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Abstract

Although large language models (LLMs) are
impressive in solving various tasks, they can
quickly be outdated after deployment. Main-
taining their up-to-date status is a pressing con-
cern in the current era. This paper provides
a comprehensive review of recent advances in
aligning LLMs with the ever-changing world
knowledge without re-training from scratch.
We categorize research works systemically and
provide in-depth comparisons and discussion.
We also discuss existing challenges and high-
light future directions to facilitate research in
this field 1.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Chowdhery et al.,
2022; Zhang et al., 2022; OpenAI, 2023b; Tou-
vron et al., 2023; Anil et al., 2023) trained on mas-
sive corpora from various sources (e.g., Wikipedia,
Books, Github) implicitly store enormous amounts
of world knowledge in their parameters (Petroni
et al., 2019; Roberts et al., 2020; Jiang et al., 2020),
enabling them to act as versatile foundation models
for performing various natural language process-
ing (NLP) tasks directly through in-context learn-
ing (Liu et al., 2023b; OpenAI, 2023b; Bubeck
et al., 2023; Kamalloo et al., 2023) or for further
fine-tuning for domain-specific uses (Singhal et al.,
2022; Google, 2023; Liu and Low, 2023).

Despite their impressive performance, LLMs are
static after deployment, and there is no mechanism
to update themselves or adapt to a changing envi-
ronment (Kasai et al., 2022; Bubeck et al., 2023).
Our world, however, is dynamic and constantly
evolving. As shown in Fig.1, the static nature of
trained LLMs makes the memorized knowledge

*Equal contribution
1We release the paper list at https://github.com/

hyintell/awesome-refreshing-llms and will periodically
update it.
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Figure 1: A trained LLM is static and can be out-
dated (e.g., ChatGPT; OpenAI 2022). How can LLMs
be aligned to the ever-changing world knowledge effi-
ciently and effectively?

quickly obsolete, which often causes hallucinations,
rendering them unreliable for knowledge-intensive
tasks (Lazaridou et al., 2022; Luu et al., 2022; Ji
et al., 2023; Si et al., 2023). In the era of LLMs,
ensuring their alignment with the ever-changing
world knowledge and maintaining their up-to-date
status after deployment is a pressing concern be-
cause many users and downstream applications rely
on them. Unfortunately, simply re-training LLMs
with the latest information is infeasible due to pro-
hibitive costs (Patterson et al., 2021).

Intuitively, to update an LLM, one can either
replace the obsolete knowledge stored implicitly
in the model with new ones by modifying its pa-
rameters, or override the outdated model outputs
using new information explicitly retrieved from the
world. Tremendous work has been proposed in
the literature to implicitly or explicitly refresh de-
ployed LLMs; however, these approaches, scat-
tered among various tasks, have not been systemat-
ically reviewed and analyzed.

In this review, we survey the recent compelling
advances in aligning deployed LLMs with the ever-
changing world knowledge. We categorize research
works systemically and highlight representative
approaches in each category (§2) and provide in-
depth comparison with discussion for insights (§3).
Lastly, we discuss potential future directions to

8289

https://github.com/hyintell/awesome-refreshing-llms
https://github.com/hyintell/awesome-refreshing-llms


LLMs align with
ever-changing

world knowledge

Implicit
(§2.1)

Knowledge
Editing

Meta-learning Editable Training (Sinitsin et al., 2020), RECKONING (Chen et al., 2023c)

Hypernetwork
Editor

KnowledgeEditor (De Cao et al., 2021), MEND (Mitchell et al., 2022a), SLAG (Hase et al.,
2023b), REMEDI (Hernandez et al., 2023), Distillation (Padmanabhan et al., 2023)

Locate
and edit

Knowledge Neurons (Dai et al., 2022), ROME (Meng et al., 2022a), MEMIT (Meng et al., 2023),
MEMITCSK (Gupta et al., 2023a), PMET (Li et al., 2023b), Chen et al. (2023b), Geva et al.
(2023), KLoB (Ju and Zhang, 2023)

Other
Eva-KELLM (Wu et al., 2023), RippleEdits (Cohen et al., 2023), Wang et al. (2023a), Xu et al.
(2023b), IKE (Zheng et al., 2023)

Continual
Learning

Continual
Pre-training

Regularization-
based

RecAdam (Chen et al., 2020), DSA (Ke et al., 2023)

Replay-based ELLE (Qin et al., 2022), CT0 (Scialom et al., 2022)

Architectural-
based

K-Adapter (Wang et al., 2021), ELLE (Qin et al., 2022), CKL (Jang et al.,
2022b), CPT (Ke et al., 2022), Lifelong-MoE (Chen et al., 2023a), Module-
Former (Shen et al., 2023)

Other
Lifelong Pre-training (Jin et al., 2022), CKL (Jang et al., 2022b), KILM (Xu
et al., 2023a), SeMem (Peng et al., 2023b), CaMeLS (Hu et al., 2023), Yu
and Ji (2023), Gupta et al. (2023b)

Continual
Knowledge

Editing

CMR (Lin et al., 2022), CL-plugin (Lee et al., 2022a), Transformer-Patcher (Huang et al., 2023),
GRACE (Hartvigsen et al., 2023)

Explicit
(§2.2)

Memory-
enhanced

Corpus or
Documents

kNN-LM (Khandelwal et al., 2020), AdaptRet (He et al., 2021a), RetoMaton (Alon et al., 2022),
Bhardwaj et al. (2022), kNN-prompt (Shi et al., 2022), SeMem (Peng et al., 2023b)

Feedback or
Corrections

FBNet (Tandon et al., 2022), MemPrompt (Madaan et al., 2022), TeachMe (Dalvi Mishra et al.,
2022), SERAC (Mitchell et al., 2022b), MeLLo (Zhong et al., 2023)

Retrieval-
enhanced

Single-Stage IC-Retrieval (Si et al., 2023), IC-RALM (Ram et al., 2023), AAR (Yu et al., 2023b), IKE (Zheng
et al., 2023), Adaptive Retrieval (Mallen et al., 2023), RePlug (Shi et al., 2023b)

Multi-Stage

IRCoT (Trivedi et al., 2022), RARR (Gao et al., 2023), Self-Ask (Press et al., 2023), DecomP
(Khot et al., 2023), ReAct (Yao et al., 2023a), ART (Paranjape et al., 2023), LLM-Augmenter
(Peng et al., 2023a), DSP (Khattab et al., 2023), Iter-RetGen (Shao et al., 2023), Knowledge
Solver (Feng et al., 2023)

Internet-
enhanced

Internet-Fewshot (Lazaridou et al., 2022), LLM-URL (Ziems et al., 2023), TaskMatrix.AI (Liang et al., 2023), MM-
REACT (Yang et al., 2023), Chameleon (Lu et al., 2023), ChatGPT Plugins (OpenAI, 2023a)

Figure 2: Taxonomy of methods to align LLMs with the ever-changing world knowledge (due to space limitation,
please refer to Appendix A.2 for a complete review). Implicit means the approaches seek to directly alter the
knowledge stored in LLMs (e.g., parameters) (§2.1), while Explicit means more often incorporating external
resources to override internal knowledge (e.g., search engine) (§2.2).

facilitate research in this field (§4).

Comparison with Related Work To the best of
our knowledge, surveys on this topic are scarce.
Closest to our work, AlKhamissi et al. (2022) re-
view pre-trained language models (LMs) as knowl-
edge bases (KBs) and review a set of aspects that
a LM should have to fully act as a KB; Cao et al.
(2023) further divide the life cycle of knowledge in
LLMs into five periods and survey how knowledge
circulates; Yao et al. (2023b) conduct an empiri-
cal analysis of existing knowledge editing meth-
ods. Despite partially overlapping with our dis-
cussion of knowledge editing in §2.1.1, they only
touch a subset of the scope that our survey stud-
ies and ignore other potentials in aligning LLMs
with the world knowledge. Mialon et al. (2023);
Wang et al. (2023b); Qin et al. (2023b) study aug-
mented, interactive, and tool learning of LLMs
respectively, which share different goals from ours.
Previous knowledge-enhanced LMs surveys (Zhu
et al., 2021; Wei et al., 2021; Yu et al., 2022; Yin
et al., 2022; Zhen et al., 2022) focus on injecting
knowledge into LMs, typically requiring modify-

ing the model’s architecture or re-training. Instead,
we focus on the potential of how deployed LLMs
capture the ever-changing world knowledge effec-
tively and efficiently without re-training. Wang
et al. (2023c) provide a comprehensive review of
forgetting in deep learning that is not limited to
continual learning. Pan et al. (2023) review poten-
tial approaches that unify knowledge graphs (KGs)
and LLMs. While structural knowledge, such as
KGs, can broadly be categorised as explicit knowl-
edge and augmented to LLMs for new knowledge,
KG is static after creation and can still be outdated
(Ji et al., 2022). New information or discoveries
not yet incorporated into KGs may lead to outdated
knowledge. However, how to efficiently update
KGs is out of the scope of this survey.

