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Abstract
General-purpose text decoding approaches are
usually adopted for dialogue response genera-
tion. Although the quality of the generated re-
sponses can be improved with dialogue-specific
encoding methods, conversational decoding
methods are still under-explored. Inspired by
Wu et al. (2023) that a good dialogue feature
space should follow the rules of locality and
isotropy, we present a fine-grained conversa-
tional decoding method, termed isotropic and
proximal search (IPS). Our method is designed
to generate the semantic-concentrated response,
while still maintaining informativeness and dis-
crimination against the context. Experiments
show that our approach outperforms existing
decoding strategies in the dialogue field across
both automatic and human evaluation metrics.
More in-depth analyses further confirm the ef-
fectiveness of our approach.

1 Introduction

Dialogue response generation (Li et al., 2017;
Wang et al., 2020) aims to generate the utterance
that forms a coherent and fluent continuation given
a dialogue context. Generic text decoding strategies
(Rieser et al., 2014; Ritter et al., 2011; Chen et al.,
2017) are usually adopted to produce grammati-
cal and contextual responses. As an independent
technique, decoding strategy can also enhance the
generation quality of large language models.

Existing text decoding methods have been ex-
plored in various generic text generation tasks, but
lack tailoring for dialogue generation, e.g., captur-
ing dialogue-specific features and generating an in-
formative and discriminative dialogue response (Su
et al., 2021; Wu et al., 2023). Early maximization-
based methods, e.g., greedy search (Li et al., 2016b)
and beam search (Wiseman et al., 2017), may lead
to dullness and degeneration (Fan et al., 2018;
Holtzman et al., 2018). Later sampling-based im-
provements are proposed to tackle these problems,
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including top-k sampling (Fan et al., 2018) and
nucleus search (Holtzman et al., 2018). While
alleviating degeneration, these sampling methods
introduce critical semantic inconsistency and are
not aligned with human-written prefix (Basu et al.,
2021). Specifically, a bunch of studies (Ethayarajh,
2019; Su and Collier, 2023) have asserted that
the problem of anisotropy, i.e., a distribution pat-
tern in the latent space with features occupying a
narrow cone in the space, leads to inconsistency
and degradation of the generation. Although con-
trastive search (Su et al., 2022) has been proposed
correspondingly to mitigate the issue, as a general-
ized text decoding strategy, it still ignores dialogue-
specific features, such as utterance dependencies
and conversational structure information. There-
fore, research on conversational decoding methods
is warmly needed.

In this work, we propose a fine-grained conver-
sational decoding method, namely isotropic and
proximal search (IPS). Different from traditional
approaches, we consider the previous tokens and
contexts separately from a granular perspective.
Acknowledging that locality and isotropy are two
important properties for refining the dialogue fea-
ture space, we design our IPS following these rules:
(i) the generated output should be selected from
the most probable candidate set predicted by the
dialogue model; (ii) the generated tokens in the
same utterance should be proximal to each other
for expressing a concentrated idea; and (iii) the
newly generated utterance should be discrimina-
tive enough with respect to the context utterances.
In this way, our method encourages informative-
ness and discrimination among different utterances
as well as maintains a concentrated idea within
an utterance. We evaluate our approach on two
commonly-used dialogue datasets, DailyDialog (Li
et al., 2017) in English and LCCC (Wang et al.,
2020) in Chinese. Both human and automatic eval-
uation results, i.e., indicators based on GPT3.5,
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consistently show that IPS can generate more fluent,
coherent, and human-like responses than existing
decoding methods.

2 Methodology

2.1 Preliminary

Dialogue response generation Given a dialogue
context D = {u1, u2, ..., uN} composed of N ut-
terances, where ui =

{
xi,1, xi,2, ..., xi,|ui|

}
is a se-

quence of consecutive words, the task of dialogue
response generation is to produce the continuation
utterance ur = {w1, w2, ..., w|ur|}, (r = N + 1).

