
FR→IT 64.72 67.2 17.64 33.83 51.37 57.68 60.42 1.5 5.33 5.59 32.64 44.85 23.07 41.54 57.37 60.27 59.18 54.58 65.08 68.03
RU→FR 47.51 52.7 11.26 24.2 41.12 48.82 51.44 1.31 6.23 9.17 26.51 35.78 21.74 35.57 46.36 52.38 51.13 39.55 55.32 58.04
FR→RU 38.23 48.06 8.64 23.33 38.18 44.65 47.54 0.0 0.47 0.26 19.61 33.73 25.92 39.89 46.82 50.08 49.77 39.63 51.22 54.16
RU→IT 46.78 51.96 11.79 26.14 41.59 47.77 49.29 0.89 4.45 7.18 24.83 34.36 23.47 32.58 46.88 50.13 50.6 41.28 53.54 57.83
IT→RU 38.71 47.49 8.22 22.02 36.9 43.82 46.41 0.1 0.36 0.26 18.66 30.96 22.58 36.9 43.26 47.39 47.75 35.45 46.61 51.89
TR→FI 28.59 34.77 5.54 8.47 20.18 27.1 29.77 0.43 3.3 2.08 14.11 18.85 13.47 22.79 26.94 25.03 32.8 16.61 - -
FI→TR 29.8 35.68 7.67 12.19 22.86 31.0 36.21 1.68 5.52 3.84 14.66 20.13 14.61 23.44 31.21 30.22 35.73 20.18 - -
TR→FR 36.58 43.88 8.95 17.25 31.79 39.99 44.62 1.38 4.95 5.86 22.63 29.5 15.55 25.83 33.76 37.7 38.82 29.55 - -
FR→TR 31.76 42.06 8.48 14.38 30.42 34.97 40.61 2.28 4.81 3.36 16.81 23.49 13.4 22.76 31.71 33.94 34.71 27.78 - -
TR→HR 25.99 36.32 - - - - - - - - - - - - - - - - - -
HR→TR 27.35 37.09 - - - - - - - - - - - - - - - - - -
TR→IT 34.24 42.17 7.35 15.28 30.46 38.13 42.55 1.22 5.32 4.58 19.97 28.12 14.64 24.17 35.46 36.85 37.01 31.63 - -
IT→TR 30.7 40.62 8.11 14.21 26.25 31.94 37.26 2.12 5.37 3.36 16.12 22.02 12.61 21.71 31.01 32.09 34.63 25.06 - -
TR→RU 26.2 36.16 4.47 13.53 29.39 35.57 38.02 0.0 0.27 0.43 13.63 25.03 13.26 27.32 34.45 34.93 36.47 27.21 - -
RU→TR 27.08 35.78 5.97 14.35 27.08 31.69 36.09 1.47 3.25 4.24 14.51 19.91 11.58 19.75 30.23 32.63 35.73 24.62 - -

Table 13: Full 5-shot BLI results (P@1×100%) on 56 XLING BLI directions with 5K seed translation pairs.
Off-the-shelf LLMs are used without any fine-tuning. ‘-’: a language in the pair is not supported by the LLM.
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[1K Setup] VECMAP CONTRASTIVEBLI mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