2 Taxonomy of Methods

Based on whether the method tends to directly al-
ter the knowledge stored implicitly in LLMs, or
leverage external resources to override the outdated
knowledge, we roughly categorize them as implicit
(§2.1) or explicit (§2.2) approaches. Fig.2 provides
a summary of representative works from each cate-
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gory (See Fig.6 in Appendix for a complete review).
Detailed descriptions of the methods can be found
in Appendix A.1.

2.1 Implicitly Align LLMs with World
Knowledge

Previous studies have shown that LLMs can implic-
itly memorize knowledge in their large number of
parameters after being pre-trained on massive cor-
pora (Petroni et al., 2019; Roberts et al., 2020; Jiang
et al., 2020; Singhal et al., 2022). To keep LLMs
up-to-date and align with the current world knowl-
edge, the straightforward way is to alter the model’s
behaviour from themselves to generate desired out-
puts. Naively, one can regularly re-train the model
from scratch or fine-tune the model with the lat-
est corpora to align with current world knowledge.
However, re-training is expensive and environmen-
tally unfriendly (Patterson et al., 2021), especially
in the era of LLMs with billions of parameters.
Fine-tuning without constraints may have a "but-
terfly effect" and affect other knowledge or skills
present in the model (Kirkpatrick et al., 2017; Li
et al., 2022; AlKhamissi et al., 2022). To cope with
this issue, this line of work aims to design better
strategies to modify the internal states of LLMs in
a more controllable and efficient way, which can
be categorized into knowledge editing (§2.1.1) and
continual learning (§2.1.2).

2.1.1 Knowledge Editing
Since tuning LLMs to learn new knowledge can be
prohibitively expensive (Patterson et al., 2021), re-
searchers seek efficient methods to directly update
more specific, localized, or fine-grained knowledge
that is preserved in LLMs (Mitchell et al., 2022a).
Knowledge editing (KE) is an arising and promis-
ing research area that aims to alter the parameters
of some specific knowledge stored in pre-trained
models so that the model can make new predictions
on those revised instances while keeping other irrel-
evant knowledge unchanged (Sinitsin et al., 2020;
De Cao et al., 2021; Mitchell et al., 2022a; Meng
et al., 2022a; Hase et al., 2023b; Meng et al., 2023).
In this section, we categorize existing methods into
meta-learning, hypernetwork, and locate-and-edit
-based methods.

Meta-learning. This line of work generally fo-
cuses on the intrinsic editability of the model itself,
aiming to modify the model parameters so that they
can be easily updated during inference (De Cao

et al., 2021; Mitchell et al., 2022a). Sinitsin et al.
(2020) propose a model-agnostic meta-learning-
based (Finn et al., 2017) method that trains neural
networks in a way that the trained parameters can
be easily edited afterwards. Chen et al. (2023c) in-
troduce a two-loop framework. In the inner training
loop, they employ a few gradient updates to enable
a pre-trained GPT-2 model (Radford et al., 2019)
to efficiently memorize external knowledge. Sub-
sequently, in the outer loop, the model parameters
are dynamically adjusted through optimal meta-
parameter learning to incorporate additional knowl-
edge that aids reasoning tasks.

Hypernetwork Editor. In contrast to pre-
modifying the pre-trained language model, an al-
ternative approach in the field involves training
extrinsic editors that update knowledge during test
time, thereby avoiding any modifications to the
base model. De Cao et al. (2021) reframe editing
the knowledge of a model as a learning-to-update
problem. Specifically, given a single data instance
that needs to be updated, their trained hypernet-
work (Ha et al., 2017) predicts a shift ∆θ such that
θ′ = θ + ∆θ, where θ is the original pre-trained
LM weights and θ′ is the updated weights. To keep
editing effective while being easy to scale to larger
LMs with billions of parameters, Mitchell et al.
(2022a) decompose weight updates into low-rank
components (Hu et al., 2022), thus making it possi-
ble to scale to LLMs. Orthogonal to Mitchell et al.
(2022a), Hase et al. (2023b) introduce a new train-
ing objective considering sequential, local, and gen-
eralizing model updates. Although scaled beyond
a single edit, their edit success rate significantly
degrades when performing larger edits simultane-
ously. Unlike the above methods that operate on
the model’s weight, Hernandez et al. (2023) per-
form edits on the representation level. Padmanab-
han et al. (2023) employ knowledge distillation to
transfer knowledge generated from a teacher model
to a student model.

Locate and Edit. Generally, this line of work
adopts the locate and edit pattern: they first iden-
tify the location of specific knowledge stored in the
model via different assumptions, then directly mod-
ify the weights or representations to update knowl-
edge. Inspired by the findings that feed-forward
networks (FFN) in Transformer (Vaswani et al.,
2017) are key-value memories (Geva et al., 2021),
Dai et al. (2022) introduce the knowledge neurons
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Figure 3: A high-level comparison of different approaches.

concept and propose a gradient-based knowledge
attribution method to identify these knowledge neu-
rons in FFNs. Further, without fine-tuning, they
directly modify the corresponding value slots (e.g.,
embeddings) in the located knowledge neurons and
successfully update or delete knowledge, demon-
strating a preliminary potential to edit knowledge
in LMs.

Different from Geva et al. (2021)’s per-neuron
view, Meng et al. (2022a) conduct casual tracing
analysis on GPT-2 and hypothesize that the Trans-
former MLP can be viewed as a linear associa-
tive memory. They verify their hypothesis by di-
rectly updating the middle-layer MLP weights with
a rank-one update (Bau et al., 2020). Following
Meng et al. (2022a)’s work, Meng et al. (2023)
propose a scalable multi-layer method to update an
LLM with thousands of facts simultaneously, sig-
nificantly improves editing efficiency while main-
taining generalization and specificity. Gupta et al.
(2023a) further adapt it to fix commonsense mis-
takes. Li et al. (2023b) find that Multi-Head Self-
Attention (MHSA) weights do not require updating
when introducing new knowledge. Based on this,
they propose precisely updating FFN weights by
simultaneously optimizing the Transformer compo-
nent hidden states of MHSA and FFN to memorize
target knowledge. Chen et al. (2023b) propose an
architecture-adapted multilingual integrated gradi-
ents method to localize knowledge neurons pre-
cisely across multiple architectures and languages.
Geva et al. (2023) analyze the internal recall pro-

cess of factual associations in auto-regressive LMs,
opening new research directions for knowledge lo-
calization and model editing.

Other. Wu et al. (2023) propose an evaluation
framework and dataset for measuring the effective-
ness of knowledge editing of LLMs, as well as the
ability to reason with the altered knowledge and
cross-lingual knowledge transfer. Similarly, Cohen
et al. (2023) evaluate the implications of an edit on
related facts and show that existing methods fail to
introduce consistent changes in the model’s knowl-
edge. Ju and Zhang (2023) propose an evaluation
benchmark for locate-and-edit-based methods, aim-
ing to reassess the validity of the locality hypothesis
of factual knowledge. Wang et al. (2023a) and Xu
et al. (2023b) take multilingual into account and
extend existing knowledge editing methods into
cross-lingual scenarios.

2.1.2 Continual Learning

Continual learning (CL) aims to enable a model to
learn from a continuous data stream across time
while reducing catastrophic forgetting of previously
acquired knowledge (Biesialska et al., 2020). With
CL, a deployed LLM has the potential to adapt to
the changing world without costly re-training from
scratch (Bubeck et al., 2023). In this section, we
introduce approaches that employ CL for aligning
LLMs with the current world knowledge, including
continual pre-training and continual knowledge
editing.
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Continual Pre-training. Unlike traditional con-
tinual learning, which sequentially fine-tunes a
pre-trained LM on some specific downstream
tasks (e.g., QA, text classification), continual pre-
training is used to further pre-train an LM to ac-
quire new knowledge, where the data corpus is
usually unsupervised (Gururangan et al., 2020; Ke
and Liu, 2023). Since our target is the versatile
foundation LLMs (e.g., GPT-4) that can be applied
to many different use cases rather than a fine-tuned
model designed for a specific task, we focus on the
literature on continual pre-training.

Early works (Gururangan et al., 2020; Röttger
and Pierrehumbert, 2021; Lazaridou et al., 2021;
Dhingra et al., 2022) empirically analyze continu-
ing LM pre-training on emerging domain or tem-
poral data, showing the potential to update the
base LM with new knowledge. Jang et al. (2022b)
explicitly categorize world knowledge as time-
invariant, outdated, and new knowledge, which
should be retained, acquired, and updated respec-
tively by an LM when learning continually. Jin
et al. (2022); Jang et al. (2022a,b) additionally im-
plement traditional CL methods to alleviate catas-
trophic forgetting, a phenomenon in which previ-
ously learned knowledge or abilities are degraded
due to overwritten parameters (Kirkpatrick et al.,
2017). Among the literature, CL methods can be
mainly categorized into 1 Regularization, 2 Re-
play, and 3 Architectural -based methods.

