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Abstract

Knowledge Base Embedding (KBE) models
have been widely used to encode structured
information from knowledge bases, including
WordNet. However, the existing literature has
predominantly focused on link prediction as the
evaluation task, often neglecting exploration
of the models’ semantic capabilities. In this
paper, we investigate the potential disconnect
between the performance of KBE models of
WordNet on link prediction and their ability to
encode semantic information, highlighting the
limitations of current evaluation protocols. Our
findings reveal that some top-performing KBE
models on the WN18RR benchmark exhibit
subpar results on two semantic tasks and two
downstream tasks. These results demonstrate
the inadequacy of link prediction benchmarks
for evaluating the semantic capabilities of KBE
models, suggesting the need for a more targeted
assessment approach.

1 Introduction

Knowledge Base Embedding (KBE) models aim
to encode the structured information contained in
knowledge bases as vectors. These models are of-
ten claimed to possess rich semantic information,
and have been applied to various downstream se-
mantic tasks, such as entity typing (Moon et al.,
2017; Zhao et al., 2020), entity alignment (Sun
et al., 2020), rule mining (Yang et al., 2015; Chen
et al., 2020), and conceptual clustering (Gad-Elrab
et al., 2020). If the knowledge base encodes seman-
tic relations (hypernymy, meronymy, and so on), a
KBE model should represent these relations. The
assumption is that this knowledge should be help-
ful for more general semantic modelling. A further
assumption is that evaluating on the training task,
i.e. relational link prediction, is suitable as a proxy
for other tasks. Our aim is to test these implicit
assumptions.

We focus on models of the Princeton WordNet
(Miller, 1995). Typically, KBEs are evaluated on
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Similarity Analogy POS NER
MRR —-0.749 —0.539 —-0.645 —0.757
H@1 —0.843 —0.650 —0.747 —0.746
H@10 -0.355 —0.138 —0.220 —0.705

Table 1: Pearson correlation between link prediction
metrics and other evaluation tasks, for the results in
Table 2. For all metrics, higher is better, but the link pre-
diction metrics are anticorrelated with the other tasks.

link prediction for an artificially selected subgraph.
For instance, the WN18 benchmark (Bordes et al.,
2014) is created from WordNet by excluding rare
synsets and relations, and randomly splitting the
data into training and test sets. Further, follow-
ing issues with test set leakage (Toutanova and
Chen, 2015; Dettmers et al., 2018), the subsequent
revision WN18RR meticulously filters the splits,
removing e.g. explicit inverse relations.

While link prediction may be a natural task for
datasets such as FreeBase, where incompleteness
is a major problem (Min et al., 2013), the Princeton
WordNet is intended to have complete annotations
of lexical relations. Indeed, it has often been used
as the basis for developing WordNets for languages
other than English (Bond and Foster, 2013). The
careful filtering of WN18RR might result in a fairer
benchmark for link prediction, but this evaluation
setup deviates from the objective of learning a se-
mantically valuable model.

Some of the semantic information in WordNet
is implicit. For example, hypernymy (i.e., the “is
a” relation) is transitive, but antonymy (the “op-
posite of” relation) is not; nevertheless, they are
both encoded as synsets having arcs to their di-
rect hypernyms or antonyms (Miller, 1995). That
is, while hypernym(potato, solanaceous vegetable)
and hypernym(solanaceous vegetable, vegetable)
are relations in WordNet, hypernym(potato, veg-
etable) is not. It is supposed to be inferred by the
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user’s knowledge of hypernymy. However, link
prediction models are neither trained nor tested
for this; rather, they are trained to exclude indi-
rect hypernym-relations like hypernym(potato, veg-
etable), as they are not present in the training or
the test splits. Indeed, to a KBE model, hypernymy
and antonymy look very similar.

Putting together the heavy filtering of common
datasets and the indirectness of some information
in WordNet, it is unclear the degree to which KBE
models trained on these datasets contain the seman-
tic information WordNet is designed to include.
Indeed, we find that well-performing KBE models
on WN18RR are anticorrelated with performance
on downstream semantic tasks: the best models of
WNI18RR perform the worst on semantic bench-
marks (see Table 1). This aligns with findings for
other types of embedding, where a discrepancy in
model performance between intrinsic and extrinsic
metrics has been observed (see §3).

