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Abstract

Although large language models (LLMs) have
apparently acquired a certain level of grammat-
ical knowledge and the ability to make general-
izations, they fail to interpret negation, a crucial
step in Natural Language Processing. We try to
clarify the reasons for the sub-optimal perfor-
mance of LLMs understanding negation. We
introduce a large semi-automatically generated
dataset of circa 400,000 descriptive sentences
about commonsense knowledge that can be true
or false in which negation is present in about
2/3 of the corpus in different forms. We have
used our dataset with the largest available open
LLMs in a zero-shot approach to grasp their
generalization and inference capability and we
have also fine-tuned some of the models to as-
sess whether the understanding of negation can
be trained. Our findings show that, while LLMs
are proficient at classifying affirmative sen-
tences, they struggle with negative sentences
and lack a deep understanding of negation, of-
ten relying on superficial cues. Although fine-
tuning the models on negative sentences im-
proves their performance, the lack of general-
ization in handling negation is persistent, high-
lighting the ongoing challenges of LLMs re-
garding negation understanding and generaliza-
tion. The dataset and code are publicly avail-
able: https://github.com/hitz-zentroa/
This-is-not-a-Dataset

1 Introduction

Large Language Models (LLMs) currently offer
state of the art performance in many Natural Lan-
guage Processing (NLP) tasks. Apparently, they
have acquired the ability to capture syntactic (Ba-
roni, 2020) and semantic (Furrer et al., 2021) ab-
stractions. However, recent experiments (Kassner
and Schütze, 2020; Hossain et al., 2020; Truong
et al., 2022) have proven that LLMs fail at inter-
preting contexts in which understanding negation
is required.

Bills are commonly part of birds. ✅

Bills are never part of human bodies. ✅Bills are never part of birds.  ❌

Bills are commonly part of human bodies. ❌

Figure 1: Affirmative and negative sentences in the
dataset.

The presence of negation in a sentence reverts
the polarity of the proposition it represents, and
thus affects its truth and factuality values. See how
the adverb “never” changes the truth value of the
sentences in Figure 1. As a consequence, under-
standing negation correctly is crucial for all NLP
tasks. Moreover, understanding negation should
help LLMs to grasp how things happen in real-
ity, boosting NLP tasks that involve commonsense,
causality, entailment and world knowledge.

The reasons for the lower capabilities of LLMs
dealing with negation remain largely unclear, al-
though some point out at the under-representation
of negation in corpora (Hossain et al., 2022). In
this work, we present a corpus in which negation
is present in around two thirds of the sentences in
different forms. Taking advantage of the relations
in WordNet (Fellbaum, 1998), we have generated
a set of patterns to create descriptive sentences that
work as truth and falsity tests which are then used
together with a list of prompts to measure the sen-
tence understanding of the different LLMs.

The dataset has been used in a series of experi-
ments to test its quality and coherence. First, we
assess the quality of the sentences by human anno-
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tators. Then, to grasp its capacity of generalization
and inference, we have used our dataset to test dif-
ferent configurations of LLMs available in a zero-
shot approach. We have also fine-tuned some of
these models to assess whether the understanding
of negation can be learnt. Our initial hypothesis is
that if the dataset is coherently and robustly built
we will be able to learn how LLMs deal with nega-
tion.

The contributions of this paper are: i) We in-
troduce the largest negation probing dataset. This
dataset includes affirmative and negative sentences
with and without distractors, incorporating multi-
ple types of relations and negations. ii) We evalu-
ate a comprehensive set of open LLMs using our
dataset in both zero-shot and fine-tuning scenarios.
iii) Our findings demonstrate that current LLMs,
whether in zero-shot settings or after fine-tuning
with examples from our dataset, possess a profound
understanding of the truthfulness of affirmative sen-
tences. However, when confronted with negation,
these models heavily rely on superficial cues in-
stead of effectively generalizing negation.

2 Background

2.1 Related Works

Negation is a core operator in logic and in the struc-
turing of the information in text and it has long
been studied for its relevance in natural language
understanding. In the last two decades, works on
the analysis and processing of negation have multi-
plied. In the pre-generative-model era, most works
centered on negation detection (Chapman et al.,
2001; Vilares et al., 2015) and profiling (Morante
and Daelemans, 2012), so the extracted negation
information could be used in downstream tasks.

With the booming of deep-learning architectures
that were based on abstract neural representations
of texts, the paradigm shifted and negation was
processed as the rest of the elements appearing in
text. It was soon noticed that systems struggled
to correctly process the information when nega-
tion was involved. Such is the case of negation in
machine translation (Bentivogli et al., 2016; Tang
et al., 2021), information extraction (Grivas et al.,
2020) and sentiment analysis (Barnes et al., 2021)
among others.

It has not been long since the scholar commu-
nity started to analyse the reasons for the lack of
capability of correctly processing negation. For
example, Jumelet and Hupkes (2018) analysed the

negation licensing strategies to measure neural lan-
guage model ability to correctly process them.

Chen et al. (2023) assess the ability of LLMs to
handle negative commonsense knowledge. Since
most available information exists in a positive
and affirmative form, LLMs fail at dealing with
world knowledge when it is presented in a nega-
tive form. They propose a two-task assessment
in which LLMs need to i) answer yes or no to
world knowledge questions and ii) generate com-
monsense compelling sentences from related key-
words. Some recent research has been directed to
building knowledge bases in which negative com-
monsense is stored (Arnaout et al., 2022), in order
to be reused for commonsense reasoning.

2.2 Negation in English
Negation in language is the representation of the
logical operation in which a the truth value of a
proposition is inverted. It is commonly expressed
by a restricted list of negative adverbs (e.g. no,
never), pronouns, determiners or prefixes, that ap-
pear in different contexts in the sentence. Pullum
et al. (2002) offer a four axe classification of nega-
tion types from which we will focus on these:

• Verbal vs. non-verbal: the verbal negation
marker is associated with the verb and directly
affects it, while the non-verbal couples with
objects and adjuncts.

• Analytic vs. synthetic: analytic negation is
represented by markers that only convey nega-
tion. Synthetic negation markers, instead, may
have additional syntactic function (e.g. noth-
ing and none might also be subjects or ob-
jects).

• Clausal vs. sub-clausal: clausal negation
negates the whole clause that includes it, and
sub-clausal negation only affects a part of the
clause.

In Table 1 we present the different types of nega-
tions considered in our work.

3 Dataset

3.1 Dataset construction
Our benchmark compiles 381,300 artificially gener-
ated sentences in standard English. The sentences,
in a definition style (e.g. X is Y, X is part of Y),
have been created based on the knowledge from
WordNet and related resources.
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Negation
type Example

Verbal Agreement is not an appropriate syn-
onym of disagreement in any context.