There are generally two key steps to finish the
task, including context encoding and response de-
coding. For the first step, we obtain the context
representations H from the language model by con-
catenating the utterances into a sequence.

H = PrLM(u1 [EOU] u2 [EOU] ... uN [EOU]),

where [EOU] is the special token inserted as the
last token of each utterance.

For the decoding step, the response is generally
produced in an auto-regressive manner as follows

p(w1:|ur|) =
∏|ur|

i=1
p(wi|w<i, D) (1)

Dialogue modeling Wu et al. (2023) has demon-
strated that locality and isotropy are two key prop-
erties for building a good conversational feature
space. Specifically, locality encourages the model
to aggregate the representations of tokens within
an utterance while isotropy pushes away the repre-
sentations of distinct utterances.

2.2 Isotropic and Proximal Search

We present a fine-grained conversational decoding
method, i.e., isotropic and proximal search (IPS).
Specifically, we expect the generated response to
satisfy two requirements: 1) representations of the
response tokens are nearby to convey a concen-
trated idea, saying proximity; 2) the response repre-
sentation is discriminative to the context utterance
representations, saying isotropy.

During the decoding stage, for proximal search,
we try to select the candidate token having the
shortest average distance to the existing generated
tokens. For isotropic search, we try to choose the
token that enables the response representation most
discriminative to representations of context utter-
ances. As the response representation cannot be

determined during the decoding stage, we calcu-
late it in an approximate way, i.e., averaging the
representations of the already generated tokens, as
follows:

hRT =
1

T

∑T

i=1
hwi (2)

where hRT is the response representation which
will be dynamically updated along with the gen-
eration process, and T is the number of already
generated tokens.

Up to now, the problem changes to how to gen-
erate the first token for starting the isotropic and
proximal search since the method is heavily de-
pendent on the previous tokens. To address this
problem, we attempt to finish the first n-steps gen-
eration by traditional decoding methods, such as
beam search, top-k sampling or nucleus sampling.
On the other hand, as IPS is essentially a determin-
istic decoding strategy, this solution also enables
it to produce diverse responses by using different
decoding strategies in the first n steps. Therefore,
in each step t after the first sampling stage, we cal-
culate the proximal and isotropic values as follows:

p_valuet =
1

t− 1

∑t−1

i=1
s(hwt ,hwi) (3)

i_valuet =
1

N

∑N

i=1
s(hRT ,hui) (4)

where s is the cosine similarity. hui are the ut-
terance representations obtained from the special
token [EOU]. The proximal value measures the
average distance between the candidate token and
the already generated tokens while the isotropic
value stands for the average similarity between the
undergoing response representation and all utter-
ance representations. Next, the selection of the
candidate token wt is formulated as,

wt = argmax
wt∈V (m)

{α× p(wt | w<t, D)︸ ︷︷ ︸
model confidence

+ (1− α)× (p_valuet − i_valuet)︸ ︷︷ ︸
isotropic and proximal penalty

} (5)

where V (m) is the set of top-m predictions from
the model’s probability distribution p(wt | w<t, D)
and m, is typically set as 4 ∼ 8. In Eq. (5), the first
term, model confidence, is the probability of the
candidate wt predicted by the model. The second
term, isotropic and proximal penalty, aims to max-
imize the discrimination between the undergoing
response and previous utterances and minimize the
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Model Strategy
DailyDialog LCCC

BS ↑ MV ↑ GE ↑ Distinct
BS ↑ MV ↑ GE ↑ Distinct

Dis2 ↑ Dis4 ↑ Dis2 ↑ Dis4 ↑

BART

greedy 0.1275 0.569 2.17 0.344 0.776 0.0636 0.062 1.88 0.126 0.437
beam 0.1317 0.599 2.29 0.341 0.755 0.0639 0.145 1.91 0.155 0.466
top-k 0.1312 0.623 2.20 0.350 0.780 0.0648 0.154 1.94 0.152 0.487

nucleus 0.1298 0.642 2.34 0.352 0.791 0.0626 0.178 1.91 0.156 0.534
contrastive 0.1147 0.622 2.07 0.396 0.810 0.0538 0.205 1.90 0.190 0.583