We provide evidence for two related claims: I)
performance on link prediction is not predictive
of semantic capability; and II) models developed
for link prediction fail to capture the semantics of
WordNet. Specifically, we show that models with
the best performance on the WN18RR benchmark
exhibit poor performance on relatively simple se-
mantic tasks (as seen in Table 1, and discussed
in §5). We further show that well-performing KBE
models fail to properly encode the most basic se-
mantic relationship in WordNet, i.e. hypernymy
(as discussed in §6). Our findings emphasize the
need for careful design of both evaluation bench-
marks and model architectures: evaluation must
target desired functionality, and models must be
theoretically capable of that functionality.

2 KBE Models

A Knowledge Base consists of triples (s, 7, 0), de-
noting the subject node s being connected by the
relation r to the object node 0. KBE models aim
to learn an embedding for each node and relation,
so that it can output higher scores for valid triplets
and lower scores for invalid ones.

In this paper, we compare several common mod-
els, including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015) and MuRP (Balazevi¢
et al., 2019), as well as a function-based model,
FuncE, adapted from Chen (2021). We also discuss
GNN-based and distributional approaches.

TransE embeds both nodes and relations as
real vectors, with scores defined by translation:
—|vs+v,—v,|?. DistMult also uses real vectors,
but instead defines scores by componentwise mul-
tiplication: X;vs ;U Vo ;.

Some KBE models have been designed to meet
specific geometric and linguistic criteria (Vendrov
et al., 2016; Nickel and Kiela, 2017). For the mul-
tirelational setting, BalaZevic et al. (2019) intro-
duce MuRP, which encodes relations as Mobius
transformations, with scores defined using the dis-
tance between transformed points. Allen et al.
(2021) analyse the performance of different scoring
functions on different categories of relations. Their
findings underscore that models should be selected
for specific predictive needs: DistMult performs
better for some relation types, MuRP for others.
Similarly, Chen (2021) proposed to use different
scoring functions for different WordNet relations,
motivated by theoretical work on Functional Distri-
butional Semantics (Emerson, 2018). Building on
this, we introduce FuncE, which embeds a node as
a real-valued function f : R™ — [0, 1], and uses a
different scoring function for different categories of
relation, according to linguistic criteria: hypernym-
based, synonym-based, or other (see Appendix A).

Such a function can be interpreted as the mem-
bership function for fuzzy region (Zadeh, 1965). In
distributional semantics, Erk (2009b,a) has argued
in favour of such representations (for a survey, see:
Emerson, 2020). Membership functions can nat-
urally represent tree hierarchies (like hyperbolic
embeddings) but can also naturally represent mul-
tiple inheritance hierarchies. Using a real-valued
space makes it easier to switch scoring functions
for different types of relation.

More precisely, f is a hypernym of g if f(x) >
g(x) for all x. For simplicity, we embed nodes as
logistic regression classifiers, defined by a weight
vector v and bias b, so f(x) = sigmoid(v.x + b).
This allows hypernymy to be calculated easily: re-
stricting the input to the unit sphere, f is a hyper-
nym of g if by —by — |vf —vy| > 0. We can use this
expression as a score for the hypernymy relation.
Numerically, this is the same hypernymy condition
as for ball embeddings (Dong et al., 2018), if we
take v to be the centre of the ball and b to be the
radius. For synonym-based relations, we use the
DistMult score function, and for other relations, we
use the TransE score function.
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We further experiment with recent works that
apply Graph Neural Networks (GNNs) as node en-
coders, which can potentially leverage the struc-
tural context of each node (Schlichtkrull et al.,
2018). In particular, we consider KBGAT (Nathani
et al., 2019) and rGAT (Chen et al., 2021), both
of which were found to have high performance on
link prediction for WN18RR.

Finally, some work in distributional semantics
has compared models trained on corpora against
models trained on linguistic resources like Word-
Net. Faruqui and Dyer (2015) create sparse binary
vectors, based on manually defined features, and
find that they are competitive with distributional
vectors on various evaluation datasets. Kutuzov
et al. (2019) learn synset embeddings from Word-
Net by utilizing path-length based similarity mea-
sures. Saedi et al. (2018) present Wnet2vec, which
generates word embeddings following the intuition
that semantically similar nodes are connected by
more paths and shorter paths. They show that the
resulting embeddings outperform several distribu-
tional methods on word similarity metrics. We
consider Wnet2vec as an additional baseline.