Non-verbal In no context lectures may be part of
courses.

Analytic No theft is a small replica of a person.
Synthetic Mirror is never an appropriate hy-

ponym of reduction.
Clausal Kissing is not commonly done by en-

gineers.
Sub-clausal Bricks are made of clay in no context

Table 1: Examples of the types of negation.

Pattern Relation Templates Triples Sentences

#01 Synonymy 21 2,996 281,624
#02 Antonymy 21 58 8,178
#03 Synonymy 24 14 2,436
#04 Antonymy 24 58 10,092
#05 Hypernymy 24 634 60,864
#06 Part 16 199 11,940
#07 Substance 15 21 1,176
#08 Member 17 11 682
#09 Agent 2 60 240
#10 Instrument 7 9 468
#11 Result 27 40 3,600

Total - - - 381,300

Table 2: Distribution of sentences by pattern.

The sentences in our dataset are obtained by
means of patterns. Each of the 11 patterns (#01–
#11) is designed for a particular relation and in-
cludes several different templates of two types: af-
firmative templates, which are free of negation;
negative templates, which include one of the types
of negations described in Table 1. Using triples
on the corresponding relation, these templates are
used to create sentences by instantiation. Since
each synset may include more than one word form
in Core WordNet and the proposed templates in-
clude optional and alternative parts, we obtain sev-
eral sentences from each couple of template and
triple. The controlled application of the different
templates enables us to determine the truth-value
of the resulting sentences. In Appendix D, we de-
scribe each pattern in detail.

More specifically, we focus on the WordNet rela-
tions synonymy, hypernymy, antonymy, meronymy
(part, member and substance) and the semantic
roles agent, instrument and result provided by Mor-
phosemantic Links (Fellbaum et al., 2009). Among
the nouns and verbs compiled in WordNet, we con-
centrate exclusively on the ones provided by Core

WordNet (Boyd-Graber et al., 2006), which is a
list of the most frequently used word senses that
includes 3,299 nouns and 1,000 verbs. In this way,
we discard words that are less commonly used. Fur-
thermore, we exclude the triples on synonymy1 and
hyponymy that relate Basic Level Concepts (BLCs)
(Izquierdo et al., 2007), which may result too gen-
eral, and we use the mapping from WordNet to
EuroWordNet Top Ontology (TCO) to ignore the
triples on the member meronymy relation and the
agent semantic role where the noun synsets are not
referring to animals or persons.

Since WordNet and the considered related re-
sources only provide true knowledge —that is, all
the triples and mappings describe real relations and
connections— we automatically obtain false knowl-
edge from WordNet triples using distractors, which
are randomly selected words that replace the word
senses of a synset.2 That is, given a WordNet triple
that relates two synsets, from Core WordNet we
select a distractor to replace the word senses of one
of the synsets and obtain a distracting triple. Apart
from BLCs, for the selection of suitable distrac-
tors we consider the lexicographer files provided
by WordNet, which are 45 syntactic category and
logical groupings of word senses, and WordNet
Domains (Bentivogli et al., 2004), which consist of
a hierarchy of 164 labels that characterize knowl-
edge areas and to which each synset is connected.
In Appendix C, we provide more details about the
selection of distractors.

Next, we illustrate the process of construct-
ing our dataset. In Pattern #06, we have in-
cluded the following positive and negative tem-
plates that state semantic correspondences between
parts and wholes on the basis of triples of the form
⟨part, noun1, noun2⟩:
⟨noun1+(e)s⟩ [ are commonly | may be ] part of

⟨noun2+(e)s⟩.
⟨noun1+(e)s⟩ are never part of ⟨noun2+(e)s⟩.

The positive template3 yields true sentences when
instantiated with true knowledge (i.e. Word-
Net triples), while we get false sentences using
distracting triples. On the contrary, the nega-
tive one yields sentences with the opposite truth-
value. For example, given the WordNet triple

1Synonymy triples are obtained by reflexivity.
2In Patterns #01 and #02, distractors are synsets when

using glosses.
3The expressions enclosed in square brackets are alterna-

tive.
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⟨part, bill10n , bird1
n⟩, we select human body as

distractor for bird1
n and get the distracting triple

⟨part, bill10n , human body⟩. Then, by instantiat-
ing the positive template using these two triples,
we get the sentences in the first row of Figure 1 and
also:

“Bills may be part of birds.”

The two sentences about birds (i.e. resulting from
the WordNet triple) are labelled with True, while
the sentence about human bodies (that is, obtained
from the distracting triple) is labelled with False.
Likewise, using the same two triples for the in-
stantiation of the negative template, we get the
sentences in the second row of Figure 1, which are
respectively labelled with False and True.

In Table 2, we sum up some figures about the
proposed dataset. For each pattern (first column),
we provide the corresponding WordNet relation
and the number defined templates, applied Word-
Net triples and obtained sentences respectively.
It is worth noting that Patterns #01–#04 include
both false positive sentences and true negative sen-
tences obtained from synonymy and antonymy
WordNet triples by means of a dual application of
templates. Furthermore, in the case of antonymy,
the truth-value of the resulting sentences does not
depend on whether templates are instantiated us-
ing WordNet or distracting triples. As a conse-
quence, instantiating a template using a WordNet
and a distracting triple yields sentences with op-
posite truth-value except for Patterns #02 and #04,
where all sentences resulting from the same tem-
plate have the same truth-value. For example, given
the antonym triple ⟨ant, expenditure1n , income1n⟩,
we select wood as distractor for expenditure1n (see
Appendix C for details) and obtain the distract-
ing triple ⟨ant, wood, income1n⟩. Using these two
templates, we instantiate the following negative
template included in Pattern #04

⟨noun1⟩ and ⟨noun2⟩ are the same thing in no
context.

and obtain two sentences:

“Expenditure and income are the same thing in no
context.”

“Wood and income are the same thing in no
context.”

Both sentences are true.

% A tester B tester A ∩ B A ∪ B

T/F prediction 90.9 89.1 87.27 96.36
Comprehensibility 91.82 100 91.82 100
Grammaticality 83.64 96.82 83.64 96.82
Plausibility 20.45 45.91 19.55 46.82

Table 3: Human evaluation of the quality of the sen-
tences in the dataset.

3.2 Dataset quality assessment
Human Evaluation addresses the validation of the
generation process and the different templates used,
that is to say, whether the sentences in the dataset
are grammatical and that overall represent true and
false knowledge as expected. To prove the linguis-
tic quality of the dataset and that the predictions
extracted from WordNet reflect the reality, two na-
tive speakers of English were required to assess a
randomly selected sample of 220 sentences from
our dataset. Evaluators were required to answer
four questions for each sentence: i) Is the sentence
true or false?, ii) is the sentence grammatically cor-
rect?, iii) is the sentence understandable? and iv) is
the sentence plausible and might be produced by a
speaker?