IPS 0.1335 0.647 2.43 0.355 0.798 0.0653 0.212 1.98 0.176 0.540

SimCTG
(ρ = 0.5)

greedy 0.1099 0.447 2.21 0.306 0.709 0.0678 0.088 1.82 0.137 0.470
beam 0.1196 0.556 2.27 0.314 0.713 0.0692 0.206 2.02 0.179 0.539
top-k 0.1169 0.544 2.06 0.322 0.733 0.0695 0.195 2.11 0.168 0.534

nucleus 0.1169 0.571 2.32 0.327 0.753 0.0680 0.223 2.10 0.169 0.575
contrastive 0.1123 0.608 2.17 0.395 0.807 0.0607 0.278 1.98 0.197 0.618

IPS 0.1293 0.628 2.36 0.359 0.787 0.0704 0.294 2.31 0.196 0.580

SimDRC
(δ = 0.7,
α = 0.3)

greedy 0.1255 0.560 2.06 0.345 0.774 0.0699 0.090 2.21 0.136 0.471
beam 0.1315 0.632 2.18 0.338 0.745 0.0715 0.196 2.11 0.180 0.543
top-k 0.1068 0.648 2.20 0.345 0.773 0.0720 0.203 2.19 0.166 0.540

nucleus 0.1284 0.632 2.16 0.353 0.793 0.0697 0.226 1.88 0.166 0.569
contrastive 0.1174 0.653 2.16 0.397 0.819 0.0613 0.271 2.21 0.197 0.614

IPS 0.1336 0.665 2.46 0.366 0.800 0.0722 0.272 2.32 0.192 0.569

Table 1: Automatic evaluation results on DailyDialog and LCCC, where BS means F1 value of BERTScore (Zhang*
et al., 2020), MV represents MAUVE (Pillutla et al., 2021), and GE represents G-Eval (Liu et al., 2023).

token difference within the response. The hyper-
parameter α ∈ [0, 1] regulates the importance of
these two components. When α = 1, our method
degenerates to the greedy search method.

We claim our method is fine-grained because
the generic auto-regressive generation predicts the
next token by jointly considering the already gen-
erated tokens w<t and the context D, formulated
as p(wt|w<t, D) while IPS splits these two fac-
tors. Specifically, proximity value only focuses
on the effects of the already generated tokens,
i.e., p_valuet ∼ p(wt|w<t), and isotropy value
pays more attention to the context, i.e., i_valuet ∼
p(wt|D, (w<t)) wherein w<t is just used to obtain
the undergoing response representation hRT .

3 Experiments

Dataset We evaluate our method on two
commonly-used datasets, DailyDialog (Li et al.,
2017) in English and LCCC (Wang et al., 2020) in
Chinese. Both of them are open-domain multi-turn
dialogue datasets, collected from social media. For
LCCC, owing to the academic-level computing re-
source, we follow previous work (Su et al., 2022),
and sample a subset of the dataset, consisting of
100,000 dialogue examples.

Baselines Following Wu et al. (2023), we use
BART (Lewis et al., 2020) as our backbone. We

evaluate the performance of decoding strategies
with different models, including vanilla BART,
BART with SimCTG (Su et al., 2022), and BART
with SimDRC (Wu et al., 2023). We compare IPS
to greedy search, beam search, top-k sampling (Fan
et al., 2018), nucleus sampling (Holtzman et al.,
2018) and contrastive search (Su et al., 2022).

Settings We fine-tune the models on DailyDia-
log and LCCC datasets for 6k steps and 7k steps,
respectively. We use a batch size of 64 and truncate
the training samples to a maximum length of 256.
The parameters of the models are initialized from
HuggingFace libraries and updated by Adam opti-
mizer (Kingma and Ba, 2017) with a learning rate
of 3e-5. We adopt the margin values of SimCTG
and SimDRC suggested in their work, i.e., ρ = 0.5
for SimCTG and δ = 0.7, α = 0.3 for SimDRC.
We conduct the isotropic and proximal search with
the first n = 2 steps adopting top-k sampling (k = 7).
The weight α is 0.6. We run all experiments with
five different seeds and report the average score.