3 Related Research on Evaluation

A growing body of research advocates a reassess-
ment of the evaluation protocol for KBE models,
even if link prediction is taken as the ultimate goal.
Wang et al. (2019) and Akrami et al. (2018, 2020)
argue that current benchmarks contain too many
trivial and too few difficult predictions, advocating
for more realistic evaluation. Tiwari et al. (2021)
discuss how random splits alter the graph topology
from the original knowledge base, and show that
correcting for this allows simple translation-based
models to outperform more complicated ones. Fi-
nally, Kadlec et al. (2017) and Ruffinelli et al.
(2020) show that performance on link prediction
benchmarks is strongly determined by hyperparam-
eters and training mechanisms.

Going beyond link prediction, Jain et al. (2021)
challenge the prevalent belief that KBE models can
properly capture the semantics of KB entities and
relations. By evaluating common KBE models on
entity typing and entity clustering benchmarks, the
authors discovered that their results were no better
than those achieved by simple statistical models.
Similarly, Rim et al. (2021) designed tests for spe-
cific capabilities of KBE models, such as capturing
symmetric relations or hierarchical relations. They

found that performance on link benchmarks did
not reflect performance on their tests. Together,
these studies suggest that link prediction is a nar-
row evaluation metric, even when considering tasks
defined on the knowledge base itself. Our work dif-
fers from these studies as we primarily focus on
external evaluation datasets, investigating the lim-
itations of WordNet embeddings in representing
lexical semantics. Specifically, we apply WordNet
KBE models to semantic evaluation datasets and
downstream tasks.

Differences between training-related and down-
stream measures of performance have been found
for several NLP tasks. Chiu et al. (2016), Qiu et al.
(2018), and Torregrossa et al. (2020) found that per-
formance on common benchmarks for word embed-
dings do not correlate well with downstream per-
formance. Similar results have been demonstrated
especially for intrinsic measurements of bias and
fairness, which often struggle to adequately capture
downstream failures (Goldfarb-Tarrant et al., 2021;
Cao et al., 2022).

4 Experimental Setup

To demonstrate how performance on link prediction
benchmarks is inadequate for assessing semantic
capabilities, we evaluate common link prediction
models on several semantic tasks. We use two
tasks directly testing semantic understanding (word
similarity, word analogy), and two downstream
tasks using the embeddings (POS-tagging, NER).
These tasks serve as representative examples of
challenges that semantic embedding models should
be able to tackle effectively.

4.1 Word Similarity

A common approach for evaluating semantic mod-
els is to assess their ability to predict how similar
words are. Typically, this is done by comparing
model predictions with human-annotated similar-
ity scores for selected word pairs. Model perfor-
mance is then measured with Spearman correlation.
For models that represent words as vectors, cosine
similarity is typically employed to measure word
similarity. In our analysis, we use the SimLex999
benchmark (Hill et al., 2015a), which includes 999
pairs of common words spanning three parts of
speech (nouns, verbs, and adjectives). Each sample
in the benchmark consists of a pair of words along
with a ground-truth similarity score assigned by
crowd-sourcing (e.g. “coast shore 9.00”).
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WN18RR Similarity Analogy POS-tagging NER
MRR @10 @1  Spearman p @10 acc. f1 score

TransE 3449 5094 2527 48.60 31.98 76.53 49.18
DistMult 4247 47.40 39.74 28.76 11.60 67.17 48.43
FuncE 25.87 43.66 16.78 51.19 35.30 7717 54.54
MuRP 48.85 58.64 43.40 38.16 30.59 67.87 43.89
KBGAT 4445 5831 36.72 45.05 31.56 76.44 49.45
rGAT 4998 59.70 45.30 28.92 13.24 71.56 30.70
Whet2vec - - - 41.56 20.62 59.10 26.29

Table 2: KBE models’ performance on WN18RR, SimLex999, BATS, PTB POS-tagging, and NER. For SimLex999
and BATS, only subsets of the datasets are used (782 out of 999 word pairs for SimLex999; 17,109 out of 98,000
analogy questions for BATS). Best results are marked in bold, and the lowest ones are underlined.

The choice of SimLex999 is motivated by two
factors. Firstly, As opposed to other datasets, it is
designed to measure specifically the similarity of
concepts, while excluding other forms of related-
ness that we would not expect WordNet to capture
(e.g. cup and coffee are related but not semantically
similar). Secondly, the dataset focuses on common
words, ensuring that representations derived from
WordNet have good coverage.