The answers to these questions have been sum-
marised in Table 3. For the true and false predic-
tions, we have compared the testers’ answers with
the predictions we generated from the WordNet
relations. Circa 90% of the predictions match with
the human testers’ answers. For the quality of the
test sentences, the results show that the sentences in
the dataset are mostly comprehensible to humans
even if not all are fully acceptable in English or
they are not likely to be uttered by English speak-
ers (low plausibility). Namely, we have detected
problems with uncountable nouns (1) and lexical
selection (2). Nonetheless, low plausibility might
be an interesting asset for our experiments as em-
ploying non-frequent sentences may help to reduce
the effect of the reliance on lexical co-occurrences
models have.

(1) “A letter is commonly part of a mail.”
(2) “Officers are not members of laws in

any context.”

In what refers the quality of the knowledge en-
coded in the dataset, we have observed that over
98% of the sentences with distractors in the human
test set represent actual knowledge. We can thus
consider that the distractor selection mechanism is
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robust enough.

4 Experimental Setup

In this section, we define the evaluation protocol
we use to measure the performance of Language
Learning Models (LLMs) on our dataset.

4.1 Models
We evaluate a diverse set of LLMs, ranging in size
from 7 billion parameters up to 65 billion parame-
ters. Our evaluation includes Foundation Models,
along with versions that have undergone additional
instruction-tuning and/or have been fine-tuned for
conversation. We do not consider closed models
where the data used for pretraining or even the
model architecture is unknown, as drawing mean-
ingful conclusions for such systems is not possible.
We evaluate the following models: the 12 billion
parameter T5 (Raffel et al., 2020) encoder-decoder
language model, as well as FLAN-T5 (Chung et al.,
2022), an enhanced version of T5 that has been
fine-tuned in a mixture of tasks; LLaMA (Touvron
et al., 2023) decoder-only language models with
parameter sizes ranging from 7 billion to 65 bil-
lion; LLaMA models that have been fine-tuned for
specific tasks, including Vicuna v1.1 (Chiang et al.,
2023), which has undergone additional fine-tuning
as a chat-assistant, and WizardLM (Xu et al., 2023),
which has been fine-tuned for following instruc-
tions; Pythia (Biderman et al., 2023) decoder-only
12 billion parameter model; the instruction-tuning
model Dolly (Conover et al., 2023); and finally we
evaluate Falcon (Almazrouei et al., 2023) 7 and
40 billion parameter models which are decoder-
only models including the instruction-following
fine-tuned versions. We also evaluate other open
LLMs; the full model list can be found in Appendix
A.

4.2 Task Formulation
We evaluate each sentence in the dataset individ-
ually as a binary task in which the model must
generate either True or False tokens. Following
Scheurer et al. (2023), given the prompt pt we com-
pute the answer A as follows:

A =





True if p(True|pt)
p(True|pt)+p(False|pt) > 0.5

False otherwise

We use the following prompt as input for the
models:

Is the following statement True or False?
{sentence}.

We found that models that have undergone a fine-
tuning for conversation tend to generate an expla-
nation instead of answering True or or False. We
use a slightly modified prompt that improves the
results: Is the following statement True or False?
Answer only True or False. {sentence}. Models that
have been fine-tuned as dialogue systems utilize
different prompts to represent a conversation, such
as using markers like “<bot>” and “<human>”,
or custom system initial prompts. In order to ac-
commodate these models, we format the input ac-
cording to the recommendations provided by the
authors. Implementation details of fine-tuning and
inference are available in Appendix B.

4.3 Metrics

In our dataset, we utilize two primary metrics for
evaluating LLMs:

Accuracy This metric is computed using the for-
mula acc = (TP+TN)/(TP+TN+FP+FN).
We evaluate the overall accuracy at the sentence
level for all the sentences in our dataset. Addition-
ally, we analyze the overall accuracy of different
sentence types: Accuracy in Affirmative sentences,
Negative sentences, Affirmative sentences with a
distractor and Negative sentences that include a
distractor.

Coherence This metric aims to decouple the
real-world and commonsense knowledge of the
model from the understanding of negative sen-
tences. We compute two coherence scores: one for
the sentences without distractors (“Bills are com-
monly part of birds" and “Bills are never part of
birds") and another for the sentences with distrac-
tors (“Bills are commonly part of human bodies."
and "Bills are never part of human bodies."). An-
swers are deemed coherent if the affirmative and
negative sentences have opposite labels, regardless
of whether the answer is correct or incorrect. How-
ever, if the model predicts the same label for both
the affirmative and negative sentences, we consider
the answer incoherent. To illustrate this metric,
consider the sentence pair “Bills are commonly
part of birds" and “Bills are never part of birds".
Both the answers “True/False" and “False/True"
are considered coherent, whereas “True/True" and
“False/False" are incoherent.

Moreover, we calculate the overall coherence:
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Model name Model Type Coherence Accuracy

All W/o Distractor W/ Distractor

All W/o Distractor W/ Distractor Affirmation Negation Affirmation Negation

Random 0.5 0.9 0.8 50.0 50.2 50.1 50.0 49.9

LLaMA13B Foundation 0.0 0.2 0.3 50.1 85.8 12.2 10.6 90.2
LLaMA30B Foundation 0.1 0.3 0.2 52.4 84.7 29.5 30.2 68.8
LLaMA65B Foundation 0.0 0.0 0.0 50.3 96.3 3.1 1.3 99.3
Vicuna13B Dialogue 0.2 8.8 0.6 57.8 83.1 85.1 78.0 2.6
WizardLM30B Instruction 0.0 6.0 0.1 57.3 53.6 95.7 88.8 2.0

Pythia12B Foundation 0.0 0.1 0.0 50.1 93.8 15.2 4.0 86.7
Dolly12B Instruction 0.0 0.3 0.2 50.2 72.0 73.3 33.4 25.1

T5-xxl Foundation 0.0 0.0 0.0 50.3 96.6 2.8 0.4 99.8
Flan-T5-xxl Instruction 0.9 46.4 1.2 66.1 86.1 96.1 94.6 6.2

Falcon40b Foundation 0.1 0.1 0.2 49.7 90.9 13.9 11.6 83.3
Falcon40b-instruct Instruction 0.1 1.5 0.2 54.7 64.3 76.8 71.4 16.6

Table 4: Zero-shot performance of various LLMs in our dataset. The best results are highlighted in bold, and scores
that surpass the Random baseline accuracy are underlined.

this happens when all the statements with and with-
out distractors are coherent and correctly or all
incorrectly classified. Referring to the example in
Figure 1, we would deem the set of statements as
overall coherent if the sentences with and without
distractors are coherent and all the answers are ei-
ther correct or all of them are incorrect. In the case
of antonymy relations (Patterns #02 and #04), both
the distractor-carrying and non distractor-carrying
sentences carry the same label, so we evaluate the
overall coherence accordingly. It is important to
note that, for the sake of simplicity, the example
only contains two sentences, but coherence is ac-
tually determined at the triple level. Triples can
comprise between 2 to 27 templates. So, for a
triple to be deemed coherent, responses to all the
templates within it must be coherent. Therefore,
this is a very challenging metric.