1 Regularization. To mitigate forgetting,
regularization-based methods apply regulations to
penalize the changes of the critical parameters
learned from previous data. Chen et al. (2020)
improve the traditional EWC (Kirkpatrick et al.,
2017) by recalling previously learned knowledge
through the pre-trained parameters, and the method
continually learns new information using a multi-
task learning objective. Ke et al. (2023) compute
the importance of each unit (i.e., attention head and
neuron) to the general knowledge in the LM us-
ing a proxy based on model robustness to preserve
learned knowledge. When continually learning new
domains, the approach prevents catastrophic for-
getting of the general and domain knowledge and
encourages knowledge transfer via soft-masking
and contrastive loss.

2 Replay. These methods generally reduce
forgetting by replaying previous training data when
learning new data. Assuming that the initial pre-
training corpus is available, He et al. (2021b) use

a gradual decay mix-ratio to adjust the quantity
of the pre-training corpus mixed in the new data
when learning sequentially. ELLE (Qin et al., 2022)
and CT0 (Scialom et al., 2022) also mix the old
data while learning new data. However, ELLE
starts the pre-training from a newly initialized and
relatively small BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018), while CT0 continues
learning from T0-3B (Sanh et al., 2022), a pre-
trained and instruction-tuned model.

3 Architectural. These methods typically al-
leviate forgetting by using different subsets of pa-
rameters for distinct tasks or domains. Wang et al.
(2021); Hu et al. (2022); Ke et al. (2022) freeze
the original parameters of the LM to preserve the
learned knowledge and add lightweight tunable pa-
rameters for continually learning new knowledge.
Wang et al. (2021) add separate adapters (Houlsby
et al., 2019) for each new task, while Ke et al.
(2022) let all domains share adapters and employ
task masks to protect critical neurons from being
updated. DEMix-DAPT (Gururangan et al., 2022)
replaces every FFN layer in Transformer with a
separate domain expert mixture layer, containing
one expert per domain. When learning new knowl-
edge, they only train the newly added expert in
each DEMix layer while fixing all other experts.
Similarly, Lifelong-MoE (Chen et al., 2023a) pro-
gressively expands experts to increase model ca-
pacity for learning new knowledge, and mitigates
forgetting by freezing previously trained experts
and gatings with output-level regularization. Qin
et al. (2022) enlarge the model’s width and depth
to attain learning efficiency and employ memory
replay to reduce forgetting.

4 Other Methods. Hu et al. (2023) meta-trains
an importance-weighting model to reweight the per-
token loss of the continual data stream, intending to
quickly adapt the base LM to new knowledge. Peng
et al. (2023b) apply kNN-LM (Khandelwal et al.,
2020) to continual learning from streaming data
and selectively store hard cases in a non-parametric
memory, significantly improving the data-wise and
model-wise scalability. Yu and Ji (2023) assess
self-information-update in LLMs via CL and miti-
gate exposure bias by incorporating the selection
of relevant facts into training losses.

Continual Knowledge Editing. Lin et al. (2022);
Lee et al. (2022a); Huang et al. (2023) and
Hartvigsen et al. (2023) propose a more realistic
setting that a deployed LM should be constantly
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Category Representative Method Base LM LM Params Augmentation No
Training

Black
-box

MEND (Mitchell et al., 2022a) T5 (11B) � auxiliary model ✗ ✗

ROME (Meng et al., 2022a) GPT-J (6B) \ – ✔ ✗

CaliNET (Dong et al., 2022) T5 (0.7B) � +params ✗ ✗

MEMIT (Meng et al., 2023) GPT-NeoX (20B) \ – ✔ ✗

K-Adapter (Wang et al., 2021) RoBERTa (0.3B) � +params ✗ ✗

CT0 (Scialom et al., 2022) T0 (3B) \ memory ✗ ✗

DSA (Ke et al., 2023) RoBERTa (0.1B) \ – ✗ ✗

MemPrompt (Madaan et al., 2022) GPT-3 (175B) � memory+retriever ✔ ✔

SERAC (Mitchell et al., 2022b) T5 (0.7B) �
memory

+auxiliary model ✗ ✔

MeLLo (Zhong et al., 2023) GPT-3.5 (175B) � memory+retriever ✔ ✔

IRCoT (Trivedi et al., 2022) GPT-3.5 (175B) � retriever ✔ ✔

RARR (Gao et al., 2023) PaLM (540B) �
search engine

+auxiliary model ✔ ✔

DecomP (Khot et al., 2023) GPT-3 (175B) � retriever ✔ ✔

ReAct (Yao et al., 2023a) PaLM (540B) � search engine ✔ ✔

FLARE (Jiang et al., 2023) GPT-3.5 (175B) � retriever/search engine ✔ ✔

Lazaridou et al. (2022) Gopher (280B) � search engine ✔ ✔

CRITIC (Gou et al., 2023) GPT-3.5 (175B) � various tools ✔ ✔

Chameleon (Lu et al., 2023) GPT-4 (?B) � various tools ✔ ✔

Knowledge Editing

Continual Learning

Memory-enhanced

Retrieval-enhanced

Internet-enhanced

Table 1: Comparison between representative methods (refer to Appendix A.2 for a complete review). \ means the
parameters of the original LM are modified, while � means they are unchanged; Augmentation means additional
components used; No Training indicates the method does not require additional training; Black-box refers to
whether the method suits non-publicly available models (e.g., no model architecture, parameters, activations, or
gradients are available).

corrected to fix its prediction errors, showing the
potential to align the model with the latest world
knowledge. Lin et al. (2022) benchmark the con-
tinual model refinement problem by implementing
traditional CL methods. Lee et al. (2022a) and
Hartvigsen et al. (2023) freeze the LM’s original
parameters and continually introduce trainable neu-
rons to the FFN layer to rectify problematic model
behaviors. In contrast, Hartvigsen et al. (2023)
learn to cache a chosen layer’s activations in a
key-value-based codebook and retrieve activations
when previous similar edits have been performed.
Without influencing unrelated inputs, it can effi-
ciently edit the model thousands of times in a row
while generalizing edits to previously unseen in-
puts.

2.2 Explicitly Align LLMs with World
Knowledge

Although altering the knowledge implicitly stored
in LLMs has shown to be effective (Jang et al.,
2022b; Meng et al., 2023), it remains unclear
whether it will affect the models’ general abilities
due to the complexity of neural networks. In con-
trast, explicitly augmenting LLMs with the latest
information retrieved from various sources can ef-
fectively adapt the models to new world knowledge
without affecting the original LLMs (Mialon et al.,
2023). However, previous retrieval-augmented

methods (Karpukhin et al., 2020; Guu et al., 2020;
Lewis et al., 2020; Izacard et al., 2022; Borgeaud
et al., 2022; Jiang et al., 2022; Kaur et al., 2022)
usually jointly train a retriever and an LM in an end-
to-end fashion, making it challenging to apply to a
deployed LLM (e.g., GPT-3). Recently, researchers
have focused on equipping a fixed LLM with ex-
ternal memory (memory-enhanced; §2.2.1), an off-
the-shelf retriever (retrieval-enhanced; §2.2.2), or
Internet (Internet-enhanced; §2.2.3) to cope with
this issue.

2.2.1 Memory-enhanced Methods

Pairing a static LLM with a growing non-
parametric memory enables it to capture informa-
tion beyond its memorized knowledge during infer-
ence (Wu et al., 2022). The external memory can
store a recent corpus or feedback that contains new
information to guide the model generation.

Storing Corpus or Documents. kNN-LM
(Khandelwal et al., 2020) stores every <context,
token> as key-value pairs from a corpus in mem-
ory. During inference, it calculates the probabil-
ity of the next token by interpolating a fixed LM
with a distribution retrieved from the k nearest to-
kens in the memory. Following this vein, He et al.
(2021a); Drozdov et al. (2022); Alon et al. (2022)
improve the efficiency of kNN-LM by skipping
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Figure 4: Single-Stage (left) typically retrieves once,
while Multi-Stage (right) involves multiple retrievals
or revisions to solve complex questions (§2.2.2).

unnecessary retrieval. Meng et al. (2022b) build
an additional graph neural network to aggregate
information from the retrieved context for better
generation. Peng et al. (2023b) improve the scal-
ability of kNN-LM for continual learning, while
Shi et al. (2022) apply it for zero-shot inference on
downstream tasks.

Storing Feedback or Corrections. Inspired by
the fact that humans can learn from past mistakes,
this line of work stores user feedback in memory to
fix the model’s problematic predictions and avoids
similar errors in the future. By querying the mem-
ory, the base LLM gains editability to update its
outdated knowledge. Kassner et al. (2021); Tandon
et al. (2022) train an auxiliary corrector to apply
feedback to repair the model output. Dalvi Mishra
et al. (2022) allow users to interact with the system
to check its facts and reasoning and correct it when
it is wrong. Similarly, Madaan et al. (2022) equip
GPT-3 with a growing memory, where the key is
a misunderstanding question, and the value is the
corrective feedback. Instead of storing user feed-
back, Mitchell et al. (2022b); Zhong et al. (2023)
explicitly preserve updated knowledge in memory.
Given an input, Mitchell et al. (2022b) first apply a
classifier to determine if a relevant edit exists in the
memory and perform knowledge updating through
a counterfactual model. Conversely, Zhong et al.
(2023) decompose complex questions and ask the
base model to generate a temporary answer. They
revise the model output when the generated answer
contradicts the retrieved facts from memory.