4.2 Word Analogy

The Word Analogy task (Mikolov et al., 2013) is
designed to measure the linguistic regularities cap-
tured within the semantic space of word represen-
tations. Specifically, models are tested to predict
analogies, i.e. to answer questions of the form a is
toa™ as bisto 7 (e.g., man is to king as woman is to
queen). The underlying assumption is that a high-
quality semantic model with a regular latent space
should be able to accurately answer these by lever-
aging the geometric structures embedded within
the space (e.g., Vgx — vq = Vpx — vp). We employ
The Bigger Analogy Test Set (BATS) (Gladkova
et al., 2016), which categorizes analogy questions
into four main categories: Inflection, Derivation,
Lexicography, and Encyclopedia. Each category is
further divided into ten sub-categories, resulting in
a total of 98,000 questions.

4.3 Downstream tasks

Another way to understand if embeddings cap-
ture semantic knowledge is to assess their perfor-
mance on downstream tasks. As demonstrated
by Chiu et al. (2016), intrinsic semantic measures
and downstream tasks do not necessarily correlate.
We also include experiments on two sequence la-

belling tasks: POS-tagging, using the Wall Street
Journal sections of Penn Treebank (PTB) (Marcus
et al., 1993), and NER of CoNLL’03 shared task
data (Tjong Kim Sang and De Meulder, 2003).

It is important to note that our objective is not to
develop state-of-the-art sequence labelling models,
but rather to assess the semantic value of KBE mod-
els through comparison. To facilitate a fair eval-
uation of their semantic capabilities, we employ
a minimal setup for the sequence labelling tasks.
This involves using a model with a single softmax
layer applied to a sliding window. Although this
model may yield subpar performance in the tasks,
it allows for a reliable comparison between the se-
mantics capabilities of different KBE models. Our
setup can be seen as a form of probing classifier,
testing the degree to which semantic embeddings
directly contain the necessary information to pre-
dict part-of-speech (Belinkov, 2022).

4.4 From Synsets to Words

Nodes in WordNet represent synsets, not words.
As such, to evaluate embeddings of these nodes on
our benchmarks, we first convert the synset embed-
dings obtained from WordNet into word embed-
dings. This conversion is accomplished by averag-
ing the sense (synset) embeddings corresponding
to each word. For instance, the word “car” has
two different synsets in WordNet, and the embed-
dings for these synsets are averaged to obtain the
embedding for “car”. It is important to note that
some words in WordNet appear in multiple synsets
with different parts of speech. The word “dog”
serves as an example, acting as both a noun repre-
senting animals in the Canidae family and a verb
meaning to chase. In such cases, we do not dif-
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ferentiate the words by part of speech. We base
this decision on two reasons: (1) the chosen se-
mantics benchmark are designed for distributional
word embeddings, which do not incorporate part
of speech information during evaluation, (2) part
of speech information is not provided in the BATS
word analogy benchmarks. For GNN models (i.e.,
KBGAT (Nathani et al., 2019) and rGAT (Chen
et al., 2021)), which consist of a GNN encoder and
a decoder, we use the synset embeddings directly
output by the encoder as “embeddings”.

5 Many Ways to Skin a Potato:
Comparing Evaluation Metrics

In this section, we evaluate a range of models
(see §2) on both link prediction and also semantic
tasks (see §4).

5.1 Models trained on WN1SRR

The most common link prediction dataset for
WordNet is WN18RR, a subset developed by
Dettmers et al. (2018). The subgraph represented
by WN18RR has been extensively filtered, remov-
ing e.g. explicit inverse relations, to produce an
excellent link prediction behcnmark. The dataset
consists of 93,003 triples with 40,943 entities and
11 relation types. To document the KBE models
most likely to appear “in the wild”, we begin by
evaluating embeddings trained on WN18RR.

As the WN18RR training set only contains a
portion of the synsets in WordNet, some words in
the semantics benchmark cannot be learned. For
BATS, quadruplets containing “missing words” are
simply dropped, and the hits-at-10 score on the
remaining dataset is reported. For SimLex-999,
word pairs containing these “missing words” are
assigned the median similarity score obtained from
the other word pairs. Despite utilizing subsets of
the benchmarks, it’s crucial to note that all models
are assessed on the exact same selected subsets,
ensuring a consistent and fair comparison between
them. In terms of Knowledge Base Completion, we
use the evaluation protocol defined by Bordes et al.
(2013), where the results of the filtered ranking
metrics are reported as the mean value of head
node and tail node predictions.