By examining coherence in these contexts, we
gain insights into the models’ ability to understand
the negation, even if the models do not have the
real-world knowledge to correctly label the sen-
tences.

5 Do LLMs understand negation?

In this section, we assess the performance of the
LLMs in section 4.1 in our dataset. The evaluation
is conducted in a zero-shot setting, meaning that
we evaluate the models without any fine-tuning.
The results of this evaluation are presented in Ta-
ble 4. Foundation models, which are trained on
large amounts of unlabeled data, demonstrate an
All True behavior. They accurately label as True
the majority of affirmative sentences and negative

W/o Distractor
Flan-T5-xxl Affirmation Negation

#01 Synonymy 91.19 98.04
#02 Antonymy 96.36 25.62
#03 Synonymy 49.76 98.47
#04 Antonymy 82.07 21.92

Vicuna13B

#01 Synonymy 88.69 84.88
#02 Antonymy 71.65 4.64
#03 Synonymy 57.86 90.05
#04 Antonymy 75.8 12.81

Table 5: Accuracy of Flan-T5-xxl and Vicuna13B in
the Synonymy and Antonymy patterns. We evaluate the
models in affirmative and negative sentences without
distractors. Scores that surpass the Random baseline are
indicated with underline.

sentences with a distractor, which are True with
the exception of the Antonymy patterns, that form
approximately 5% of the total sentences. How-
ever, these models struggle to classify negative sen-
tences and affirmative sentences with opposite la-
bels. Their performance in these falls significantly
below the random baseline exhibiting a total lack
of coherence by the models.

Models that have undergone dialogue or in-
struction tuning, particularly Vicuna and FlanT5,
demonstrate higher accuracy, instead. These mod-
els achieve a very high accuracy in sentences with-
out a distractor. Specifically, Flan-T5 shows coher-
ent answers for 46% of the triples. It is to be noted
that this is a challenging metric, as a triple may be
use to build up to 27 templates, and all of them
must be coherent for the triple to be considered
coherent.
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Model name
Coherence

Accuracy

All
W/o Distractor W/ Distractor

All W/o Distractor W/ Distractor Affirmation Negation Affirmation Negation

Flan-T5-xxl 51.8 55.4 92.9 94.1 96.5 86.7 96.1 98.0
Vicuna13B 81.2 86.4 94.2 95.7 92.7 94.4 98.1 97.2

Table 6: Performance of Vicuna13B and Flan-T5-xxl after fine-tuning in our dataset. The best results are highlighted
in bold, and scores that surpass the Random baseline accuracy are underlined.

However, these models fail to correctly label
negative sentences with a distractor. We further
analyze the performance of Flan-T5 and Vicuna in
negative sentences, focusing on the Synonymy and
Antonymy patterns. In Pattern #01 and #02, as well
as Pattern #03 and #04, the templates are opposite
to each other, as explained in Subsection 3.1. Table
5 presents the performance of Flan-T5 and Vicuna
in handling these patterns. Interestingly, both mod-
els achieve good results in negative sentences from
the Synonymy patterns (labeled as False) but strug-
gle with the negative sentences from the Antonymy
patterns (labeled as True). This, along with their
poor performance in negative sentences with a dis-
tractor (which are expected to be True, but models
predict the label False), confirms that the models
are heavily biased to always predict the label False
in the presence of negation, regardless of the actual
meaning of the sentence. This behavior suggests
that the models lack a deep understanding of nega-
tion, and that they tend to rely on superficial cues
rather than comprehending the true meaning con-
veyed by the negative sentences.

Despite the poor performance of the models in
negative sentences, it is important to note that they
demonstrate the ability to correctly label affirma-
tive sentences, both with and without distractors.
This demonstrates that the models have a deep un-
derstanding of truth and falsehood. Models’ strug-
gles primarily result from the presence of negation
rather than a lack of comprehension or real-world
knowledge.

6 Exposure to negation does not solve the
problem

Understanding whether LLMs would understand
negation if a sufficient number of negative sen-
tences were present in the pretraining corpora is
crucial for improving their reasoning capabilities
and addressing the limitations associated with neg-
ative knowledge. However, due to the lack of suf-

ficiently large datasets containing negative knowl-
edge, this hypothesis has not been extensively
explored. In contrast, our dataset is substantial
enough to be split into training, development, and
test sets. To investigate whether LLMs can learn
to reason over negative knowledge given enough
negated data, we split the dataset at the triple level,
ensuring that all sentences within a triple are as-
signed to the same split to ensure no data contami-
nation. Our training dataset consists of 268,505 sen-
tences from 2,876 triples, the development dataset
includes 2,514 sentences from 244 triples, and the
test dataset contains 90,281 sentences from 980
triples.

We finetune Flan-T5 and Vicuna on our dataset;
the results are listed in Table 6. The impact of fine-
tuning is remarkable, as it completely transforms
the models’ performance compared to their zero-
shot counterparts. Both Flan-T5 and Vicuna exhibit
higher accuracy than human annotators and achieve
a notably high level of coherence. However, are the
models truly learning about negation, or are they
just exploiting patterns in the data? We conduct
experiments to asses this.