DE→FI 28.33 43.77 6.0 10.8 21.91 28.95 34.12 0.37 3.65 3.6 13.72 23.53 18.78 30.41 35.32 31.56 35.84 18.31 - -
FI→DE 35.0 44.93 8.57 13.87 26.38 33.58 36.94 0.53 5.83 3.84 16.5 25.38 16.97 28.74 38.47 35.94 37.2 21.18 - -
DE→FR 49.03 54.04 10.12 21.02 35.32 43.56 48.46 1.2 9.6 8.87 24.93 34.38 20.4 36.46 43.77 48.93 47.0 37.66 54.77 56.76
FR→DE 44.34 48.16 9.57 17.64 32.33 36.37 41.75 0.72 6.47 5.79 18.37 30.21 13.3 25.35 38.23 42.47 39.68 31.4 49.15 51.94
DE→HR 27.39 40.48 - - - - - - - - - - - - - - - - 36.57 41.78
HR→DE 32.82 44.35 - - - - - - - - - - - - - - - - 39.61 43.19
DE→IT 48.72 52.53 8.92 16.95 33.23 41.16 44.91 0.89 5.74 6.21 24.26 33.91 19.67 33.91 42.46 45.44 44.03 37.4 51.38 55.92
IT→DE 44.39 49.66 9.25 16.38 29.15 33.23 40.93 0.83 5.58 5.79 19.79 27.65 13.07 26.3 36.02 39.84 37.62 28.89 45.06 50.18
DE→RU 25.46 42.83 6.68 20.08 32.45 39.02 39.75 0.05 0.21 0.37 15.6 28.38 19.2 33.39 40.01 43.19 40.38 30.36 45.49 47.63
RU→DE 39.08 46.99 7.18 20.43 34.15 37.45 41.8 0.26 3.09 6.13 19.02 28.55 14.56 24.46 39.65 41.49 39.03 32.11 44.74 48.45
DE→TR 23.37 34.85 4.75 9.08 21.28 27.8 32.81 0.83 3.65 3.44 13.2 17.84 12.0 18.78 25.09 27.44 28.9 22.33 - -
TR→DE 26.57 37.11 5.96 9.32 23.0 28.43 32.53 0.37 4.58 3.78 13.74 22.2 10.17 17.52 25.03 28.65 27.16 22.26 - -
EN→DE 48.2 50.85 15.05 27.1 40.85 46.75 50.0 1.0 7.85 7.7 21.8 35.9 20.85 35.15 51.5 52.45 48.95 35.2 59.0 62.85
DE→EN 54.56 57.75 16.9 28.22 37.19 45.85 50.97 0.21 9.44 9.44 28.12 37.61 28.38 40.74 45.91 50.03 48.41 38.5 54.46 54.98
EN→FI 27.95 45.0 6.9 14.6 29.7 36.9 40.45 0.45 3.35 2.9 14.55 25.0 25.3 37.65 46.5 39.55 47.3 18.4 - -
FI→EN 41.15 48.77 8.88 16.87 28.43 36.0 42.83 0.0 4.1 2.42 17.24 30.27 28.85 41.99 46.77 43.72 49.61 23.91 - -
EN→FR 60.0 62.5 21.25 37.35 51.65 59.6 63.6 2.55 14.2 13.0 33.45 47.3 33.05 53.45 62.2 66.65 65.8 50.1 71.2 76.0
FR→EN 61.41 64.05 22.04 37.09 43.77 53.08 56.54 0.52 14.07 10.97 33.83 45.42 40.25 51.22 55.04 57.63 54.99 48.42 61.1 61.56
EN→HR 24.95 42.35 - - - - - - - - - - - - - - - - 45.95 53.4
HR→EN 37.45 47.55 - - - - - - - - - - - - - - - - 42.08 45.61
EN→IT 57.55 61.05 17.4 33.75 49.35 58.15 59.65 0.9 5.0 5.05 30.55 42.9 29.95 50.65 57.85 63.4 59.8 51.2 69.35 73.1
IT→EN 60.78 63.67 16.59 31.99 41.24 51.52 54.73 0.21 10.03 7.86 31.16 40.05 34.63 46.67 49.51 54.94 52.14 46.87 56.95 59.22
EN→RU 25.05 46.05 11.3 27.2 42.05 49.25 51.5 0.05 0.15 0.15 18.4 33.95 30.55 44.1 52.75 54.7 53.25 41.7 56.65 61.15
RU→EN 46.2 53.17 8.96 25.3 38.55 45.68 49.19 0.0 3.25 5.03 26.45 35.31 30.59 42.48 49.66 51.44 49.4 38.92 51.65 52.49
EN→TR 26.7 41.05 6.0 15.25 29.3 35.9 42.35 0.35 3.1 2.8 13.15 20.75 15.25 24.6 33.75 34.6 37.85 27.75 - -
TR→EN 37.17 43.24 8.09 15.02 25.99 34.56 40.42 0.16 2.61 2.24 15.65 28.17 18.58 28.65 34.98 36.53 37.27 28.06 - -