Table 2 presents the performance of various KBE
models trained on WN18RR, assessed based on a
variety of intrinsic and extrinsic tasks. The results
allow us to draw two key observations regarding the
correlation of metrics. Firstly, a distinct correlation

is evident among the selected semantic tasks; mod-
els that excel in one semantic task tend to demon-
strate similar prowess across others. Secondly, no
clear correlation exists between a model’s accuracy
in the link prediction benchmark and its efficacy
on the semantic tasks. For example, rGAT, despite
achieving the highest accuracy on the WN18RR
benchmark, underperforms in areas such as simi-
larity, word analogy, POS-tagging, and NER.

The models that showcase top-tier performance
on downstream tasks include TransE, FuncE, and
KBGAT. A shared characteristic among these mod-
els is their reliance on scoring functions motivated
by linguistic insights. Both TransE and KBGAT
leverage a translational scoring function as de-
fined by (Bordes et al., 2013), which demonstrates
a strong geometric association with information-
theoretic structure first discovered in distributional
word embeddings (Allen et al., 2021). FuncE dis-
tinguishes itself by using categorized loss func-
tions derived from the insights of formal semantics
(Emerson, 2018, 2020). This stands in stark con-
trast to models such as rGAT and DistMult, which
lack the underpinning of similar linguistic theories.
This discrepancy provides a plausible explanation
for their inferior performance on the chosen seman-
tic tasks.

5.2 Expanded Training

A possible explanation for the unsatisfying perfor-
mance of KBE models on semantic tasks is the
heavily filtered subset that is used for training. For
WNI18RR, triples are “lost” in three ways: by only
focusing on the 18 most frequent relations (Bordes
et al., 2013), by removing relations with explicit
inverses (Dettmers et al., 2018), and by setting
aside triples for the development and test splits. To
investigate, we expand the WN18 subgraph to in-
clude a more comprehensive set of synsets in Word-
Net. This expansion occurs in two steps: (1) We
extend WN18 by incorporating synsets with low
in/out degrees while maintaining the same number
of relation types. This expanded subgraph contains
112,195 nodes and 217,495 edges, which is referred
to as WN18A. (2) We further extend WN18A with
seven additional relations and their corresponding
linked synsets, resulting in a dataset with 116,744
nodes and 363,593 edges, referred to as WN25.
Results on the extended datasets are shown in
Table 3. For training, we retained hyperparame-
ters from 2 without carrying out hyperparameter
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WNI1SA WN25

Similarity Analogy POS NER Similarity Analogy POS NER
TransE 58.00 29.20 79.10 48.64 50.68 36.86 80.05 47.22
DistMult 28.32 5.80 68.58 40.39 21.82 6.35 68.57 39.57
FuncE 59.88 28.37 78.38 49.07 49.37 31.77 78.56 49.24
MuRP 31.33 15.50 74.93 40.89 23.22 28.21 76.34 38.68
rGAT 38.53 2.94 66.84 23.65 36.35 1.66 66.77 25.52
KBGAT 58.32 29.10 79.33 48.91 48.52 35.57 79.63 47.34
Whet2vec 47.16 14.08 56.09 22.78 37.08 13.82 55.32 14.77

Table 3: KBE models’ performance on the semantics benchmarks, with expanded training sets. For SimLex, all the
word pairs are covered, while for BATS, 27,343 out of 98,000 quadruplets are covered. Best results are marked in

bold, and the lowest ones are underlined.

tuning. This decision was grounded in the fact
that both WN18A and WN25 have no validation
set, so carrying out hyperparameter tuning would
result in over-fitting. Notably, the results exhibit
a similar pattern to those in Table 2: rGAT and
DistMult consistently perform poorly across all se-
mantic tasks, while models with scoring functions
designed with linguistic motivations demonstrate
better performance; in other words, there is still
an inverse correlation between link prediction and
downstream results.

It is important to note that some of the results
in Table 3 are not directly comparable to Table 2,
as they have different coverage on the benchmarks.
This is particularly evident in the word analogy
task, where the ranking metric is strongly influ-
enced by the total number of nodes in the graph. In-
terestingly, the performance of rGAT and DistMult
is less improved by the dataset extension compared
to other KBE models — these models exhibit sub-
par performance on word analogy tasks and show
no improvement in the POS tagging benchmark.
This suggests that the architecture, rather than e.g.
a lack of training data, is the central problem for
these models.