First, we train Vicuna, the best performing
model, using varying amounts and types of neg-
ative knowledge. We conduct separate fine-tuning
experiments using all the affirmative sentences and
all the negative sentences from the dataset, result-
ing in two distinct models. The results of this train-
ing are presented in Table 7. Training the model
exclusively with affirmative sentences yields a high
accuracy in the affirmative test sentences, but it
labels incorrectly nearly all the negative sentences.
Conversely, when trained solely with negative sen-
tences, the model deals successfully with the neg-
ative sentences but struggles with the affirmative
sentences. Despite being exposed to extensive real-
world knowledge from WordNet, the models ex-
hibit a significant failure in comprehending nega-
tion. They consistently overlook the presence of it
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Verbal Non-Verbal Analytic synthetic clausal subclausal Affirmation

All 96.0 95.7 95.8 96.0 96.0 95.7 95.5

All Affirmations 6.2 6.8 6.8 5.9 6.1 6.8 95.7
All Negated 96.1 95.8 95.8 96.3 96.1 95.8 4.5

Affirmations + Verbal 95.5 79.5 81.9 95.6 95.5 79.5 95.4
Affirmations + Non-Verbal 94.9 95.6 95.2 96.1 94.9 95.6 95.8
Affirmations + Analytic 96.1 95.6 95.6 96.1 96.0 95.6 95.9
Affirmations + synthetic 94.8 44.5 51.8 96.0 94.9 44.5 95.6
Affirmations + clausal 95.8 34.6 43.9 96.0 96.1 34.6 95.8
Affirmations + subclausal 95.1 95.7 95.3 96.2 95.1 95.7 96.0

Table 7: Accuracy of Vicuna13B after fine-tuning with different types and amount of negative knowledge. The best
results are highlighted in bold, and scores that surpass the Random baseline accuracy are indicated with underline.

and generate identical outputs for both affirmative
and negative sentences. We also fine-tune mod-
els using various combinations of affirmative sen-
tences and different types of negations. We observe
that models trained with synthetic and clausal nega-
tions struggle to accurately classify non-verbal, an-
alytic, and sub-clausal sentences. This suggests
that while the models show proficiency in under-
standing and reasoning with certain types of nega-
tions, they face challenges in comprehending and
correctly responding to other forms of negations
that they have not seen in the fine-tuning step.
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85 79 84 95 77 84 92 90 88 91 91

97 94 98 100 93 94 90 96 91 88 95

Figure 2: Evaluation of Vicuna13B accuracy when
trained on one pattern (rows) and evaluated on the oth-
ers (columns).

We also fine-tune Vicuna13B with each of the 11
patterns in our dataset independently, and we eval-
uate its performance on the other patterns. Figure
2 shows the overall accuracy scores. The results
reveal that training the model with one pattern does
not facilitate any successful generalization across
all other patterns. Notably, as discussed in Sec-
tion 3.1, the labels for affirmative and negative
sentences from the Antonymy patterns are opposite

to those from the remaining patterns. The fail-
ure of models trained in other patterns to label the
Antonymy patterns, as well as the failure of mod-
els trained in the Antonymy patterns to label other
patterns, suggest that the models are relying on
repetitive data structures that are not transferable
to different patterns, rather than truly understand-
ing the concept of negation. While exposure to
negation may contribute to achieving favorable re-
sults within a specific dataset, it does not lead to
a generalization on negation by the models. Nega-
tion continues to pose a significant challenge in the
field of Natural Language Processing and remains
an unsolved problem, requiring further research
and development.

7 Conclusion

Current LLMs are typically trained using next to-
ken or mask token prediction objectives, which
have proven effective for various NLP tasks. How-
ever, it remains an open issue understanding how
certainly a model models negation. Negation to-
kens, which intermittently appear in sentences,
hold little predictive importance for other tokens in
the sentence. As a result, there is limited negation
signal during language modeling training. Previ-
ous research has touched upon this issue but was
limited by small manually generated datasets. In
contrast, our study introduces the largest dataset to
date comprising negative sentences. This compre-
hensive dataset includes affirmative and negative
sentences with and without distractors, incorpo-
rating multiple types of relations and negations,
which help to encode the underlying mechanisms
for negation understanding. Through our analy-
sis, we reveal that current LLMs, both in zero-shot
settings and when fine-tuned with examples from
our dataset, exhibit a profound understanding of
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the truthfulness of affirmative sentences. However,
when it comes to negation, these models heav-
ily rely on superficial cues instead of generalizing
negation and these superficial cues are not transfer-
able across different negative sentences.

Negation remains a persistent and unsolved chal-
lenge in the field of NLP, demanding further re-
search to develop systems capable of effectively
handling it. Our dataset holds the potential to signif-
icantly contribute towards achieving this objective.
In our future work, we plan to explore advanced
reasoning paradigms, such as Chain-of-Thought,
with the aim of enhancing model performance on
our dataset. However, dealing properly with nega-
tion may also require novel neural architectures.

Limitations

The dataset contains a limited number of low-
quality sentences, which are discussed in Section
3.2. Through manual evaluation, we find that over
96% of the sentences are considered understand-
able and grammatically correct by at least one hu-
man annotator and their prediction of whether the
sentence is true or false matches the label in the
dataset. Hence, the presence of low-quality sen-
tences does not have a significant impact on the
evaluation results. On the other side, a majority
of sentences in the dataset are not plausible and
unlikely to be spoken by English speakers. This
feature provides a benefit by ensuring that the sen-
tences are improbable to be found in the LLM train-
ing corpus, thereby it prevents models from relying
solely on memorization to generate accurate re-
sponses.

All experiments were conducted by querying
the models for the probability of True and False
tokens. We did not explore more complex reason-
ing prompts, such as Chain of Thought. However,
as explained in Section 7, we believe that models
should be able to comprehend negation and provide
accurate answers across diverse settings. Complex
reasoning paradigms may not always be feasible in
real-world applications, specially when models are
used by non-NLP professionals.

Finally, the performance of models in our dataset
is not solely determined by their capability to un-
derstand negation. Factors such as performance in
question answering and prompting tasks, as well as
their understanding of real-world knowledge, play
a crucial role. However, models like Vicuna13B
and Flan-T5-xxl showcase remarkable proficiency

in correctly responding to affirmative sentences, in-
dicating that their struggles primarily arise from the
presence of negation. Additionally, we introduce a
coherence metric that considers whether the model
changes its prediction in the presence of negation,
rather than solely focusing on the accuracy of the
model’s answer to the question.

Ethics Statement

The dataset has been created through the English
WordNet relations, so it reflects most of the “west-
ern” knowledge and might fall short in including
concepts of non-English speaking communities.
The generated triples from WordNet may include
offensive or biased sentences. This can be caused
by inherited biases from WordNet, or it can be
caused unintentionally during the random sampling
of synsets.
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A Extended zero-shot results

Apart from the models presented in Section 5, as
anticipated, we have also tested the performance in
the task of the following models: Koala 4, which
is a LLaMA model that has been fine-tuned for
dialogue; Open-Assistant (oasst-sft-1-pythia-12b)
5, which is a Pythia model fine-tuned on human
generated assistant conversations; and INCITE 6 7
billion foundation model along with the two mod-
els that have been further fine-tuned by the authors
in the instruction-tuning paradigm and chat con-
versation. Table 8 shows the extended evaluation
results.

B Efficient inference and training

To facilitate inference of the models on a single
GPU, we employed 8-bit quantization (Dettmers
et al., 2022) for all of them. We conducted prelimi-
nary experiments with Vicuna 13 billion parameter
model. Results are shown in Table 9. While the run-
ning cost of the models significantly decreases, we
observed only minimal performance degradation
in the quantified versions.