2.2.2 Retrieval-enhanced Methods
Leveraging an off-the-shelf retriever and the in-
context learning ability of LLMs (Brown et al.,

2020), this line of work designs better retrieval
strategies to incorporate world knowledge into a
fixed LLM through prompting, which can be di-
vided into single-stage and multi-stage (Fig.4).

Single-Stage. To ground the model with external
knowledge during generation, Ram et al. (2023); Si
et al. (2023) adopt zero-shot and few-shot retrieval
respectively and directly prepend the retrieved doc-
uments to the input without changing the base LLM.
Zheng et al. (2023) retrieve similar edit demon-
strations for each input and perform in-context
knowledge editing. Compared with gradient-based
knowledge editing (§2.1.1), they have competitive
editing performance with fewer side effects. Ar-
guing that the general-purpose retrievers could be
sub-optimal, Yu et al. (2023b) adopt a small source
LM to provide LM-preferred signals to train an
adaptive retriever. Mallen et al. (2023) employ a
heuristic based on entity popularity and only re-
trieve relevant context when the input questions are
less popular, which improves performance and re-
duces inference costs. Unlike above, to address the
limited model’s context length, Shi et al. (2023b)
prepend each retrieved document separately to an
LLM and then ensemble output probabilities from
different passes.

Multi-Stage. When solving complex questions,
retrieving information only once based on the in-
put is often inadequate. This branch of work aims
to transform single-stage retrieval into multi-stage
retrieval in order to solve complex tasks, usually
by leveraging reasoning. Trivedi et al. (2022) inter-
leave knowledge retrieval with chain-of-thoughts
(CoT; Wei et al. 2022) generation to solve complex
multi-step reasoning questions. Similarly, Press
et al. (2023); Khot et al. (2023); Yao et al. (2023a);
Jiang et al. (2023); Shao et al. (2023) decompose
questions into sub-questions to provide a specific
context for retrieval with model generation. Paran-
jape et al. (2023); Chen et al. (2023d); Inaba et al.
(2023) further enable the usage of different tools
to solve various tasks. Unlike the simple retrieve-
then-read paradigm, Khattab et al. (2023) pass in-
termediate messages between an LLM and a re-
triever; Gao et al. (2023); He et al. (2022); Zhao
et al. (2023); Yu et al. (2023a) retrieve after gen-
eration and perform post-edit revisions for more
faithful outputs. Peng et al. (2023a) iteratively
revise ChatGPT to improve model responses us-
ing feedback and external knowledge. Feng et al.
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(2023) teach LLMs themselves to search for knowl-
edge from external knowledge graphs (KGs) via
prompting and simplify searching into a multi-hop
decision sequence, allowing explainable decision-
making of the processes.

2.2.3 Internet-enhanced Methods
Prior retrieval-augmented work relies on static or
offline knowledge sources (e.g., Wikipedia dump),
which may not be sufficiently up-to-date or com-
plete for tasks that require the latest knowledge
(Kasai et al., 2022; Zhang et al., 2023; Li et al.,
2023a). A recent trend uses the whole web as
the knowledge source and equips LLMs with the
Internet to support real-time information seeking
(Nakano et al., 2022; Menick et al., 2022; Komeili
et al., 2022; Shuster et al., 2022; Qin et al., 2023a;
Liu et al., 2023a). Lazaridou et al. (2022) augment
few-shot QA prompting with the context retrieved
from Google search. Press et al. (2023); Jiang et al.
(2023) interleave reasoning with web search. Re-
cently, tools such as LangChain (Chase, 2022) and
ChatGPT Plugins (OpenAI, 2023a) connect a de-
ployed LLM to the Internet without training, mak-
ing them more powerful for solving knowledge-
intensive tasks. Beyond search engines, Yao et al.
(2023a); Liang et al. (2023); Paranjape et al. (2023);
Yang et al. (2023); Gou et al. (2023); Lu et al.
(2023) treat LLMs as central planners and compose
various plug-and-play tools for solving complex
questions.

3 Comparison and Discussion

We present the comparison of different methods
in Table 1 and in Fig.3, and the characteristics of
different methods in Table 2 in Appendix.

Discussion of Implicit Methods (§2.1). Com-
pared to naive re-training or fine-tuning, KE and
CL can effectively update obsolete knowledge in
LLMs while minimizing interference on irrelevant
ones. We identify their major differences: 1
Scale. Existing KE methods focus on updating
small-scale and localized knowledge, typically on
synthetic fact pairs (Mitchell et al., 2022a; Meng
et al., 2022a). While one can perform thousands of
edits simultaneously (Meng et al., 2023), updating
enormous knowledge in LLMs may be cumber-
some. In contrast, CL enhances models’ adaptabil-
ity via tuning larger-scale parameters, thus updat-
ing more knowledge at scale (Jang et al., 2022b).
However, KE provides fine-grained controllability

when specific knowledge needs to be altered, which
is unachievable by CL; 2 Forgetting. Applying
KE methods on LLMs frequently in response to the
ever-changing world is sub-optimal due to catas-
trophic forgetting (Huang et al., 2023; Hartvigsen
et al., 2023); CL mitigates this issue when learning
new knowledge; 3 Cost. CL is generally more
computationally expensive than KE due to larger-
scale weight updating.

Discussion of Explicit Methods (§2.2). Explicit
methods use new knowledge retrieved from the
world to override old knowledge in an LLM dur-
ing generation. Despite being effective, memory-
and retrieval-enhanced methods must periodically
maintain the external memory and the knowledge
sources in response to the ever-changing world (Ka-
sai et al., 2022). Conversely, Internet-enhanced
methods enable real-time knowledge seeking, al-
though potentially suffering from noisy and low-
quality web content (Li et al., 2023a; Luo et al.,
2023). Compared to single-stage retrieval, multi-
stage retrieval can solve more complex problems.
Nevertheless, they may interrupt the generation
with multiple retrievals or revisions, leading to con-
siderable inference overheads (Shao et al., 2023).

Updating LLMs Implicitly or Explicitly? We
observe an increasing trend of explicitly aligning
LLMs with world knowledge while keeping the
model untouched (Table 3 in Appendix). Com-
pared to explicit approaches: 1 Applicability. Im-
plicit methods usually require modifying LLM’s
parameters or gradients, making it challenging to
update closed-source models; 2 Side Effects. Al-
though constraints have been added to avoid edit-
ing irrelevant knowledge (Mitchell et al., 2022a;
Meng et al., 2023) or forgetting general knowl-
edge (Jang et al., 2022b), modifying the LLM’s
parameters inevitably has side effects that may hurt
the performance, which is hard to estimate due to
the complexity of neural networks (Brown et al.,
2023); 3 Efficiency. Implicit methods typically
require training, while most explicit methods lever-
age a fixed LLM and an off-the-shelf retriever, eras-
ing the necessity of training. However, explicit
methods do not directly modify the intrinsic knowl-
edge within LLMs, but instead rely on on-the-fly
retrieval during inference, resulting in a notable
increase in the computational cost of inference.
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4 Challenges and Future Directions

Robust and Efficient Knowledge Editing. KE
offers fine-grained knowledge updating, which is
desirable in some scenarios. Despite promising,
KE is still in its infancy stage. 1 Various knowl-
edge. It is challenging to renew the internal knowl-
edge stored in the parameters of LLMs, and ex-
isting efforts have only explored updating rela-
tional knowledge while overlooking other knowl-
edge (Meng et al., 2023); 2 Edit dataset. Current
KE methods assume edited knowledge pairs exist,
which must be annotated beforehand. In reality,
how do LLMs know what knowledge is outdated
and thus needs to be updated (Zhang and Choi,
2023; Yin et al., 2023)? 3 Memorization mech-
anism. Hase et al. (2023a) argue that the localiza-
tion of specific knowledge via casual tracing may
not be reliable, calling for a better understanding
of the internal memorization of LLMs (Tirumala
et al., 2022; Carlini et al., 2023); 4 Generaliza-
tion. Recent studies (Onoe et al., 2023; Zhong
et al., 2023) find that existing KE methods show
little propagation of edited knowledge, meaning
the LLM cannot make further reasoning based on
the newly acquired knowledge; 5 Effectiveness
and efficiency. Although early efforts have been
made (Hernandez et al., 2023; Huang et al., 2023;
Hartvigsen et al., 2023), methods to effectively, ef-
ficiently, and continually renew the knowledge of
LLMs at scale have yet to be thoroughly explored.