FI→FR 34.79 43.3 7.3 13.93 27.96 38.05 41.67 1.0 5.1 3.0 21.28 29.53 22.75 37.83 44.98 42.98 47.92 25.38 - -
FR→FI 23.95 40.56 3.67 9.78 24.42 29.33 33.89 0.26 2.79 2.07 12.62 22.87 20.43 31.25 38.49 32.44 39.11 17.54 - -
FI→HR 29.9 34.26 - - - - - - - - - - - - - - - - - -
HR→FI 27.62 36.14 - - - - - - - - - - - - - - - - - -
FI→IT 34.68 42.88 6.67 14.45 26.06 35.21 37.99 0.58 6.04 2.79 18.76 26.75 23.12 37.41 42.2 41.36 45.19 24.12 - -
IT→FI 26.1 41.65 4.6 8.58 21.86 28.79 32.71 0.47 4.5 3.67 13.64 21.19 16.69 29.92 34.99 30.85 37.0 17.21 - -
FI→RU 30.27 37.15 4.36 12.93 25.07 33.74 37.52 0.0 0.42 0.21 12.66 24.65 17.71 34.89 40.41 38.36 42.98 22.39 - -
RU→FI 33.11 37.35 2.83 9.8 24.1 30.07 33.05 0.05 1.57 1.83 13.36 21.16 16.61 27.24 34.0 33.21 38.08 17.18 - -
HR→FR 39.14 45.71 - - - - - - - - - - - - - - - - 44.29 47.66
FR→HR 27.52 39.68 - - - - - - - - - - - - - - - - 38.33 43.82
HR→IT 38.77 46.19 - - - - - - - - - - - - - - - - 44.56 46.92
IT→HR 28.68 41.29 - - - - - - - - - - - - - - - - 36.02 43.15
HR→RU 36.09 42.14 - - - - - - - - - - - - - - - - 40.08 44.45
RU→HR 38.08 41.17 - - - - - - - - - - - - - - - - 39.65 44.58
IT→FR 65.06 66.77 15.3 28.27 45.53 53.8 56.64 1.29 11.99 9.46 32.14 40.16 22.89 42.27 54.06 59.53 55.97 48.06 60.72 64.81
FR→IT 63.58 65.49 13.45 26.64 45.63 52.97 56.03 0.72 5.38 4.91 30.99 42.47 22.56 44.44 56.18 58.04 57.37 53.91 63.89 66.68
RU→FR 45.42 51.28 7.81 22.26 38.24 45.89 49.35 0.84 5.87 4.66 25.46 33.68 23.21 36.14 47.15 51.86 49.4 39.76 53.06 55.47
FR→RU 24.57 43.61 7.09 20.33 34.76 41.96 43.51 0.05 0.16 0.21 16.55 30.01 23.49 38.08 43.82 46.2 46.3 37.56 48.16 53.23
RU→IT 43.74 49.24 7.96 22.11 37.51 43.27 46.41 0.31 3.2 5.19 23.99 33.32 22.16 35.31 45.99 49.87 47.88 39.03 51.65 54.58
IT→RU 26.1 43.57 6.51 18.14 33.8 40.36 41.65 0.05 0.31 0.21 15.19 27.24 20.88 36.64 40.98 45.58 44.34 35.61 43.98 50.03
TR→FI 24.76 32.96 3.94 5.27 16.51 22.95 25.61 0.27 3.04 1.65 11.5 17.84 12.73 22.42 26.14 23.16 29.45 14.27 - -
FI→TR 25.8 30.64 4.52 8.36 18.13 23.49 30.06 0.21 3.52 1.94 11.19 18.08 13.82 21.65 28.74 26.17 32.74 17.34 - -
TR→FR 32.85 41.59 6.28 13.84 26.57 36.0 41.37 0.59 3.78 2.5 20.34 28.12 14.91 26.14 33.81 36.42 37.49 30.14 - -
FR→TR 25.19 38.44 4.81 10.61 24.88 28.5 34.87 0.52 2.95 2.33 12.52 18.21 13.24 21.31 29.49 29.95 31.66 26.49 - -
TR→HR 20.5 32.16 - - - - - - - - - - - - - - - - - -
HR→TR 20.67 33.04 - - - - - - - - - - - - - - - - - -
TR→IT 31.42 39.19 5.43 10.81 26.2 33.92 38.39 0.53 3.99 2.93 18.0 25.67 12.78 24.92 33.28 35.09 35.57 31.79 - -
IT→TR 25.06 37.93 3.98 9.2 22.12 27.03 33.59 0.36 3.15 2.95 13.33 17.73 12.14 19.38 25.68 28.53 29.82 22.95 - -
TR→RU 15.55 31.95 3.51 11.87 23.75 32.37 35.52 0.0 0.27 0.0 12.73 23.06 12.41 25.61 31.2 33.87 34.19 25.56 - -
RU→TR 18.6 33.05 3.14 10.53 23.78 28.34 34.15 0.1 1.57 2.1 10.63 16.61 10.42 18.07 27.4 30.23 32.16 22.21 - -