For the training process, we utilized Low-Rank
Adaptation (LoRA) (Hu et al., 2022). This ap-
proach involves freezing the weights of the pre-

4https://bair.berkeley.edu/blog/2023/04/03/
koala/

5https://huggingface.co/OpenAssistant/
oasst-sft-1-pythia-12b

6https://www.together.xyz/blog/redpajama-7b
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Model name Model Type Coherence Accuracy

All W/o Distractor W/ Distractor

All W/o Distractor W/ Distractor Affirmation Negation Affirmation Negation

Random - 0.5 0.9 0.8 50.0 50.2 50.1 50.0 49.9

LLaMA7B Foundation 0.0 0.2 0.0 50.4 95.7 11.8 2.3 91.0
LLaMA13B Foundation 0.0 0.2 0.3 50.1 85.8 12.2 10.6 90.2
LLaMA30B Foundation 0.1 0.3 0.2 52.4 84.7 29.5 30.2 68.8
LLaMA65B Foundation 0.0 0.0 0.0 50.3 96.3 3.1 1.3 99.3
Vicuna7B Dialogue 0.0 0.2 0.0 52.4 18.1 96.9 98.9 0.3
Vicuna13B Dialogue 0.2 8.8 0.6 57.8 83.1 85.1 78.0 2.6
Koala7B Dialogue 0.0 0.0 0.0 50.1 5.4 97.2 99.5 0.3
Koala13B Dialogue 0.0 0.7 0.0 52.8 20.4 97.1 98.8 0.3
WizardLM7B Instruction 0.2 0.2 0.7 51.0 89.6 27.3 14.2 73.8
WizardLM13B Instruction 0.0 4.3 0.3 57.4 68.7 86.2 87.5 2.9
WizardLM30B Instruction 0.0 6.0 0.1 57.3 53.6 95.7 88.8 2.0
WizardLM7B-uncensored Instruction 0.0 1.0 0.1 53.7 63.4 78.4 63.3 17.5
WizardLM13B-uncensored Instruction 0.0 0.3 0.0 50.5 7.6 97.0 99.3 0.3
WizardLM30B-uncensored Instruction 0.0 0.0 0.0 49.8 3.6 97.2 99.6 0.2

Pythia12B Foundation 0.0 0.1 0.0 50.1 93.8 15.2 4.0 86.7
oasst-pythia12B DIalogue 0.0 0.0 0.0 49.8 4.7 97.1 98.9 0.3
Dolly12B Instruction 0.0 0.3 0.2 50.2 72.0 73.3 33.4 25.1

T5-xxl Foundation 0.0 0.0 0.0 50.3 96.6 2.8 0.4 99.8
Flan-T5-xxl Instruction 0.9 46.4 1.2 66.1 86.1 96.1 94.6 6.2

Falcon7b Foundation 0.0 0.0 0.0 50.3 96.6 2.9 0.4 99.7
Falcon7b-instruct Instruction 0.0 0.3 0.4 50.1 82.7 20.9 21.2 77.0
Falcon40b Foundation 0.1 0.1 0.2 49.7 90.9 13.9 11.6 83.3
Falcon40b-instruct Instruction 0.1 1.5 0.2 54.7 64.3 76.8 71.4 16.6

INCITE7B-Base Foundation 0.1 0.3 0.1 50.3 82.6 17.0 16.4 84.5
INCITE7B-Instruct Instruction 0.2 0.4 0.4 50.5 73.4 22.5 26.9 78.7
INCITE7B-Chat Dialogue 0.1 0.3 0.2 50.0 19.8 89.4 88.0 6.0

Table 8: Zero-shot performance of various LLMs in our dataset. The best results are highlighted in bold, and scores
that surpass the Random baseline accuracy are indicated with underline.

Model name Precision Coherence Accuracy

All W/o Distractor W/ Distractor

All W/o Distractor W/ Distractor Affirmation Negation Affirmation Negation

Vicuna13B 8-Bits 0.2 8.8 0.6 57.8 83.1 85.1 78.0 2.6
Vicuna13B Float16 0.4 10.1 1.1 57.8 84.4 85.8 74.7 3.2

Table 9: Zero-shot performance of Vicuna using 8-Bits quantification and the orifinal float16 weights. The best
results are highlighted in bold, and scores that surpass the Random baseline are indicated with underline.

trained model and introducing trainable rank de-
composition matrices into each layer. The frozen
model weights are quantized into 8 bits, while
the LoRA trainable weights remain in 16 bits
(Dettmers et al., 2023). By adopting this efficient
training paradigm, we were able to train LLMs
with up to 13 billion parameters on a single GPU
within a reasonable timeframe.

We perform all our experiments using a single
NVIDIA A100 GPU with 80GB memory. The
machine used has two AMD EPYC 7513 32-Core
Processors and 1024GB of RAM.

C Dataset construction: selection of
distractors

The automatic creation of false knowledge (dis-
tracting triples) on the basis of WordNet triples
requires the use of distractors. In general, distrac-

Pattern W/o Distractor W/ Distractor
Affirmation Negation Affirmation Negation

#01 True False False True
#02 False True False True
#03 True False False True
#04 False True False True
#05 True False False True
#06 True False False True
#07 True False False True
#08 True False False True
#09 True False False True
#10 True False False True
#11 True False False True

Table 10: Truth-value of resulting sentences by pattern.

tors are randomly selected words that replace the
word senses of a synset in a given triple, although
the whole synset is replaced when using glosses in
templates (Patterns #01 and #02). For each Word-
Net triple, we use a single distracting triple except
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for Patterns #02, #03 and #04, where we use two
distracting triples obtained by using one distractor
per synset. Apart from BLCs, for the selection of
suitable distractors we consider the lexicographer
files provided by WordNet, which are 45 syntactic
category and logical groupings of word senses, and
WordNet Domains, which consist of a hierarchy of
164 labels that characterize knowledge areas and to
which each synset is connected. More concretely:

• Words (synsets in the case of Pattern #01 and
#02 when using glosses) belonging to some
BLCs cannot be distractors to ensure that se-
lected words (synsets) are not too general.

• The combined lexicographer file and Word-
Net Domain annotation of any word sense of
the given synset and of any synset where the
distractor occurs (of the synset in the case of
Pattern #01 and #02 when using glosses) have
to be different.

In general, these restrictions ensure that the result-
ing false triples do not encode true knowledge. The
probability of choosing a synset as distractor is di-
rectly proportional to the logarithm of its frequency.