Efficient Continual Learning of LLMs. A con-
tinual pre-trained LLM can update its internal
knowledge and adapt to the changing world, but
maintaining the general knowledge required for
downstream tasks without forgetting is challeng-
ing (Ke and Liu, 2023). Moreover, existing meth-
ods are limited to small-scale LMs, leaving CL of
LLMs rarely studied. While parameter-efficient
tuning (Ding et al., 2022) may be beneficial, it re-
mains under-explored to align an LLM with the
dynamic world via CL.

Solving Knowledge Conflicts. Replacing old
knowledge with new ones can cause knowledge
conflicts regardless of using implicit or explicit
methods. For implicit methods, these side effects
are only evaluated in specific settings, and there
is no idea of how the general skills of LLMs are
impacted (Brown et al., 2023). For retrieval-based
methods, knowledge retrieved from the world can
contradict the knowledge memorized inside LLMs,

and LLMs sometimes favour their internal knowl-
edge rather than the provided context during gen-
eration (an example in Fig.5; Neeman et al. 2022;
Li et al. 2022; Chen et al. 2022). While initial at-
tempts have been made (Mallen et al., 2023; Zhou
et al., 2023; Xie et al., 2023), they are still limited.

Robust and Efficient Retrieval. Interacting with
external resources can cause interruptions during
generation, significantly increasing inference over-
heads, especially for multi-stage methods that in-
volve multiple retrievals or revisions. Potential
remedies may be efficient memory management
(Peng et al., 2023b; Kang et al., 2023; Cheng et al.,
2023) or selective retrieval that only consults exter-
nal resources when necessary (Mallen et al., 2023).
On the other hand, the retrieved context can be ir-
relevant and noisy, which may distract LLMs (Shi
et al., 2023a; Luo et al., 2023), or too long, which
exceeds the input limits and renders high cost (Shi
et al., 2023b).

Comprehensive Evaluation and Benchmarks.
Although approaches of different categories can
align the trained LLMs with the changing world
without re-training, their effectiveness is primarily
evaluated on synthetic datasets in specific settings,
which might not be comprehensive (Jang et al.,
2022a,b; Hoelscher-Obermaier et al., 2023). More-
over, although efforts have been made to evaluate
KE (Wu et al., 2023; Cohen et al., 2023; Ju and
Zhang, 2023), there is no quantitative comparison
of methods of different categories (i.e., comparing
KE vs. CL vs. retrieval-based methods), hinder-
ing their application in different scenarios. Lastly,
existing benchmarks are too static to measure the
dynamic world, which calls for real-time evalua-
tion benchmarks (Liška et al., 2022; Kasai et al.,
2022).

5 Conclusion

In this paper, we systematically review recent ad-
vances in aligning LLMs with the ever-changing
world knowledge without re-training. We sum-
marize existing approaches and categorize them
based on whether they tend to directly alter the
knowledge stored implicitly in LLMs, or leverage
external resources to override the outdated knowl-
edge. We comprehensively compare methods of
different categories and point out challenges and
future directions to facilitate research in this area.
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Limitations

In this paper, we systematically review recent ad-
vances in aligning LLMs with the ever-changing
world knowledge without re-training. We compare
our work with the related surveys in §1 and will pe-
riodically add related approaches. Despite our best
efforts, there exist some limitations in this paper:

Scope. In this survey, we do not review
knowledge-enhanced approaches that require re-
training because we focus on the already trained
(deployed) models and how to keep them up-to-
date. We refer interested readers to the relevant
knowledge-enhanced LMs surveys (Zhu et al.,
2021; Wei et al., 2021; Yu et al., 2022; Yin et al.,
2022; Zhen et al., 2022). Second, in terms of world
knowledge, we focus on text-based knowledge and
leave other kinds of knowledge, such as images,
video, audio, etc., and structural knowledge, such
as knowledge graphs (KGs) and databases, for fu-
ture work. Third, we mainly review the cutting-
edge approaches within three years (mostly in 2022
and 2023) in §2, mainly from the ACL, EMNLP,
NAACL, TACL, NeurIPS, ICML, ICLR, arXiv. De-
spite our best efforts, by no means the surveyed
methods are complete, and we may miss some im-
portant references. Lastly, we cannot afford all
the technical details due to page limitations and
may only provide brief introductions. We provide
additional discussion of approaches in Appendix
A.1.

Taxonomy. It should be noted that some ap-
proaches are hybrid and can be categorized into
different branches. We mainly categorize them
based on their main components or mechanism.
For instance, all methods in §2.2 require retrieving
from external resources. Memory-enhanced meth-
ods (§2.2.1) pay more attention to the design of
external memory, while paying little attention to
retrieval strategies.

Empirical Comparison. We provide detailed
comparisons and discussions in §3 and potential
future directions in §4. All the conclusions are
proposed based on empirical summarization of ex-
isting works. However, as the field evolves fast,
these empirical conclusions might be inapplicable.
We will update the latest opinions timely. In addi-
tion, we do not provide quantitative comparisons
through experiments since there is no unified eval-
uation benchmarks of different categories. Quan-

titative evaluation (benchmarks) is a challenging
and interesting future direction to fairly compare
methods of different categories to align LLMs with
updated world knowledge (§4). We will leave quan-
titative comparisons and analysis as future work.
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Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tay-
fun Terzi, Eren Sezener, Devang Agrawal, Cyprien
de Masson d’Autume, Tim Scholtes, Manzil Zaheer,
Susannah Young, Ellen Gilsenan-McMahon, Sophia
Austin, Phil Blunsom, and Angeliki Lazaridou. 2022.
Streamingqa: A benchmark for adaptation to new
knowledge over time in question answering models.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models.

Hongyin Luo, Yung-Sung Chuang, Yuan Gong, Tian-
hua Zhang, Yoon Kim, Xixin Wu, Danny Fox, He-
len Meng, and James Glass. 2023. Sail: Search-
augmented instruction learning.

Kelvin Luu, Daniel Khashabi, Suchin Gururangan, Kar-
ishma Mandyam, and Noah A. Smith. 2022. Time
waits for no one! analysis and challenges of tem-
poral misalignment. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5944–5958, Seattle,
United States. Association for Computational Lin-
guistics.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing
to improve GPT-3 after deployment. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2833–2861,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

8303

http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
https://openreview.net/forum?id=73OmmrCfSyy
https://openreview.net/forum?id=73OmmrCfSyy
https://doi.org/10.18653/v1/2022.findings-acl.37
https://doi.org/10.18653/v1/2022.findings-acl.37
https://proceedings.neurips.cc/paper_files/paper/2022/file/df438caa36714f69277daa92d608dd63-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/df438caa36714f69277daa92d608dd63-Paper-Conference.pdf
http://arxiv.org/abs/2211.05110
http://arxiv.org/abs/2211.05110
http://arxiv.org/abs/2305.10998
http://arxiv.org/abs/2305.10998
http://arxiv.org/abs/2308.08742
http://arxiv.org/abs/2308.08742
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2303.16434
https://doi.org/10.18653/v1/2022.acl-long.223
https://doi.org/10.18653/v1/2022.acl-long.223
http://arxiv.org/abs/2304.09848
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2205.11388
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2305.15225
http://arxiv.org/abs/2305.15225
https://doi.org/10.18653/v1/2022.naacl-main.435
https://doi.org/10.18653/v1/2022.naacl-main.435
https://doi.org/10.18653/v1/2022.naacl-main.435
http://arxiv.org/abs/2305.14283
http://arxiv.org/abs/2305.14283
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
http://arxiv.org/abs/2212.10511
http://arxiv.org/abs/2212.10511
http://arxiv.org/abs/2212.10511
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf


Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tian-
wei Zhang, Fei Wu, and Jiwei Li. 2022b. GNN-
LM: Language modeling based on global contexts
via GNN. In International Conference on Learning
Representations.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning
Research, pages 15817–15831. PMLR.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.

Ella Neeman, Roee Aharoni, Or Honovich, Leshem
Choshen, Idan Szpektor, and Omri Abend. 2022.
Disentqa: Disentangling parametric and contextual
knowledge with counterfactual question answering.

Yasumasa Onoe, Michael J. Q. Zhang, Shankar Padman-
abhan, Greg Durrett, and Eunsol Choi. 2023. Can
lms learn new entities from descriptions? challenges
in propagating injected knowledge.

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023a. chatgpt plugins.

OpenAI. 2023b. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,

Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Shankar Padmanabhan, Yasumasa Onoe, Michael J. Q.
Zhang, Greg Durrett, and Eunsol Choi. 2023. Propa-
gating knowledge updates to lms through distillation.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2023. Unifying large
language models and knowledge graphs: A roadmap.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Carbon
emissions and large neural network training.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023a. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back.