6 WordNet Potatoes and KBE Model
Architectures: A Problematic Mash

As a concrete demonstration of how KBE models
fail to accurately represent semantics, we consider
the case of hypernymy. WordNet encodes a tree
defined by the hyponymy and hypernymy relations,
with concepts near the leaves representing more
concrete forms of those occurring near the root.
This is a transitive relation: A potato is a concrete
example of a vegetable, and therefore also a con-

crete example of food. To accurately model the
semantic information in WordNet, models must
encode this hierarchical structure in their latent
spaces. Unfortunately, models are typically not
designed for this. We find that some of our se-
lected models exhibit unexpected behavior when
encoding hypernymy, and almost all of them fail to
properly capture the transitive property.

6.1 Model Behaviour Contradicts
Thesaurus-Based Similarity Measures

Consider an upward path in the hypernym hierarchy
of WordNet (e.g., potato — solanaceous vegetable
— produce — food — solid — matter — physi-
cal entity). It is reasonable to expect that concepts
closer to each other in the path would have higher
similarity scores. This approach is commonly used
in thesaurus-based similarity algorithms (Quillian,
1969). However, KBE models are not trained to
exhibit this property. Table 4a presents the cosine
similarity between potato and all of its hypernyms.
We observe that TransE and FuncE strictly follow
the thesaurus-based similarity idea, with solana-
ceous vegetable being the most similar to potato
and physical entity being the least similar. In con-
trast, DistMult and rGAT give similarity scores that
are not clearly correlated with the path length.
The differing behaviour of models on this task
reflect their differing motivation. As mentioned
in Section 5.1, both TransE and FuncE are the-
oretically motivated, respectively by ideas from
the geometry of word embeddings (Allen et al.,
2021) and from formal semantics (Emerson, 2018,
2020). DistMult and rGAT, on the other hand, are
primarily motivated as being good models for link
prediction. While they accomplish the latter goal
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Cosine Similarity with ‘Potato’

Hypernym Prediction @1

TransE DistMult rGAT TransE DistMult FuncE MuRP
solanaceous veg. 0.7750 —0.0009 0.6927 1-hop 84.41 83.96 86.32 83.45
vegetable 0.5468  0.6390  0.5026 2-hop  2.21 10.08 76.65  9.73
produce 0.2723 —0.3153 0.3991 3-hop  0.81 4.44 47.5 4.03
food 0.1676  0.4571  0.3481 4-hop  0.58 0.41 10.2 1.56
solid 0.0623 —0.3725 0.1821 5-hop  0.56 0.12 3.76 0.53
matter 0.0601  0.3959  0.2130 6-hop  0.38 0.04 1.68 0.32
physical entity 0.0236 —0.3699 0.4192 7-hop  0.30 0.01 0.84 0.11

(a) Cosine similarity between ‘Potato’ and all its hypernyms
in WordNet.

(b) Predicting multi-hop hypernyms. KBEs are trained and
tested on WN18A.

Table 4: Investigation of KBEs’ ability to model hyponymy and hypernymy relations.

WNI18RR Similarity = Analogy  POS tagging NER

MRR @10 @1 @10 Spearman p acc. fl score
KBGAT-TransE 26.03 48.64 20.44 45.05 31.56 76.44 47.36
KBGAT-FuncE 23.87 4252 15.03 48.77 25.60 77.03 52.12
rGAT-TransE 2243 48.03 17.31 46.76 28.60 76.92 48.55
rGAT-FuncE 14.45 39.17 9.56 47.89 30.60 77.22 51.92

Table 5: Results for GNNs with modified scoring functions, to compare against Table 2.

(e.g. in terms of MRR on WN18RR, rGAT per-
forms the best out of all the models we test), they
in turn sacrifice the ability to model the underly-
ing semantics of WordNet. This behaviour is also
reflected through the comparatively poor perfor-

mance of these models on our semantic tasks (see
Tables 2 and 3).

6.2 Modelling Transitivity

The hypernymy relation in WordNet is transitive:
if (a, hypernym, b) and (b, hypernym, c) are valid
triplets, then (a, hypernym, c) is also valid. How-
ever, almost none of the KBE models proposed
are capable of modelling transitivity. For instance,
TransE is trained to enforce that vs + v, = v, if
(s,7,0) is a valid triplet. This method is deficient
for modelling transitive relations, since (v, + v, ~
vp) A (vp + vy & ) can only imply (vy + vy & V)
if v, &~ 0. Similarly, bilinear scoring functions and
neural decoders do not easily allow the representa-
tion of transitivity.