For example, wood can be used as distractor
of expenditure1n because wood belongs to the
lexicographer files noun.substance (nouns denot-
ing cognitive processes and contents), noun.group
(nouns denoting groupings of people or ob-
jects) and noun.artifact (nouns denoting man-
made objects) while expenditure belongs to
noun.possession (nouns denoting possession and
transfer of possession) and noun.act (nouns de-
noting acts or actions). Therefore, we get
the distracting triple ⟨ant, wood, income1n⟩ from
⟨ant, expenditure1n , income1n⟩. On the contrary,
the word registration cannot be used as distractor
of expenditure1n as both words belong to the lexico-
graphic file noun.act and the synsets expenditure2n
and registration1

n belong to the economy domain.

D Dataset Description

In Table 10, we provide the truth-value of sentences
that results by instantiating affirmative and negative
templates using WordNet and distracting triples ac-
cording to the pattern. In the following subsections,
we describe each pattern and provide some exam-
ples that are used in Figures 3–8 to illustrate the
instantiation of a sample of the templates. In all the
templates described in Figures 3–8, alternative and

optional expressions are enclosed respectively in
square brackets and parentheses.

D.1 Pattern #01: synonymy (gloss)

This pattern includes 21 templates stating semantic
equivalence correspondences between a word and
the gloss of a synset to which the word belongs.
Since WordNet does not provide triples for syn-
onymy relating two synsets, we get triples relating
each synset to itself by reflexivity. For each re-
sulting triple, templates are also instantiated using
one distracting triple that is obtained by replacing
the third component of each triple with a distractor
(synset).

In Figure 3, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset fligth9

n with gloss “a scheduled trip by
plane between designated airports” and the distrac-
tor troop1n (“a group of soldiers”).

D.2 Pattern #02: antonymy (gloss)

This pattern includes 21 templates stating semantic
equivalence correspondences between a word and
the gloss of an antonym synset, where the word and
the gloss are respectively taken from the second
and third component of triples. Furthermore, for
each WordNet antonymy triple templates are also
instantiated using two distracting triples that are
respectively obtained by replacing the second and
third component with distractors (for the third one,
the distractor is a synset).

In Figure 3, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the antonym synsets brother1n and sister1n (“a fe-
male person who has the same parents as another
person”) and the distractors stream and fiction1

n

(“a literary work based on the imagination and not
necessarily on fact”).

D.3 Pattern #03: synonymy

This pattern includes 24 templates stating seman-
tic equivalence correspondences between words.
Since WordNet does not provide triples for syn-
onymy relating two synsets, we get triples relating
each synset to itself by reflexivity. For each re-
sulting triple, templates are also instantiated using
two distracting triples that are respectively obtained
by replacing the second and third component with
distractors.

In Figure 4, we introduce a positive and a nega-
tive template and illustrate their instantiation using
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the synonym words path and route and the distrac-
tors engine and identity.

D.4 Pattern #04: antonymy

This pattern includes 24 templates stating semantic
equivalence correspondences between words. For
each WordNet antonymy triple, templates are also
instantiated using two distracting triples that are
respectively obtained by replacing the second and
third component with distractors.

In Figure 5, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the antonym synsets expenditure1n and income1n
and the distractors wood and year.

D.5 Pattern #05: hypernymy

This pattern includes 24 templates stating semantic
subsumption correspondences between words. For
each WordNet hypernymy triple, templates are also
instantiated using one distracting triple that is ob-
tained by replacing the hyponym with a distractor.

In Figure 5, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset auction1

n , which is hyponym of sale2n ,
and the distractor breakdown.

D.6 Pattern #06: meronymy (part)

This pattern includes 16 templates stating semantic
correspondences between parts and wholes. For
each WordNet triple, templates are also instanti-
ated using one distracting triple that is obtained by
replacing the whole with a distractor.

In Figure 6, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset week3n , which is related by part with
month1

n , and the distractor fence.

D.7 Pattern #07: meronymy (substance)

This pattern includes 15 templates stating semantic
correspondences between substances and things.
For each WordNet triple, templates are also instan-
tiated using one distracting triple that is obtained
by replacing the whole with a distractor.

In Figure 6, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset sand1

n , which is related by substance
with beach1

n , and the distractor decade.

D.8 Pattern #08: meronymy (member)

This pattern includes 17 templates stating seman-
tic correspondences between members and groups.

For each WordNet triple, templates are also instan-
tiated using one distracting triple that is obtained
by replacing the group with a distractor.

In Figure 7, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset voter1n , which is related by member with
electorate1n , and the distractor sport.

D.9 Pattern #09: semantic role (agent)
This pattern includes 2 templates stating semantic
correspondences between agents and events. For
each WordNet triple, templates are also instanti-
ated using one distracting triple that is obtained by
replacing the agent with a distractor.

In Figure 7, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset rule1n , which is related by agent with
governor1n , and the distractor hole.

D.10 Pattern #10: semantic role (instrument)
This pattern includes 7 templates stating semantic
correspondences between instruments and events.
For each WordNet triple, templates are also instan-
tiated using one distracting triple that is obtained
by replacing the event with a distractor.

In Figure 8, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset telephone1n , which is related by instru-
ment with call3v , and the distractor lay.

D.11 Pattern #11: semantic role (result)
This pattern includes 27 templates stating semantic
correspondences between results and events. For
each WordNet triple, templates are also instanti-
ated using one distracting triple that is obtained by
replacing the event with a distractor.

In Figure 8, we introduce a positive and a nega-
tive template and illustrate their instantiation using
the synset response1n , which is related by result
with answer1v , and the distractor dress.
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Pattern #01: synonymy (gloss)

Affirmative template:

A/An ⟨word⟩ is (commonly) ⟨gloss⟩.

Sentences:
A flight is commonly a scheduled trip by plane between designated airports. True

A flight is a scheduled trip by plane between designated airports. True

A flight is commonly a group of soldiers. False

A flight is a group of soldiers. False

Negative template (verbal, analytic and clausal):

A/An ⟨word⟩ is not ⟨gloss⟩.

Sentences:
A flight is not a group of soldiers. True

A flight is not a scheduled trip by plane between designated airports. False

Pattern #02: antonymy (gloss)

Affirmative template:

⟨word⟩ (commonly) [ stands for | refers to ] ⟨gloss⟩.

Sentences:
Brother commonly stands for a female person who has the same parents as another person. False

Brother commonly refers to a female person who has the same parents as another person. False

Brother stands for a female person who has the same parents as another person. False

Brother refers to a female person who has the same parents as another person. False

Stream commonly stands for a female person who has the same parents as another person. False

Stream commonly refers to a female person who has the same parents as another person. False

Stream stands for a female person who has the same parents as another person. False

Stream refers to a female person who has the same parents as another person. False

Brother commonly stands for a literary work based on the imagination and not necessarily on fact. False

Brother commonly refers to a literary work based on the imagination and not necessarily on fact. False

Brother stands for a literary work based on the imagination and not necessarily on fact. False

Brother refers to a literary work based on the imagination and not necessarily on fact. False

Negative template (synthetic and subclausal):

A/An ⟨word⟩ is never ⟨gloss⟩.