Guangyue Peng, Tao Ge, Si-Qing Chen, Furu Wei, and
Houfeng Wang. 2023b. Semiparametric language
models are scalable continual learners.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, Ruobing Xie, Fanchao Qi, Zhiyuan
Liu, Maosong Sun, and Jie Zhou. 2023a. Webcpm:
Interactive web search for chinese long-form ques-
tion answering.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,

8304

https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
https://openreview.net/forum?id=BS49l-B5Bql
http://arxiv.org/abs/2203.11147
http://arxiv.org/abs/2203.11147
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2211.05655
http://arxiv.org/abs/2211.05655
http://arxiv.org/abs/2305.01651
http://arxiv.org/abs/2305.01651
http://arxiv.org/abs/2305.01651
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt-plugins
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
http://arxiv.org/abs/2306.09306
http://arxiv.org/abs/2306.09306
http://arxiv.org/abs/2306.08302
http://arxiv.org/abs/2306.08302
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2303.09014
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2303.01421
http://arxiv.org/abs/2303.01421
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2305.06849
http://arxiv.org/abs/2305.06849
http://arxiv.org/abs/2305.06849


Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023b. Tool learning with foundation
models.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2022. ELLE: Ef-
ficient lifelong pre-training for emerging data. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2789–2810, Dublin, Ire-
land. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Paul Röttger and Janet Pierrehumbert. 2021. Temporal
adaptation of BERT and performance on downstream
document classification: Insights from social media.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2400–2412, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Sina J. Semnani, Violet Z. Yao, Heidi C. Zhang, and
Monica S. Lam. 2023. Wikichat: A few-shot llm-
based chatbot grounded with wikipedia.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan,
Zhenfang Chen, and Chuang Gan. 2023. Mod-
uleformer: Modularity emerges from mixture-of-
experts.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023a. Large language models can be
easily distracted by irrelevant context.

Weijia Shi, Julian Michael, Suchin Gururangan, and
Luke Zettlemoyer. 2022. Nearest neighbor zero-shot
inference. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3254–3265, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen tau Yih. 2023b. Replug: Retrieval-augmented
black-box language models.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza
Behrooz, William Ngan, Spencer Poff, Naman Goyal,
Arthur Szlam, Y-Lan Boureau, Melanie Kambadur,
and Jason Weston. 2022. Blenderbot 3: a deployed
conversational agent that continually learns to respon-
sibly engage.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2023. Prompting GPT-3 to be reli-
able. In The Eleventh International Conference on
Learning Representations.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
Perry Payne, Martin Seneviratne, Paul Gamble, Chris
Kelly, Nathaneal Scharli, Aakanksha Chowdhery,
Philip Mansfield, Blaise Aguera y Arcas, Dale Web-
ster, Greg S. Corrado, Yossi Matias, Katherine Chou,
Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Ra-
jkomar, Joelle Barral, Christopher Semturs, Alan
Karthikesalingam, and Vivek Natarajan. 2022. Large
language models encode clinical knowledge.

8305

http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
https://doi.org/10.18653/v1/2022.findings-acl.220
https://doi.org/10.18653/v1/2022.findings-acl.220
http://arxiv.org/abs/2302.00083
http://arxiv.org/abs/2302.00083
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://aclanthology.org/2022.emnlp-main.410
https://aclanthology.org/2022.emnlp-main.410
http://arxiv.org/abs/2305.14292
http://arxiv.org/abs/2305.14292
http://arxiv.org/abs/2305.15294
http://arxiv.org/abs/2305.15294
http://arxiv.org/abs/2305.15294
http://arxiv.org/abs/2306.04640
http://arxiv.org/abs/2306.04640
http://arxiv.org/abs/2306.04640
http://arxiv.org/abs/2302.00093
http://arxiv.org/abs/2302.00093
https://aclanthology.org/2022.emnlp-main.214
https://aclanthology.org/2022.emnlp-main.214
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2208.03188
http://arxiv.org/abs/2208.03188
http://arxiv.org/abs/2208.03188
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=98p5x51L5af
http://arxiv.org/abs/2212.13138
http://arxiv.org/abs/2212.13138


Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,
Sergei Popov, and Artem Babenko. 2020. Editable
neural networks. In International Conference on
Learning Representations.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Learning to repair: Repairing model out-
put errors after deployment using a dynamic memory
of feedback. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 339–352,
Seattle, United States. Association for Computational
Linguistics.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 38274–
38290. Curran Associates, Inc.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan Cao,
and Jiarong Xu. 2023a. Cross-lingual knowledge
editing in large language models.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi,
Wangchunshu Zhou, Shaochun Hao, Guangzheng
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen,
Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu,
Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen,
Ke Xu, Dayiheng Liu, Yike Guo, and Jie Fu. 2023b.
Interactive natural language processing.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang.
2023c. A comprehensive survey of forgetting in deep
learning beyond continual learning.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Xiaokai Wei, Shen Wang, Dejiao Zhang, Parminder Bha-
tia, and Andrew Arnold. 2021. Knowledge enhanced
pretrained language models: A compreshensive sur-
vey.

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and
Mingming Sun. 2023. Eva-kellm: A new benchmark
for evaluating knowledge editing of llms.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins,
and Christian Szegedy. 2022. Memorizing transform-
ers. In International Conference on Learning Repre-
sentations.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2023. Adaptive chameleon or stubborn sloth:
Unraveling the behavior of large language models in
knowledge clashes.

Yan Xu, Mahdi Namazifar, Devamanyu Hazarika, Aish-
warya Padmakumar, Yang Liu, and Dilek Hakkani-
Tür. 2023a. Kilm: Knowledge injection into encoder-
decoder language models.

Yang Xu, Yutai Hou, Wanxiang Che, and Min Zhang.
2023b. Language anisotropic cross-lingual model
editing.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm-
react: Prompting chatgpt for multimodal reasoning
and action.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023a. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023b. Editing large language models: Prob-
lems, methods, and opportunities.

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. 2022. A survey
of knowledge-intensive nlp with pre-trained language
models.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuanjing Huang. 2023. Do large
language models know what they don’t know?

Pengfei Yu and Heng Ji. 2023. Self information up-
date for large language models through mitigating
exposure bias.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng
Jiang, and Ashish Sabharwal. 2023a. Improving lan-
guage models via plug-and-play retrieval feedback.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2022. A
survey of knowledge-enhanced text generation. ACM
Comput. Surv., 54(11s).

8306

https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2212.10509
http://arxiv.org/abs/2212.10509
http://arxiv.org/abs/2212.10509
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2309.08952
http://arxiv.org/abs/2309.08952
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
http://arxiv.org/abs/2305.13246
http://arxiv.org/abs/2307.09218
http://arxiv.org/abs/2307.09218
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/2110.08455
http://arxiv.org/abs/2110.08455
http://arxiv.org/abs/2110.08455
http://arxiv.org/abs/2308.09954
http://arxiv.org/abs/2308.09954
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2302.09170
http://arxiv.org/abs/2302.09170
http://arxiv.org/abs/2205.12677
http://arxiv.org/abs/2205.12677
http://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2303.11381
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2305.13172
http://arxiv.org/abs/2305.13172
http://arxiv.org/abs/2202.08772
http://arxiv.org/abs/2202.08772
http://arxiv.org/abs/2202.08772
http://arxiv.org/abs/2305.18153
http://arxiv.org/abs/2305.18153
http://arxiv.org/abs/2305.18582
http://arxiv.org/abs/2305.18582
http://arxiv.org/abs/2305.18582
http://arxiv.org/abs/2305.14002
http://arxiv.org/abs/2305.14002
https://doi.org/10.1145/3512467
https://doi.org/10.1145/3512467


Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023b. Augmentation-adapted retriever improves
generalization of language models as generic plug-
in.

Michael J. Q. Zhang and Eunsol Choi. 2023. Mitigating
temporal misalignment by discarding outdated facts.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei
Fang, Luc Gaitskell, Thomas Hartvigsen, Xixin Wu,
Danny Fox, Helen Meng, and James Glass. 2023.
Interpretable unified language checking.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.

Chaoqi Zhen, Yanlei Shang, Xiangyu Liu, Yifei Li,
Yong Chen, and Dell Zhang. 2022. A survey on
knowledge-enhanced pre-trained language models.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning?

Zexuan Zhong, Zhengxuan Wu, Christopher D. Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and
Muhao Chen. 2023. Context-faithful prompting for
large language models.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.
Retrieving and reading: A comprehensive survey on
open-domain question answering.

Xinyu Zhu, Cheng Yang, Bei Chen, Siheng Li, Jian-
Guang Lou, and Yujiu Yang. 2023. Question an-
swering as programming for solving time-sensitive
questions.

Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng
Jiang. 2023. Large language models are built-in au-
toregressive search engines.

A Appendix

A.1 Additional Description of Approaches
A.1.1 Naive Approaches
Although more advanced approaches have been
proposed, we introduce naive solutions for com-
pleteness in this section.

Re-training. Intuitively, one can regularly re-
train the model from scratch with the latest corpora
to align with current world knowledge. However,
this naive solution has clear downsides: (1) Re-
training is both time and money expensive and
environmentally unfriendly (Patterson et al., 2021),
especially in the era of LLMs with billions of pa-
rameters. For instance, LLaMA-65B was trained
for about one million GPU-hours and emitted more
than a hundred tons of carbon (Touvron et al.,
2023); (2) It is unrealistic to frequently re-training
an LLM in response to the constantly changing
world.