Table 14: Full 5-shot BLI results (P@1×100%) on 56 XLING BLI directions with 1K seed translation pairs.
Off-the-shelf LLMs are used without any fine-tuning. ‘-’: a language in the pair is not supported by the LLM.

[1K Setup] VECMAP CONTRASTIVEBLI mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

BG→CA 39.66 43.93 4.56 14.25 25.88 34.29 38.67 0.18 3.1 6.19 23.19 31.72 15.83 24.01 35.69 33.06 40.19 - 37.85 41.71
CA→BG 33.54 40.06 3.74 11.27 24.48 30.54 36.2 0.11 0.34 0.11 10.03 22.72 15.86 29.8 37.45 33.09 40.23 - 36.66 41.53
BG→HU 38.77 44.62 2.2 9.66 22.34 31.48 36.17 0.06 1.56 4.98 14.87 25.46 - - - - - 23.61 31.54 36.57
HU→BG 36.52 43.03 3.17 11.29 22.64 34.27 36.98 0.0 0.23 0.17 9.97 24.02 - - - - - 28.17 37.5 43.2
CA→HU 35.47 41.44 4.64 10.33 19.67 27.18 32.43 0.5 3.92 4.92 12.98 22.21 - - - - - - 30.39 35.3
HU→CA 39.88 47.14 6.38 12.65 20.19 34.98 37.68 0.61 5.89 6.88 19.86 29.59 - - - - - - 39.55 46.04

Avg. 37.31 43.37 4.11 11.58 22.53 32.12 36.36 0.24 2.51 3.88 15.15 25.95 - - - - - - 35.58 40.72

Table 15: 5-shot BLI results (P@1×100%) on PanLex-BLI with 1K seed translation pairs. Off-the-shelf LLMs are
used without any fine-tuning. ‘-’: a language in the pair is not supported by the LLM.
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[Zero-Shot] VECMAP mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