Table 4b demonstrates the average accuracy for
different models in predicting whether n-hop hy-
pernymy (e.g. predicting whether a potato is a veg-
etable, whether it is produce, whether it is food,
and so on). As can be seen, TransE and DistMult

fail to predict multi-hop hypernymy. FuncE, which
is explicitly designed to model transitivity, is to
a much greater degree able represent hypernyms
further away.

Drawing from these observations, we empha-
size the significant potential inherent in specialized
KBE models tailored for specific kinds of data. We
urge future model designers to meticulously con-
sider the desired functionalities of their models,
ensure that they are able to achieve these function-
alities in theory, and evaluate whether they achieve
them in practice.

6.3 Scoring Functions for GNN-encoders

GNN encoders, e.g. rGAT (Chen et al., 2021), are
often designed to work with neural scoring func-
tions. As these are designed to maximize link pre-
diction performance, rather than capture the latent
structure of the semantic space, their correspond-
ing embeddings may not work well for downstream
tasks. A possible remedy would be to pair these
powerful encoders with linguistically motivated de-
coders (e.g., TransE or FuncE).

We test this proposal in Table 5, pairing rGAT
and KBGAT with TransE- and FuncE-decoders.
We find that, although performance increases for
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Word Similarity Word Analogy

Adj. Noun Verb Deri. Lexi. Ency.

TransE 70.30 53.32 6274 44.12 28.50 1745

DistMult  37.80 27.07 2832 1397 284 1.39

FuncE 71.10 53.80 67.76 39.40 2892 15.23

WNI18A MuRP 29.83 3439 42.15 2431 1252 1141
rGAT 44.04 3599 4691 0.26 3.88 5.01
KBGAT 7045 5298 63.70 43.78 28.52 16.70
Wnet2vec 64.40 43.13 46.88 1651 1540 9.63
TransE 55.45 49.66 4722 4740 38.86 19.87

DistMult  30.35 23.15 12,76 12.51 4.03 192
FuncE 52.64 5099 47.09 4495 3482 1592
WN25  MuRP 30.58 39.85 28.04 23.85 1597 12.56
rGAT 31.17 4026 29.88 0.27 264 2.18
KBGAT 5452 4823 46.81 4599 38.21 18.60
Wnet2vec 41.67 40.94 3251 2288 1829 9.76

Table 6: Results on SimLex999 and BATS, by category (part of speech and derivational/lexicographic/encyclopedic).
Best results are marked in bold, and the lowest ones are underlined.

semantic tasks, there is a corresponding drop in
MRR; further, the addition of the GNN-encoder to
TransE or FuncE does not improve on the decoder-
only variant (see Table 2). This matches existing
work pairing GNN encoders with translational scor-
ing functions (Cai et al., 2019), which also failed
to yield significant improvements over using the
factorization model by itself. Indeed, the majority
of GNN architectures proposed for link prediction
use either bilinear (Schlichtkrull et al., 2018) or
neural (Nathani et al., 2019; Chen et al., 2021)
scoring functions. As we discuss in Section 6.1,
such scoring functions do not represent the hier-
archical structure of WordNet well. Our findings
suggest that the development of a GNN encoder
which pairs well with linguistically motivated scor-
ing functions — or a linguistically motivated scoring
function which pairs well with GNNs — is a highly
desirable direction for future research.

7 Further Analysis: Subtasks Under the
Spudlight

An interesting question is how uniform our find-
ings are across various subtasks of our evaluation
tasks. Conveniently, SimLex-999 and BATs allow
for such analysis, respectively across POS-tag and
question category. Detailed model results for these
can be seen in Table 6.

On SimLex-999, a fairly consistent pattern

emerges: models perform better on adjectives than
on nouns or verbs. While present for both datasets,
this trend is more pronounced for WN18A than
WN25. One possible interpretation is that KBE
models tend to attribute high similarity scores to
concepts that are highly connected in the training
data, i.e. to (potential) edges between vertices in
denser regions of WordNet. This leads to height-
ened similarity scores between concepts that share
strong associations, despite having less similarity;
contradicting the measurement principles of Sim-
Lex (Hill et al., 2015b). This is particularly promi-
nent for noun synsets, as the majority of connec-
tions in WordNet occur between nouns. In con-
trast, there are no connections between adjectives
in WN18A, and only a few connections in WN25.