Evaluation Metrics Traditional n-gram overlap
and text matching metrics such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are
not proper to evaluate plausible output diversity
for open-domain dialog systems. Therefore, for
automatic evaluation, we choose the following met-
rics, including BERTScore (Zhang* et al., 2020),
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Figure 1: Ablation study on the DailyDialog dataset.

MAUVE (Pillutla et al., 2021), Distinct2/4 (Li et al.,
2016a), and G-Eval, an automatic evaluation metric
based on GPT3.5 (Liu et al., 2023).

We also conduct a human evaluation with the
help of recruited proficient English/Chinese speak-
ers. We randomly sample 100 dialogue exam-
ples from DailyDialog and LCCC test sets. For
each dialogue context, we generate responses us-
ing the aforementioned backbone models (BART,
BART+SimCTG, BART+SimDRC) with six differ-
ent inference strategies. Five annotators are hired
independently to measure these samples. Annota-
tors are instructed to give a score ranging from 1 to
5 over the following aspects, including fluency, in-
formativeness, coherence, and semantic coverage1.

Results and Discussion Table 1 lists the auto-
matic evaluation results of the different methods
with different decoding strategies. Similar results
can be also found in human evaluation, as shown in
Table 2. We can see that the models, collaborating
with IPS, can produce more semantically consis-
tent(high BERTScores and MAUVE scores) and
human-like (high G-Eval scores) responses. Al-
though contrastive search can generate more novel
and diverse tokens (high Distinct scores), it usually
suffers from the problem of prediction deviation,
i.e., the predicted token being weakly related to
the main idea of the response. This is also in line
with the worse performance of contrastive search
on other metrics, such as BERTScore, and G-Eval,
indicating that the diverse responses produced by
contrastive search are not accurate and human-like
enough. Different from contrastive search, IPS tries
to concentrate on the core meaning of the response
and express it clearly, thus a slightly lower Distinct
score is acceptable and expected. Note that IPS still
has better distinct scores than other traditional de-
coding methods since it encourages discrimination
and isotropy among utterances.

1Details of human evaluation are in Appendix A.1.

Although IPS can be directly used with different
models and achieve good performance, the models
trained with SimDRC are the best testbed for IPS.
We can see that SimDRC+IPS can mostly achieve
the best performance across the board on both au-
tomatic and human evaluation. This is reasonable
because the training process of SimDRC is greatly
consistent with the search criterion of IPS, and they
both push away the inter-utterance features and pull
close the intra-utterance features.

Ablation Study Figure 1 shows the ablation stud-
ies on different components of the method, includ-
ing the first n steps, the sampling strategy for the
first n-step decoding, and the weight α. As shown
in Figure 1(a), our method consistently outper-
forms the contrastive search no matter the number
of first steps. We find some performance drops
with the increase of the first-stage sampling steps.
We think this is because more generic tokens are
selected by traditional search methods, thus weak-
ening the proximity and isotropy of the response.
For strategies in the first n steps, we attempt beam
search, top-k sampling, and nucleus sampling. We
finally select top-k sampling as our first stage’s
strategy owing to its better performance in the com-
parisons. Figure 1(b) shows the results of different
k values adopted in top-k sampling. We can see
that our method exceeds the baseline by a large
margin when k > 5. The effect of weight α is also
studied, as shown in Figure 1(c). Our method con-
sistently outperforms the baseline with the different
weights, suggesting the robustness of our method.