DE→FI 28.27 6.31 7.25 12.99 23.37 29.63 4.69 4.02 5.63 14.24 22.07 9.39 19.09 26.19 25.67 30.1 11.89 - -
FI→DE 34.84 7.46 7.83 17.29 22.12 29.53 6.15 5.52 7.36 10.04 23.75 8.99 24.49 31.79 29.48 35.26 13.14 - -
DE→FR 49.19 9.96 12.73 25.35 34.69 38.03 10.02 6.31 19.72 19.77 30.26 10.75 24.2 29.73 39.44 37.3 27.18 42.41 47.37
FR→DE 44.44 10.09 11.23 26.28 34.14 41.33 8.85 7.97 9.0 18.52 31.82 11.43 26.28 33.11 40.82 37.66 22.97 43.15 48.11
DE→HR 27.49 - - - - - - - - - - - - - - - - 29.06 28.06
HR→DE 32.72 - - - - - - - - - - - - - - - - 31.61 35.72
DE→IT 48.41 8.09 12.21 24.47 33.44 37.09 7.62 8.24 9.75 22.12 31.25 11.42 21.96 30.36 38.29 37.09 28.01 42.83 45.96
IT→DE 43.93 8.27 9.82 21.65 28.63 36.43 7.29 6.46 8.79 17.67 27.29 9.72 23.2 29.04 34.63 30.23 22.53 38.76 44.39
DE→RU 25.67 0.42 0.47 20.24 28.33 28.69 0.42 1.72 0.26 14.19 20.76 1.04 19.09 20.61 33.85 30.2 13.51 30.46 32.86
RU→DE 38.97 1.78 8.17 24.93 33.47 41.33 3.72 4.92 7.75 16.87 28.6 6.71 15.87 32.11 37.82 35.31 15.98 43.48 43.11
DE→TR 23.79 5.01 6.89 15.28 18.62 26.4 4.43 4.96 5.37 11.53 18.1 4.28 10.12 16.69 19.51 19.82 11.48 - -
TR→DE 26.46 7.08 6.98 13.74 18.58 24.81 7.24 6.6 6.92 10.22 19.33 4.69 14.59 17.73 24.17 21.83 14.38 - -
EN→DE 48.45 11.55 11.85 35.35 42.5 50.5 10.6 9.4 10.55 24.0 39.3 15.55 32.05 43.7 49.75 46.4 23.95 52.05 54.5
DE→EN 54.51 15.6 17.37 23.47 36.25 39.23 14.14 11.06 24.62 29.16 34.95 15.86 26.71 36.31 41.89 31.3 21.91 42.57 47.0
EN→FI 28.15 5.25 5.85 17.35 29.1 37.15 4.2 4.25 5.25 15.65 27.45 9.3 21.65 34.35 31.1 37.7 12.1 - -
FI→EN 41.04 8.04 8.67 14.98 23.7 32.0 5.94 5.2 13.45 19.02 27.27 8.72 17.03 39.78 29.48 39.57 14.14 - -
EN→FR 60.1 16.95 19.95 43.65 51.95 56.25 16.9 11.55 29.7 22.7 32.25 19.5 38.7 50.95 56.25 52.15 35.9 57.6 62.7
FR→EN 61.51 23.64 25.25 31.97 44.9 47.44 21.68 17.74 35.8 37.97 44.49 22.56 38.7 47.08 50.85 39.32 38.13 54.53 57.32
EN→HR 24.1 - - - - - - - - - - - - - - - - 35.85 28.6
HR→EN 36.3 - - - - - - - - - - - - - - - - 31.83 37.35
EN→IT 57.4 8.05 13.25 38.4 46.95 54.2 7.25 9.55 11.05 31.1 44.3 17.8 35.4 47.85 53.95 50.55 37.85 58.9 60.4
IT→EN 60.78 14.37 17.57 25.48 37.47 42.58 16.33 12.61 27.91 33.02 37.88 19.12 31.52 39.64 43.82 35.09 26.25 47.39 54.88
EN→RU 25.1 0.35 0.4 31.85 38.6 42.8 0.4 1.95 0.25 19.0 30.05 1.6 24.65 37.35 44.1 42.3 16.7 42.15 40.15
RU→EN 46.41 2.25 12.99 23.83 36.88 43.37 4.71 5.97 23.57 27.29 37.77 8.85 17.65 40.86 42.43 39.65 16.82 46.2 50.18
EN→TR 26.5 4.05 5.3 20.0 26.95 35.05 3.9 4.9 4.65 13.05 24.9 5.2 9.4 21.8 22.35 27.1 10.55 - -
TR→EN 36.9 6.82 7.45 13.26 22.47 27.9 5.96 3.73 12.78 17.25 21.88 5.91 15.12 24.81 26.46 25.99 7.14 - -