Fine-tuning. Another simple approach is to pe-
riodically curate a small-scale dataset containing
desired knowledge we wish the model to add, up-
date, or delete, then fine-tune the model on the
dataset. Despite being computationally cheaper
than re-training, it still falls short in that, with-
out constraints, directly fine-tuning the model may
have a "butterfly effect" and affect other knowl-
edge or skills present in the model (Li et al., 2022),
causing degraded generalization (Mitchell et al.,
2022a), catastrophic forgetting (Kirkpatrick et al.,
2017; Zhu et al., 2020; AlKhamissi et al., 2022), or
knowledge conflicts (Neeman et al., 2022).

Constrained Fine-tuning. To solve part of above
mentioned issues, Zhu et al. (2020) propose to only
fine-tune the model on the small-scale modified
facts set and add explicit constraints on the model
weights so that the model learns to answer the
modified facts while keeping the remaining knowl-
edge intact. Specifically, they use various norms
(L0, L2, and L∞) to prevent the parameters of the
fine-tuned model θ′ from drifting too far from the
original model parameters θ. They further find
that fine-tuning only the first and last layers of the
Transformer model (Vaswani et al., 2017) results
in better adaptation to the modified facts and bet-
ter preservation of performance on the unmodified
facts. However, the norm-based constraint on pa-
rameters ignores the highly non-linear nature of
LMs and how parameters determine the outputs of
the model, making their method potentially unre-
liable (De Cao et al., 2021). In addition, Mitchell
et al. (2022a) confirm that constrained fine-tuning
generally does not consistently provide edit gener-
ality.
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Figure 5: An example of knowledge conflict of Chat-
GPT (OpenAI, 2022). Even if the correct context is
provided, ChatGPT still favours its internally memo-
rized knowledge. The screenshot was taken in May
2023 for GPT-3.5 without web browsing.

A.1.2 Knowledge Editing

To facilitate the development of this area, De Cao
et al. (2021) formulate three desiderata that an
ideal editing method should follow: 1 Gener-
ality: the method should be capable of alter-
ing the knowledge of any LM that is not specif-
ically trained to be editable (e.g., PaLM, GPT-
4, LLaMA); 2 Reliability: the method should
only update the targeted knowledge without influ-
encing the rest of the knowledge in the LM. For
instance, the answer to "Who is the current
Prime Minister of Australia?" has changed
from "Scott Morrison" to "Anthony Albanese"
since 2022, updating the knowledge from "Scott
Morrison" to "Anthony Albanese" should not
change the knowledge "Argentina won the 2022
World Cup"; 3 Consistency (Generalization):
after updates, the model predictions should be con-
sistent across semantically equivalent inputs (e.g.,
correctly predicts "Anthony Albanese" to "Who
is the AU PM?"). Beyond updating outdated
knowledge, knowledge editing can also delete sen-
sitive information for privacy issues or eliminate
biases in the pre-training corpora.

However, not until recently, Onoe et al. (2023);
Zhong et al. (2023) show that, after performing
knowledge editing, the LLM does not really "learn"
the updated knowledge and thus cannot propagate
the new knowledge and make further inferences
based on them. For instance, after learning that
"the current PM of Australia is Anthony
Albanese", the model might not able to make pre-
dictions of "Who is the spouse of the current
PM of Australia?".

Meta-learning. Sinitsin et al. (2020), by con-
straining the training objective, encodes editability
into the parameters of the model itself so that the
model is "prepared" for incoming edits. While be-
ing effective and no new parameters are required,
it does not conform to generality as it requires spe-

cialized training of the original model (De Cao
et al., 2021). Moreover, to enforce the constraint
that the editable model agrees with the original pre-
trained model’s predictions, Sinitsin et al. (2020)’s
method needs to retain a copy of the original model,
which significantly consumes computation memory
(Mitchell et al., 2022a). Chen et al. (2023c) also
requires training of the original LM, which could
be computationally expensive for larger LMs. In
addition, whether it will influence other irrelevant
knowledge in the model remains unknown, making
the method potentially unreliable.

Hypernetwork Editor. De Cao et al. (2021) can
be more efficient than Sinitsin et al. (2020), as it
does not retain the copy of the original model nor
compute higher-order gradients. However, it can
only update a single fact rather than multiple facts
in a row and fail to edit large models, leading to
poor scalability (Mitchell et al., 2022a; Hase et al.,
2023b). Mitchell et al. (2022a) improve De Cao
et al. (2021)’s work and is stable to edit LMs from
BERT-base (110M) (Devlin et al., 2019) to T5-
XXL (11B) (Raffel et al., 2020). However, when
editing multiple knowledge simultaneously, their
edit success rate significantly degrades.

Locate and Edit. While simple, Dai et al. (2022)
do not ensure reliability on other irrelevant knowl-
edge and generalization on semantically equivalent
inputs. Despite showing both generalization and
specificity, Meng et al. (2022a) only edits a single
fact at a time, making it impractical for large-scale
knowledge updating in LLMs. Through casual
tracing, Meng et al. (2023) identify and update the
critical MLP layers in one go. However, Hase et al.
(2023a) argue that the relation between localization
and editing may be misleading as they can edit fac-
tual knowledge in different locations that are not
suggested by casual tracing.

A.1.3 Continual Learning
While knowledge editing provides a fine-grained
control to update specific knowledge in LLMs, it
often requires large amounts of supervised train-
ing data to make edits, which is non-trivial to cre-
ate (Hartvigsen et al., 2023). In addition, when
an LLM needs to quickly acquire new domain
knowledge (e.g., legal or medical), such small-scale
model edits may not be efficient. Moreover, after
multiple parameter patches to a deployed model,
its internal knowledge may conflict, leading to un-
predictable behaviors (Mitchell et al., 2022a).
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Sharing a related goal, continual learning (CL)
aims to enable a model to learn from a continu-
ous data stream across time while reducing catas-
trophic forgetting of previously acquired knowl-
edge (Biesialska et al., 2020). In contrast to knowl-
edge editing, CL generally updates models on a
larger scale and works in long learning sequences
with minimal memory overheads (Mitchell et al.,
2022a). Hence, CL can also be used for deployed
models to update their knowledge.

A.2 The Complete Taxonomy of Methods
We list the complete taxonomy of methods to align
LLMs with the ever-changing world knowledge in
Fig.6 and the complete comparison of methods in
Table 3. We also compare the characteristics of
different methods in Table 2.

Category Large
Scale

No Side
Effects Persistent

Knowledge Editing
(§2.1.1) ✗ ✗ ✔
Continual Learning (§2.1.2) ✔ ✗ ✔
Retrieval-based (§2.2) ✗ ✔ ✗

Table 2: High-level comparison of characteristics of
different approaches.
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Category Representative Method Base LM LM Params Augmentation No
Training

Black
-box

Re-training – \ – ✗ ✗

Fine-tuning – \ – ✗ ✗

De Cao et al. (2021) BERT (0.1B) � auxiliary model ✗ ✗

MEND (Mitchell et al., 2022a) T5 (11B) � auxiliary model ✗ ✗

SLAG (Hase et al., 2023b) BERT (0.1B) � auxiliary model ✗ ✗

RECKONING (Chen et al., 2023c) GPT-2 (0.1B) \ – ✗ ✗

ROME (Meng et al., 2022a) GPT-J (6B) \ – ✔ ✗

Knowledge Neurons (Dai et al., 2022) BERT (0.1B) \ – ✔ ✗

MEMIT (Meng et al., 2023) GPT-NeoX (20B) \ – ✔ ✗

CaliNET (Dong et al., 2022) T5 (0.7B) � +params ✗ ✗

REMEDI (Hernandez et al., 2023) GPT-J (6B) \ auxiliary model ✗ ✗

DSA (Ke et al., 2023) RoBERTa (0.1B) \ – ✗ ✗

ELLE (Qin et al., 2022) BERT (0.1B) \ memory+params ✗ ✗

CT0 (Scialom et al., 2022) T0 (3B) \ memory ✗ ✗

K-Adapter (Wang et al., 2021) RoBERTa (0.3B) � +params ✗ ✗

Gururangan et al. (2022) GPT-2 (0.7B) � +params ✗ ✗

CPT (Ke et al., 2022) RoBERTa (0.1B) � +params ✗ ✗

KILM (Xu et al., 2023a) BART (0.4B) \ – ✗ ✗

CaMeLS (Hu et al., 2023) GPT-2 (1.5B) \ auxiliary model ✗ ✗

SeMem (Peng et al., 2023b) GPT-2 (0.7B) �
memory

+auxiliary model ✗ ✗

CL-plugin (Lee et al., 2022a) T5 (0.7B) � +params ✗ ✗

Huang et al. (2023) BERT (0.1B) � +params ✗ ✗

GRACE (Hartvigsen et al., 2023) T5 (0.06B) � memory ✗ ✗

kNN-LM (Khandelwal et al., 2020)
ADP

(Baevski and Auli, 2019)
(0.2B)