Hyperparameter Analysis To explore the ef-
fects of isotropy and proximity, in our experiments,
we introduced a hyperparameter β to balance the
p_value and i_value as:

(1− β)× p_value − β × i_value (6)

We tried the effects of β ranging from 0.2 to 0.8.
We surprisingly found that the balance of proximal
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value and isotropy value leads to the best perfor-
mance, saying β equals 0.5. This finding is a bit
different from the observations in SimDRC(Wu
et al., 2023) which suggests that larger isotropy
loss weight is needed to balance the two proper-
ties in the training stage. We think this is because
our method is a decoding strategy, rather than the
training optimization process. The sparse isotropy
values would not cause the model bias in the decod-
ing stage. So, the harmonious balance of proximity
and isotropy can be simply achieved by giving a
moderate value of β.

4 Conclusion

In this work, we present a fine-grained conversa-
tional decoding strategy, namely isotropic and prox-
imal search (IPS) to encourage the generation of
isotropic and conversational tokens. Superior to
existing decoding methods, IPS decouples the pre-
vious tokens and the context. Experiments show
that our method achieves impressive performance
on both automatic and human evaluation.
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Limitations

During the experiments, we found that for a single
piece of data in the DailyDialog test set, traditional
text decoding methods such as beam search, top-k
sampling and beam search take less than 1 second,
the contrastive search takes about 5.07s, and the de-
coding time required by our proposed IPS is about
2.16s. Although our approach takes longer than the
traditional text decoding method, our calculation
speed is obviously faster than contrastive search.
How to further improve the computing speed is still
the direction we need to work on.

Ethics Statement

In this work, we use publicly released datasets to
auxiliary our dialogue response generation. Gener-
ally, these previous works have considered ethical
issues when creating the datasets. We have man-
ually checked some samples for the datasets we
used in this work, and do not find any obvious
ethical concerns, such as violent or offensive con-
tent. We will also release the source decoding code

with friendly instructions to support its correct use.
However, we still need to emphasize that text gen-
eration is not as controllable as we think. It still
would generate some novel or unexpected words
occasionally. We may take actions to decrease gen-
eration diversity to alleviate this problem.
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A Appendix

A.1 Human Evaluation Instructions
Please rate the quality of the generated response
based on the given dialogue context and the target
response over the following aspects: (1) Fluency;
(2) Informativeness; (3) Coherence; (4) Semantic
Coverage. We provide some instructions for your
rating.

A.1.1 Fluency
This measures whether the generated text has no
formatting problems, capitalization errors, or ob-
viously ungrammatical sentences (e.g., fragments,
missing components) that make the text difficult to
read. The definitions of different scores are:

• 5: The text is fluent, grammatically correct,
and has no errors. It is easy to read.

• 4: The text is grammatically correct but has
a few spelling or capitalization errors, which
does not affect your understanding.

• 3: The text has minor errors in both grammar
and spelling. The errors slightly affect your
understanding.
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• 2: The text has major errors in both grammar
and spelling. The errors make the text hard to
read.

• 1: The text does not make sense and it is
unreadable.

A.1.2 Informativeness
This measures whether the generated text has di-
verse, informative, novel, or logically related con-
tent. The definitions of different scores are:

• 5: The text contains very diverse, informative,
and novel content. It is enjoyable to read the
text.

• 4: The text contains many informative and
novel contents. (Choose this score when you
hesitate between 3 and 5.)

• 3: The text contains some new information but
also contains a few repetitions of the context.

• 2: The text only contains a few informative
and new terms. (Choose this score when you
hesitate between 1 and 3.)

• 1: The text is dull, repetitive, and has no new
information. All contents are from the dia-
logue context.

A.1.3 Coherence
This measures whether the generated text is seman-
tically and factually consistent with the dialogue
context. The definitions of different scores are:

• 5: The text is semantically, factually, and topi-
cally consistent with the dialogue context. All
contents of the text are related to the source
text or can be inferred from the source.

• 4: The text is very related to the context but
has minor inconsistencies or contradictions
that do not affect its overall relevance.

• 3: The text is related to the context but has
some obvious inconsistencies and contradic-
tions.

• 2: The text is slightly consistent with the con-
text. Many inconsistencies and contradictions
in the context can be found.

• 1: The text is totally inconsistent with the con-
text. It semantically or factually contradicted
the context.