FI→FR 35.21 5.25 7.04 15.34 24.38 27.69 5.25 2.89 10.35 13.82 19.81 8.25 24.44 33.74 30.16 35.0 16.13 - -
FR→FI 22.56 4.76 5.43 11.9 22.81 29.38 3.1 3.26 4.86 14.23 22.56 7.24 19.61 27.57 26.54 30.78 11.48 - -
FI→HR 28.8 - - - - - - - - - - - - - - - - - -
HR→FI 27.72 - - - - - - - - - - - - - - - - - -
FI→IT 34.79 6.73 6.88 13.61 20.23 26.85 6.2 6.57 6.94 15.03 23.54 9.67 24.28 33.79 28.9 37.05 16.45 - -
IT→FI 25.99 5.89 6.61 8.32 18.97 26.46 4.34 3.77 5.58 11.63 18.86 6.82 18.6 24.6 23.57 25.53 12.04 - -
FI→RU 31.11 0.32 0.42 14.87 20.6 24.8 0.37 1.21 0.26 10.61 20.34 0.53 22.23 23.44 26.33 26.33 8.41 - -
RU→FI 32.74 1.0 4.87 12.94 21.06 31.74 0.84 1.68 3.2 12.0 20.53 4.98 9.64 16.34 24.88 29.65 7.39 - -
HR→FR 38.82 - - - - - - - - - - - - - - - - 31.51 36.24
FR→HR 26.95 - - - - - - - - - - - - - - - - 31.61 31.09
HR→IT 39.03 - - - - - - - - - - - - - - - - 34.46 38.51
IT→HR 28.84 - - - - - - - - - - - - - - - - 28.58 28.84
HR→RU 36.24 - - - - - - - - - - - - - - - - 30.51 31.77
RU→HR 38.71 - - - - - - - - - - - - - - - - 34.31 10.9
IT→FR 65.22 9.46 15.66 29.51 41.71 47.86 13.28 9.25 26.46 25.27 35.97 13.44 32.97 38.6 46.87 41.91 42.27 51.47 57.42
FR→IT 63.42 8.28 14.9 35.33 45.42 49.92 7.97 9.73 12.83 32.64 41.85 16.09 33.73 46.2 52.46 49.46 44.75 57.17 60.01
RU→FR 45.31 1.73 10.74 28.03 37.98 42.01 4.24 3.82 20.38 21.32 30.17 6.65 16.19 31.85 40.6 38.92 24.62 43.64 47.98
FR→RU 23.59 0.36 0.41 24.16 31.14 30.78 0.31 1.66 0.26 15.73 24.47 2.33 22.66 28.04 36.83 33.32 17.07 35.8 38.59
RU→IT 43.84 1.52 11.31 25.25 36.09 41.49 3.35 5.61 9.27 21.79 32.22 8.96 14.09 34.36 42.54 38.87 28.55 47.2 45.99
IT→RU 25.94 0.41 0.41 19.84 26.46 28.48 0.41 1.96 0.26 13.18 22.74 1.5 20.83 20.52 31.01 26.72 18.55 31.52 35.45
TR→FI 19.91 4.47 4.74 6.44 13.68 18.69 3.35 3.73 4.42 9.53 15.02 3.51 13.37 16.24 18.64 17.31 9.32 - -
FI→TR 20.97 4.26 5.52 9.56 13.87 19.76 3.21 4.15 5.1 8.57 16.97 4.68 12.45 18.97 17.13 20.55 6.36 - -
TR→FR 32.96 5.11 6.44 14.7 22.36 23.8 4.47 3.51 11.82 12.14 17.31 3.78 15.02 18.21 27.21 24.65 20.29 - -
FR→TR 25.04 3.83 5.59 15.57 20.95 27.47 3.21 4.29 4.66 10.5 20.18 3.93 9.36 17.9 20.28 20.28 11.38 - -
TR→HR 21.14 - - - - - - - - - - - - - - - - - -
HR→TR 20.62 - - - - - - - - - - - - - - - - - -
TR→IT 31.84 5.43 6.39 12.03 20.29 24.81 5.17 5.59 7.77 14.54 20.39 4.9 14.43 20.39 26.2 25.35 21.88 - -
IT→TR 25.06 4.5 5.79 13.64 17.67 24.91 3.41 4.13 4.96 10.23 18.04 4.29 10.59 16.59 18.29 18.6 13.49 - -
TR→RU 12.09 0.43 0.48 11.4 19.33 20.98 0.48 1.28 0.27 7.67 16.24 0.16 14.0 11.08 22.95 14.32 11.61 - -
RU→TR 15.61 1.0 4.71 15.87 20.95 27.97 1.41 2.99 3.46 10.27 16.5 2.2 4.19 16.92 19.02 20.32 8.75 - -