Sentences:
A brother is never a female person who has the same parents as another person. True

A stream is never a female person who has the same parents as another person. True

A brother is never a literary work based on the imagination and not necessarily on fact. True

Figure 3: Description of Patterns #01 and #02.
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Pattern #03: synonymy

Affirmative template:

⟨noun1+(e)s⟩ and ⟨noun2+(e)s⟩ [ are | may be ] always different.

Sentences:
Path and route are always different. False

Path and route may be always different. False

Engine and route are always different. True

Engine and route may be always different. True

Path and identity are always different. True

Path and identity may be always different. True

Negative template (verbal, analytic and subclausal):

⟨noun1+(e)s⟩ and ⟨noun2+(e)s⟩ [ are not | may not be ] synonyms in any context.

Sentences:
Path and route are not synonyms in any context. False

Path and route may not be synonyms in any context. False

Engine and route are not synonyms in any context. True

Engine and route may not be synonyms in any context. True

Path and identity are not synonyms in any context. True

Path and identity may not be synonyms in any context. True

Figure 4: Description of Pattern #03.
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Pattern #04: antonymy

Affirmative template:

⟨noun1+(e)s⟩ and ⟨noun2+(e)s⟩ [ are | may be ] synonyms (in certain contexts).

Sentences:
Expenditure and income are synonyms in certain contexts. False

Expenditure and income may be synonyms in certain contexts. False

Expenditure and income are synonyms. False

Expenditure and income may be synonyms. False

Expenditure and year are synonyms in certain contexts. False

Expenditure and year may be synonyms in certain contexts. False

Expenditure and year are synonyms. False

Expenditure and year may be synonyms. False

Wood and income are synonyms in certain contexts. False

Wood and income may be synonyms in certain contexts. False

Wood and income are synonyms. False

Wood and income may be synonyms. False

Negative template (analytic and subclausal):

⟨noun1+(e)s⟩ and ⟨noun2+(e)s⟩ [ are | may be ] the same thing in no context.

Sentences:
Expenditure and income are the same thing in no context. True

Expenditure and income may be the same thing in no context. True

Expenditure and year are the same thing in no context. True

Expenditure and year may be the same thing in no context. True

Wood and income are the same thing in no context. True

Wood and income may be the same thing in no context. True

Pattern #05: hypernymy

Affirmative template:

A/An ⟨hyponym⟩ [ is | may be ] a/an ⟨hypernym⟩ in certain contexts.

Sentences:
An auction is a sale in certain contexts. True

An auction may be a sale in certain contexts. True

A breakdwon is a sale in certain contexts. False

A breakdown may be a sale in certain contexts. False

Negative template (synthetic and subclausal):

A/An ⟨hyponym⟩ is never a/an ⟨hypernym⟩.

Sentences:
An auction is never a sale. False

A breakdown is never a sale. True

Figure 5: Description of Patterns #04 and #05.
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Pattern #06: meronymy (part)

Affirmative template:

A/An ⟨part⟩ [ is commonly | may be ] part of a/an ⟨whole⟩.

Sentences:
A week is commonly part of a month. True

A week may be part of a month. True

A week is commonly part of a fence. False

A week may be part of a fence. False

Negative template (synthetic and subclausal):

A/An ⟨part⟩ is never part of a/an ⟨whole⟩.

Sentences:
A week is never part of a month. False

A week is never part of a fence. True

Pattern #07: meronymy (substance)

Affirmative template:

⟨thing + (e)s⟩ [ are commonly | may be ] made of ⟨substance⟩.

Sentences:
Beaches are commonly made of sand. True

Beaches may be made of sand. True

Decades are commonly made of sand. False

Decades may be made of sand. False

Negative template (Analytic and subclausal):

In no context ⟨thing + (e)s⟩ [ are |may be ] made of ⟨substance⟩.

Sentences:
In no context beaches are made of sand. False

In no context decades are made of sand. True

Figure 6: Description of Patterns #06 and #07.
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Pattern #08: meronymy (member)

Affirmative template:

⟨member + (e)s⟩ [ are | may be ] members of ⟨group+ (e)s⟩.

Sentences:
Voters are members of electorates. True

Voters may be members of electorates. True

Voters are members of sports. Falses

Voters may be members of sports. False

Negative template (verbal, analytic and clausal):

⟨member + (e)s⟩ [ are not | may not be ] members of ⟨group+ (e)s⟩ in any context.

Sentences:
Voters are not members of electorates in any context. False

Voters may not be members of electorates in any context. False

Voters are not members of sports in any context. True

Voters may not be members of sports in any context. True

Pattern #09: semantic role (agent)

Affirmative template:

⟨event+ ing⟩ is commonly done by ⟨agent+ (e)s⟩.

Sentences:
Ruling is commonly done by governors. True

Ruling is commonly done by holes. False

Negative template (Verbal, analytic and clausal):

⟨event+ ing⟩ is not commonly done by ⟨agent+ (e)s⟩.

Sentences:
Ruling is not commonly done by governors. False

Ruling is not commonly done by holes. True

Figure 7: Description of Patterns #08 and #09.
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Pattern #10: semantic role (instrument)

Affirmative template:

A/An ⟨instrument⟩ [ is commonly | may be ] [ used | needed ] for ⟨event+ ing⟩.

Sentences:
A telephone is commonly used for calling. True

A telephone is commonly needed for calling. True

A telephone may be used for calling. True

A telephone may be needed for calling. True

A telephone is commonly used for laying. False

A telephone is commonly needed for laying. False

A telephone may be used for laying. False

A telephone may be needed for laying. False

Negative template (Synthetic and subclausal):

A/An ⟨instrument⟩ should never be [ used | needed ] for ⟨event+ ing⟩.

Sentences:
A telephone should never be used for calling. False

A telephone should never be used for laying. True

Pattern #11: semantic role (result)

Affirmative template:

⟨event+ ing⟩ [ commonly leads | may lead ] to a/an ⟨result⟩.

Sentences:
Answering commonly leads to a response. True

Answering may lead to a response. True

Dressing commonly leads to a response. False

Dressing may lead to a response. False

Negative template (analytic and subclausal):

⟨event+ ing⟩ [ leads | may lead ] to a/an ⟨result⟩ in no context.

Sentences:
Answering leads to a response in no context. False

Answering may lead to a response in no context. False

Answering leads to a response in no context. True

Answering may lead to a response in no context. True

Figure 8: Description of Patterns #10 and #11.
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