A.1.4 Semantic Coverage
This measures how many semantic content units
from the target response are covered by the gener-
ated text. The definitions of different scores are:

• 5: All semantic content units of the target text
can be found in the generated text. They are
semantically consistent.

• 4: Most of the content units of the target text
can be found from the generated text while
a few missing units do not affect the overall
coverage.

• 3: Some semantic content units can be found
in the generated text but also miss some im-
portant units.

• 2: Most of the semantic content units are not
covered. Only a few insignificant units can be
found in the generated text.

• 1: The text does not have any overlapping
semantic content units with the target text.

We recruit five human workers to annotate 3,600
samples. To make sure the workers are fairly paid,
we pay 0.1 dollars for each sample. Therefore,
the total amount spent on participant compensation
is 360 dollars. The annotators take 24 hours to
finish the task, suggesting the hourly wage for each
worker is 15 dollars.

A.2 More Details of the Task

A.2.1 Evaluation of G-EVAL Score
The API we used to test G-EVAl is gpt-3.5-turbo,
and the following is the prompt (Liu et al., 2023):

You will be given a conversation between two in-
dividuals. You will then be given one potential
response for the next turn in the conversation. Your
task is to give a final score for utterance. Please
make sure you read and understand these instruc-
tions carefully.

The evaluation aspects are:

1. Engagingness: Is the response dull or interest-
ing?

2. Naturalness: This measures whether the gen-
erated text has no formatting problems, capi-
talization errors, or obviously ungrammatical
sentences to read.

64



3. Informativeness: This measures whether the
generated text has diverse, informative, novel,
or logically related content.

4. Coherence: This measures whether the gener-
ated text is semantically and factually consis-
tent with the dialogue context.

The evaluation steps are:

1. Read the conversation, the corresponding la-
bel, and the response carefully.

2. Considering the above evaluation aspects, re-
turn a comprehensive final score ranging from
1 to 5 for each conversation.

3. Please only return 1 overall score, without
any extra text descriptions. The return format
should be like Score:1.

Now please read the following conversation, and
return the score.

A.2.2 More Experimental Results
Table 2 lists the results of human evaluation.

A.3 Surface-level Analysis
A.3.1 Score Distribution According to the

Length of the Previous Context
Table 3 and Table 4 illustrate the relations between
the context length and the human evaluation met-
rics while using the IPS (the above one) and beam
search (the below one) decoding strategies. Observ-
ing the table, when the context length is particularly
short (<10), we speculate that the context may con-
sist of simple greetings or introductions, resulting
in lower difficulty of generation and thus higher
scores. When the context length varies in the range
of approximately 10 to 40, due to differences in
the complexity of context content and semantics,
the scores exhibit a fluctuating trend. As the length
continues to increase, the information provided by
the previous context becomes richer, leading to im-
proved effectiveness of both decoding methods. We
also note that when faced with exceptionally long
contexts, the generation quality of IPS is superior
to the baselines.

A.3.2 Utterance Length Analysis
Table 5 shows that both IPS and contrastive search
tend to produce shorter sentences than traditional
methods. We explain in the main text that by in-
corporating isotropy, achieved through contrastive

search and IPS, redundancy is minimized, result-
ing in more concise generated text compared to
previous methods. Considering the nature of the
conversation, our IPS strategy expects proximity
and does not enlarge the token distance in the same
utterance, thus responses of IPS are slightly longer
than that of contrastive search.

A.4 Qualitative Analysis

A.4.1 Instances Illustration

Some examples are presented to illustrate the effect
of our IPS search.

In summation, according to Table 6 and Table 7,
some qualitative observations are as follows:

• Replies generated by IPS are more natural and
accurate.

• IPS tends to generate relatively concise re-
sponses.

• With more complex previous contexts, we ob-
served that IPS does not prioritize shortening
the length of response. IPS can generate re-
sponses that are more in line with the situation
based on the characteristics of the conversa-
tion.