Table 16: Full zero-shot BLI results (P@1×100%) on 56 XLING BLI directions without any seed translation pair
(our zero-shot setup is also known as the unsupervised BLI setup for CLWE-based approaches). Off-the-shelf LLMs
are used without any fine-tuning. ‘-’: a language in the pair is not supported by the LLM.

[Zero-Shot] VECMAP mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

BG→CA 39.6 0.82 4.79 17.23 25.06 28.04 2.16 1.4 15.19 15.6 28.86 5.55 7.24 22.72 25.29 28.5 - 32.83 32.77
CA→BG 33.6 0.4 0.51 2.66 15.64 21.47 0.4 0.74 0.45 6.86 16.83 0.4 16.26 21.93 19.55 20.17 - 26.35 27.03
BG→HU 39.24 0.93 5.32 14.7 21.3 27.26 1.45 4.63 7.58 12.04 24.07 - - - - - 7.23 24.19 23.61
HU→BG 36.46 0.35 0.29 0.92 17.8 22.47 0.23 0.58 0.23 5.93 16.94 - - - - - 9.85 28.34 26.5
CA→HU 34.09 6.85 8.34 13.31 21.55 24.59 6.8 8.34 7.57 12.54 22.93 - - - - - - 23.7 24.53
HU→CA 37.79 6.6 6.27 16.72 24.2 25.47 8.64 4.84 14.03 14.8 24.48 - - - - - - 32.62 38.17

Avg. 36.8 2.66 4.25 10.92 20.92 24.88 3.28 3.42 7.51 11.3 22.35 - - - - - - 28.0 28.77

Table 17: Zero-shot BLI results (P@1×100%) on PanLex-BLI without any seed translation pair (our zero-shot
setup is also known as the unsupervised BLI setup for CLWE-based approaches). Off-the-shelf LLMs are used
without any fine-tuning. ‘-’: a language in the pair is not supported by the LLM.

mT5small mT5base mT5large mT5xl mT5xxl mT0small mT0base mT0large mT0xl mT0xxl XGLM564M XGLM1.7B XGLM2.9B XGLM4.5B XGLM7.5B mGPT LLaMA7B LLaMA13B

NN (5K) 14.84 28.33 43.25 49.66 52.83 1.43 6.8 8.28 27.0 38.09 24.51 39.49 49.14 53.08 51.58 41.2 57.33 60.23
NN (1K) 11.97 24.91 38.84 45.95 49.37 0.63 6.08 5.85 24.5 35.42 24.18 38.86 47.64 51.18 49.09 40.13 54.62 57.85

Random (5K) 11.34 23.86 36.53 42.83 46.93 0.21 5.73 4.16 23.36 34.97 21.17 36.44 46.65 49.85 48.03 38.88 53.32 56.85
Random (1K) 10.45 22.45 35.77 42.55 45.93 0.18 5.4 3.75 22.0 33.9 21.37 36.01 46.0 49.92 47.37 38.38 52.56 56.11

Zero-Shot (Unsupervised) 7.66 11.33 27.95 37.35 41.99 7.97 7.37 14.41 23.17 32.92 11.04 25.82 35.91 42.91 38.69 26.18 45.46 48.72

Table 18: Full ablation results with all our 18 mLLMs. Avg. BLI scores (P@1×100%) on 20 XLING BLI directions.
Row 1 ∼ 2: five-shot prompting with in-context examples extracted from nearest neighbours (NN) in DS of size
5K and 1K. Row 3 ∼ 4: five-shot prompting with random in-context examples in DS of size 5K and 1K. Row 5:
zero-shot prompting without any in-context examples.
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Ground-Truth Translation Pair Method In-Context Examples Prediction

brisati (HR) → erase (EN)
0-Shot - break
5-Shot izbrisati→delete, kopirati→copy, ispraviti→amend, dopuniti→supplement, pisati→write erase

jestiv (HR) → edible (EN)
0-Shot - joyful
5-Shot jesti→eat, češnjak→garlic, povrće→vegetable, grašak→peas, biljka→plant edible

slap (HR) → waterfall (EN)
0-Shot - slap
5-Shot slapovi→falls, kanjon→canyon, jezero→lake, potok→creek, potoci→streams waterfall

valcer (HR) → waltz (EN)
0-Shot - valve
5-Shot orkestar→orchestra, koncert→concert, balet→ballet, simfonija→symphony, klavir→piano waltz