� memory ✔ ✗

AdaptRet (He et al., 2021a) ADP (0.2B) �
memory

+auxiliary model ✗ ✗

RetoMaton (Alon et al., 2022) ADP (0.2B) �
memory

+auxiliary graph ✗ ✗

kNN-prompt (Shi et al., 2022) GPT-2 (0.8B) � memory ✔ ✔

Belief Bank (Kassner et al., 2021) T5 (0.7B) �
memory

+constraint solver ✔ ✔

FBNet (Tandon et al., 2022) T5 (11B) �
memory

+auxiliary model ✗ ✔

MemPrompt (Madaan et al., 2022) GPT-3 (175B) � memory+retriever ✔ ✔

TeachMe (Dalvi Mishra et al., 2022) T5 (11B) � memory+retriever ✔ ✔

SERAC (Mitchell et al., 2022b) T5 (0.7B) �
memory

+auxiliary model ✗ ✔

MeLLo (Zhong et al., 2023) GPT-3.5 (175B) � memory+retriever ✔ ✔

IC-Retrieval (Si et al., 2023) GPT-3.5 (175B) � retriever ✔ ✔

IC-RALM (Ram et al., 2023) OPT (66B) � retriever+reranker ✗ ✔

IKE (Zheng et al., 2023) OPT (175B) � retriever ✔ ✔

AAR (Yu et al., 2023b) GPT-3.5 (175B) � retriever ✗ ✔

RePlug (Shi et al., 2023b) GPT-3 (175B) � retriever ✗/ ✔ ✔

IRCoT (Trivedi et al., 2022) GPT-3.5 (175B) � retriever ✔ ✔

RARR (Gao et al., 2023) PaLM (540B) �
search engine

+auxiliary model ✔ ✔

RR (He et al., 2022) GPT-3.5 (175B) �
retriever

+auxiliary model ✔ ✔

ReFeed (Yu et al., 2023a) GPT-3.5 (175B) � retriever ✔ ✔

DecomP (Khot et al., 2023) GPT-3.5 (175B) � retriever ✔ ✔

ReAct (Yao et al., 2023a) PaLM (540B) � search engine ✔ ✔

Self-Ask (Press et al., 2023) GPT-3 (175B) � search engine ✔ ✔

FLARE (Jiang et al., 2023) GPT-3.5 (175B) � retriever/search engine ✔ ✔

DSP (Khattab et al., 2023) GPT-3.5 (175B) � retriever ✔ ✔

ART (Paranjape et al., 2023) GPT-3.5 (175B) � various tools ✔ ✔

Iter-RetGen (Shao et al., 2023) GPT-3.5 (175B) � retriever ✔ ✔

Verify-and-Edit (Zhao et al., 2023) GPT-3.5 (175B) � retriever/search engine ✔ ✔

Lazaridou et al. (2022) Gopher (280B) � search engine ✔ ✔

CRITIC (Gou et al., 2023) GPT-3.5 (175B) � various tools ✔ ✔

LLM Rewriter (Ma et al., 2023) GPT-3.5 (175B) � search engine ✗ ✔

Chameleon (Lu et al., 2023) GPT-4 (?B) � various tools ✔ ✔

ChatGPT Plugins (OpenAI, 2023a) GPT-3.5 (175B) � various tools ✔ ✔

Naive

Knowledge
Editing

Continual
Learning

Memory
-enhanced

Retrieval
-enhanced

Internet
-enhanced

Table 3: Comparison between representative methods. \ means the parameters of the original LM are modified,
while � means they are unchanged; Augmentation means additional components used; No Training indicates the
method does not require additional training; Black-box refers to whether the method suits non-publicly available
models (e.g., no model architecture, parameters, activations, or gradients are available). Note that we only list the
largest size model used in the paper due to space limitations.
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LLMs align with
ever-changing

world knowledge

Implicit
(§2.1)

Naive

Re-training

Fine-tuning

Knowledge
Editing

Meta-learning Editable Training (Sinitsin et al., 2020), RECKONING (Chen et al., 2023c)

Hypernetwork
Editor

KnowledgeEditor (De Cao et al., 2021), MEND (Mitchell et al., 2022a), SLAG (Hase et al.,
2023b), REMEDI (Hernandez et al., 2023), Distillation (Padmanabhan et al., 2023)

Locate
and edit

Knowledge Neurons (Dai et al., 2022), ROME (Meng et al., 2022a), MEMIT (Meng et al.,
2023), MEMITCSK (Gupta et al., 2023a), PMET (Li et al., 2023b), Chen et al. (2023b),
Geva et al. (2023), KLoB (Ju and Zhang, 2023)

Other
Eva-KELLM (Wu et al., 2023), RippleEdits (Cohen et al., 2023), Wang et al. (2023a), Xu
et al. (2023b), IKE (Zheng et al., 2023)

Continual
Learning

Continual
Pre-training

Regularization-
based

RecAdam (Chen et al., 2020), DSA (Ke et al., 2023)

Replay-based Mix-Review (He et al., 2021b), ELLE (Qin et al., 2022), CT0 (Scialom
et al., 2022)

Architectural-
based

K-Adapter (Wang et al., 2021), LoRA (Hu et al., 2022), ELLE (Qin
et al., 2022), DEMix-DAPT (Gururangan et al., 2022), CPT (Ke et al.,
2022), Lifelong-MoE (Chen et al., 2023a), ModuleFormer (Shen et al.,
2023)

Other

Temporal-LM (Dhingra et al., 2022), Lifelong Pre-training (Jin et al.,
2022), CKL (Jang et al., 2022b), TemporalWiKi (Jang et al., 2022a),
TopicPrefix (Lee et al., 2022b), KILM (Xu et al., 2023a), SeMem
(Peng et al., 2023b), CaMeLS (Hu et al., 2023), Yu and Ji (2023),
Gupta et al. (2023b)

Continual
Knowledge

Editing

CMR (Lin et al., 2022), CL-plugin (Lee et al., 2022a), Transformer-Patcher (Huang et al.,
2023), GRACE (Hartvigsen et al., 2023)

Explicit
(§2.2)

Memory-
enhanced

Corpus or
Documents

kNN-LM (Khandelwal et al., 2020), AdaptRet (He et al., 2021a), AdaptCoef (Drozdov
et al., 2022), RetoMaton (Alon et al., 2022), Bhardwaj et al. (2022), kNN-prompt (Shi
et al., 2022), SeMem (Peng et al., 2023b)

Feedback or
Corrections

Belief Bank (Kassner et al., 2021), FBNet (Tandon et al., 2022), MemPrompt (Madaan
et al., 2022), TeachMe (Dalvi Mishra et al., 2022), SERAC (Mitchell et al., 2022b), MeLLo
(Zhong et al., 2023)

Retrieval-
enhanced

Single-Stage IC-Retrieval (Si et al., 2023), IC-RALM (Ram et al., 2023), AAR (Yu et al., 2023b), IKE
(Zheng et al., 2023), Adaptive Retrieval (Mallen et al., 2023), RePlug (Shi et al., 2023b)

Multi-Stage

IRCoT (Trivedi et al., 2022), RARR (Gao et al., 2023), RR (He et al., 2022), ReFeed (Yu
et al., 2023a), Self-Ask (Press et al., 2023), DecomP (Khot et al., 2023), ReAct (Yao et al.,
2023a), ART (Paranjape et al., 2023), ChatCoT (Chen et al., 2023d), MultiTool-CoT (In-
aba et al., 2023), LLM-Augmenter (Peng et al., 2023a), QAaP (Zhu et al., 2023), FLARE
(Jiang et al., 2023), DSP (Khattab et al., 2023), Iter-RetGen (Shao et al., 2023), Verify-and-
Edit (Zhao et al., 2023), CRITIC (Gou et al., 2023), WikiChat (Semnani et al., 2023), LLM
Rewriter (Ma et al., 2023), Knowledge Solver (Feng et al., 2023)

Internet-
enhanced

Internet-Fewshot (Lazaridou et al., 2022), LLM-URL (Ziems et al., 2023), ReAct (Yao et al., 2023a), Self-Ask
(Press et al., 2023), ART (Paranjape et al., 2023), RARR (Gao et al., 2023), TaskMatrix.AI (Liang et al., 2023),
MM-REACT (Yang et al., 2023), Chameleon (Lu et al., 2023), FLARE (Jiang et al., 2023), CRITIC (Gou et al.,
2023), LLM Rewriter (Ma et al., 2023), LangChain (Chase, 2022), ChatGPT Plugins (OpenAI, 2023a)

Figure 6: Taxonomy of methods to align LLMs with the ever-changing world knowledge. Implicit means the
approaches seek to directly alter the knowledge stored in LLMs (e.g., parameters) (§2.1), while Explicit means
more often incorporating external resources to override internal knowledge (e.g., search engine) (§2.2).
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