A.5 Cosine Similarity Heatmap

To ensure utterances generated by our IPS are
isotropic and proximal, and observe the represen-
tations produced by different decoding methods,
we showcase the cosine similarity matrix of token
representations correspondingly.

The larger color difference between different
sentences represents greater isotropy, indicating
discrimination among utterances; while the darker
the color within the same sentence, the greater the
proximity, conveying a more concentrated thought.

Choosing SimDRC as the backbone model, co-
sine similarity heatmaps of different inference
methods are shown as follows. Tokens generated
by IPS exhibit brighter colors in the heatmap, indi-
cating increased proximity within the same sen-
tence, while tokens from IPS showcase darker
colors for different sentences, signifying greater
isotropy. Contrastingly, traditional methods like
beam search showed anisotropy(i.e. features oc-
cupy a narrow cone in the vector space, thus lead-
ing to the problem of degeneration.) in the figures.
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Figure 2: An image of a cosine similarity heatmap
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Model Strategy
DailyDialog LCCC

Fluency Info. Coherence SC Fluency Info. Coherence SC

BART

greedy 4.636 3.302 3.362 2.386 4.626 2.810 3.414 1.996
beam 4.584 3.362 3.508 2.390 4.452 2.950 3.278 2.054
top-k 4.634 3.416 3.554 2.432 4.554 2.954 3.384 2.072

nucleus 4.666 3.478 3.578 2.420 4.602 3.042 3.434 3.358
contrastive 4.678 3.406 3.476 2.416 4.560 2.888 3.358 2.118

IPS 4.710 3.562 3.768 2.566 4.718 3.152 3.622 2.184

SimCTG
(ρ = 0.5)

greedy 4.652 3.288 3.362 2.394 4.622 2.884 3.580 2.026
beam 4.696 3.404 3.446 2.390 4.602 2.918 3.224 2.040
top-k 4.718 3.398 3.406 2.414 4.554 2.970 3.464 2.040

nucleus 4.734 3.372 3.348 2.386 4.582 2.938 3.548 2.068
contrastive 4.712 3.304 3.31 2.332 4.582 2.882 3.456 2.076

IPS 4.758 3.586 3.578 2.584 4.708 3.084 3.688 2.176

SimDRC
(δ = 0.7,
α = 0.3)

greedy 4.774 3.632 3.484 2.684 4.634 2.920 3.390 1.990
beam 4.820 3.580 3.404 2.586 4.620 2.920 3.632 2.034
top-k 4.854 3.614 3.396 2.618 4.590 2.950 3.572 2.048

nucleus 4.864 3.622 3.450 2.600 4.588 2.930 3.628 2.088
contrastive 4.872 3.692 3.798 2.694 4.594 2.890 3.582 1.984

IPS 4.892 3.768 3.942 2.826 4.712 3.120 3.734 2.332

Table 2: Results of human evaluation on DailyDialog and LCCC datasets, where SC means the semantic coverage,
info. means informativeness.

Length Fluency Informativeness Coherence Semantic Coverage num
[0,10) 4.94 4.56 4.67 3.06 9
[10,20) 4.93 3.5 3.62 2.77 13
[20,30) 4.73 4 4 3.09 11
[30,40) 4.75 3.56 4 2.67 12
[40,50) 4.85 3.67 3.56 2.28 9
[50,75) 4.95 3.52 3.61 2.45 17
[75,100) 4.8 3.52 3.79 2.84 15
over 100 4.93 3.79 4.21 2.96 14

Table 3: Relations between the context length and the human evaluation metrics while using the IPS.