šaran (HR) → carp (EN)
0-Shot - shark
5-Shot pastrva→trout, riba→fish, ribolovac→fisher, gavran→raven, bizaran→bizarre carp

sove (HR) → owls (EN)
0-Shot - slept
5-Shot sova→owl, životinje→animals, ptica→bird, mačke→cats, životinja→animal owls

gušter (HR) → lizard (EN)
0-Shot - gusher
5-Shot štakor→rat, zmija→snake, zvijer→beast, kornjača→turtle, majmun→monkey lizard

sezam (HR) → sesame (EN)
0-Shot - cumin
5-Shot grašak→peas, rajčica→tomato, povrće→vegetable, rajčice→tomatoes, smokva→fig sesame

odgod̄ena (HR) → postponed (EN)
0-Shot - postponed
5-Shot odgoditi→delay, bila→been, trebala→supposed, najave→announcements, provedena→conducted delayed

tajnost (HR) → secrecy (EN)
0-Shot - secrecy
5-Shot krajnost→extreme, odanost→loyalty, odlučnost→resolve, tajna→secret, točnost→accuracy discretion

prognoza (HR) → prognosis (EN)
0-Shot - prognosis
5-Shot prognoze→forecasts, dijagnoza→diagnosis, terapija→therapy, liječenje→treatment, astma→asthma forecasts

otapanje (HR) → dissolution (EN)
0-Shot - dissolution
5-Shot doziranje→dosage, kiseline→acids, filtriranje→filtering, dobivanje→obtaining, curenje→leak melting

sopportare (IT) → endure (EN)
0-Shot - support
5-Shot alleviare→ease, portare→bring, superare→exceed, odiare→hate, minimizzare→minimize endure

snello (IT) → slender (EN)
0-Shot - quick
5-Shot flessibile→flexible, coda→tail, sottile→subtle, leggermente→slightly, aspetto→appearance slender

hindi (IT) → hindi (EN)
0-Shot - english
5-Shot india→india, indiano→indian, tailandese→thai, lingua→tongue, arabo→arabic hindi

velo (IT) → veil (EN)
0-Shot - bicycle
5-Shot cappello→hat, mantellina→cape, viso→face, cuscino→pillow, vestito→dress veil

prugna (IT) → plum (EN)
0-Shot - prickly
5-Shot ciliegia→cherry, vaniglia→vanilla, zenzero→ginger, marmellata→jam, aglio→garlic plum

propano (IT) → propane (EN)
0-Shot - methane
5-Shot idrogeno→hydrogen, acido→acid, carbonio→carbon, combustibili→fuels, polimero→polymer propane

pomello (IT) → knob (EN)
0-Shot - apple
5-Shot maniglia→handle, regolabile→adjustable, maniglie→handles, coperchio→lid, cinghia→strap knob

altopiano (IT) → plateau (EN)
0-Shot - high
5-Shot montagne→mountains, pianure→plains, vallata→dale, pianura→plain, valle→valley plateau

eventuale (IT) → eventual (EN)
0-Shot - eventual
5-Shot necessario→necessary, valutare→gauge, possibile→possible, necessaria→needed, richiedere→require possible

scopre (IT) → discovers (EN)
0-Shot - discovers
5-Shot scoprire→discover, crede→believes, chiede→asking, spiega→explains, ragazza→girl discover

rane (IT) → frogs (EN)
0-Shot - frogs
5-Shot topi→mice, animali→animals, rana→frog, mosche→flies, creature→creatures snakes

sorprese (IT) → surprises (EN)
0-Shot - surprises
5-Shot sorpresa→surprise, inaspettato→unexpected, sorprendente→surprising, aspettandosi→expecting, aspettative→expectations surprised

Table 19: Translation examples on HR→EN and IT→EN. We include here ground truth translation pairs and show
the predictions derived from zero-shot and five-shot prompting with LLaMA13B.
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