Analogy questions in BATS are classified into
four groups according to the original paper: deriva-
tional, lexicographical, encyclopedic, and inflec-
tional. We exclude the inflectional group due to
its limited coverage in WordNet. As per Table 6,
KBE models tend to perform the best in the deriva-
tional group. This outcome is unexpected, given
that a large number of analogy questions in the
lexicographical group can be answered using rela-
tions directly from WordNet (e.g., analogy ques-
tions involving hypernym-hyponym, part-whole,
and meronym-holonym). In contrast, derivational
relations in WordNet are encoded in a more general
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manner, utilizing a single ‘derivationally related’ re-
lation. Moreover, the performance of KBE models
diverges from the trend observed in distributional
word embeddings, which typically underperform
in the derivational group (Gladkova et al., 2016).
For both datasets, the ranking of the models by
performance is broadly consistent between the data
subsets. The impact of the additional relations in
WN25 is inconsistent, generally improving perfor-
mance on BATS but decreasing it on SimLex999.

8 Conclusion

Our study has highlighted the substantial discrep-
ancy between the performance of KBE models on
the WN18RR benchmark versus their performance
in semantics and downstream tasks. Specifically,
we have shown that KBE models, when designed
absent of linguistic insights, are capable of deliv-
ering high performance on link prediction metrics
while also underperforming and demonstrating un-
expected behaviors in semantic analysis. Our find-
ings demonstrate the deficiency of the WN18RR
benchmark in evaluating specific semantic capabil-
ities of KBE models and underscore the potential
advantages of constructing models tailored for se-
mantic tasks. Consequently, we advocate for the
development of targeted benchmarks that assess
specific semantic abilities of WordNet KBE mod-
els, which enable model designers to calibrate and
optimize their models in alignment with precise
semantic requisites.

Limitations

Our evaluation of the semantic capabilities of KBE
models is limited in several ways. We focus on
specific aspects of semantics, and two downstream
tasks. The semantic tasks we have included are not
perfect representations of semantic evaluation, and
indeed do not always reflect downstream perfor-
mance (Chiu et al., 2016). Further, POS tagging
and NER are only two of many options for down-
stream tasks requiring some semantic knowledge.
As such, it is possible that KBE evaluation accu-
rately captures other aspects of semantics. Addi-
tionally, we note that our analysis is restricted to
one ontology, WordNet, which we chose because
it is often used as a benchmark for KBE models.
A different ontology, e.g. BabelNet (Navigli and
Ponzetto, 2010), may produce different results.
We further note that the models we use in this pa-
per, i.e. for semantic tasks and for POS tagging, are

purposefully made simple rather than performant.
Our intention was not to develop state-of-the-art
systems for these tasks, but rather to analyse the
embeddings produced by relational link prediction.
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A Relation Categories

Relation Categories

hyponym
instance hyponym
hypernym
instance hypernym

Hypernym-based

verb group

similar to

also see

derivationally related form

Synonym-based

member meronym

has part

member of domain region
member of domain usage
synset domain topic of
member holonym

part of

synset domain region of
synset domain usage of
member of domain topic

Other

attribute

cause

entailment
pertainym
antonyms

substance holonym
substance meronym

Other (WN25)

Table 7: WordNet relations grouped into categories. The
first 18 relations are used in WN18. The 11 relations
used in WN18RR are marked in bold.
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B Hyper-parameters

learning algorithm learning rate batch size dimension epoch weight decay

TransE Adam le-2 16384 200 400 le-2
DistMult Adagrad Se-1 8192 200 400 le-1
FuncE Adam le-2 8192 200 400 le-1
MuRP RiemannianSGD 50 128 200 200 0

rGAT Adam le-3 4096 200 800 le-5
KBGAT Adam le-3 4086 200 3600 le-5
Whnet2vec - - - 800 - -

Table 8: Hyper-parameter choices for model trained on WN18RR, WN18A, and WN25

C Benchmark Examples

Benchmark Sample
SimLex999 Word Pair: (old, new), Similarity Score: 1.58
BATS Analogy question: man : woman :: king : ?
Answer: queen
PTB POS tagging  Sentence: The quick brown fox jumps over the lazy dog.

Tags: DT JJJJ NN VBZ IN DT JJ NN.

CoNLL-2003 NER

Sentence: Mike lives in London.
Tags: [Mike, B-PER] [lives, O] [in, O] [London, B-LOC]

Table 9: Examples from the used benchmarks
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