A.6 Examples of Generated Texts
For non-native Chinese speakers, translations of
Table 9 are presented in Table 10. The quality of
the LCCC dataset still requires optimization, as
it contains numerous colloquial and slang expres-
sions. We are not professional translators, and in
our attempts, we noticed that the translated mean-
ings sometimes diverged from the original Chinese.
We apologize for the inconvenience.
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Length Fluency Infomrativeness Coherence Semantic Coverage num
[0,10) 4.89 4.44 4.33 2.78 9
[10,20) 4.77 3.31 3.15 2.46 13
[20,30) 4.55 3.86 3.41 3 11
[30,40) 4.88 3.29 3.13 2.42 12
[40,50) 4.88 3.11 2.89 1.83 9
[50,75) 4.82 3.43 3.17 2.43 17
[75,100) 4.78 3.48 3.45 2.5 15
over 100 4.93 3.5 3.64 2.43 14

Table 4: Relations between the context length and the human evaluation metrics while using the beam search.

Sentence_Len dd-drc dd-ctg dd-bart lccc-drc lccc-ctg lccc-bart
Greedy 11.33 11.39 10.98 14.05 13.76 14.60
Beam 12.56 12.65 12.24 11.89 11.69 11.88
Top_k 13.10 13.21 12.71 12.39 12.12 12.40
Top_p 12.76 13.60 13.17 12.55 12.33 12.56
Simctg 9.02 9.05 8.72 9.50 9.17 8.88

IPS 9.59 10.31 9.13 9.95 9.46 9.14

Table 5: Sentence-level Analysis

context

A: I have a cell phone in my car. Now it’s probably on the floor on the passenger side.
Why don’t you get it for me, and then I can call the police?
B: Alright
A: It doesn’t work. It looks like it’s broken. I need to get to a hospital. You should drive me there.
B: Oh, yeah? It’s better if we make a police report first. Then you can go to the hospital.

label "Damn it! I’m injured here. We could wait all day for the police."
greedy "Alright. I’ll go get it."
beam/top-p/top-k "I don’t feel like making a police report. I need to get to the hospital."
contrastive “Alright. I’ll call the police."
IPS "Oh, I don’t think I can afford to wait for the police. I need to get to the hospital."

Table 6: Qualitative Instance A

context
A: Good afternoon! Did you call for a plumber?
B: Yes, yes I did. Please come in! I’m so glad you came! This old house is falling apart!
Come on into the bathroom. See, here, there’s water leaking everywhere!

greedy "Well, it’s leaking because of the leaking faucet in the shower."
beam/top-p "Well, it’s leaking because of the leaking faucet in the shower."
top-k "I’m sorry, madam, but I don’t think that water is leaking. I’m going to have to check it out."
contrastive "Well, it’s leaking all over! I don’t know what the plumber can do about it!"
IPS "Well, it’s leaking because of the leaking faucet in the shower. I guess the water is backed up."

Table 7: Qualitative Instance B
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content

A: I didn’t receive an unemployment check this week and need to know why.
B: Did you mail us your last Continued Claim Form?
A: I am afraid that I forgot to send it in.
B: We cannot pay you unless you turn that form in every two weeks.
A: Is it too late to mail the Continued Claim Form in now?

greedy I will mail it in right now.
beam search It’s too late to mail it in now. You will receive your check this week.
top-k sampling I will mail it in right now if you can’t wait.
nucleus search It’s too late to mail it in now. You will receive your check this week.
contrastive search Yes, you can do it now.
IPS Yes, it is.

content

A: Hello, this is Mike, Kara.
B: Mike! Good to hear from you. How are you?
A: Everything is fine, and how are you?
B: Things are going well with me.
A: Kara, I had fun the other night at the movies and was wondering if you would like to go out again this Friday.

greedy I was thinking of it, but I am not feeling too well. I have to go to the hospital for a couple of days.
beam search That sounds great. I would love to go out with you
top-k sampling I would love to, but I have to work late on Friday.
nucleus search That sounds great. I would love to go out with you.
contrastive search Mike, I was thinking of it.
IPS That sounds great. I would love to.
content A: What do you think I should do, doctor?
greedy I think you should have a good rest for three days.
beam search I think you’d better have a good rest for three days
top-k sampling I think you should go to see the head of the family.
nucleus search I think you’d better have a good rest for three days.
contrastive search Well, it’s hard to say. You look a little pale, don’t you?
IPS Well, you should have a good rest for three days. Then you’ll feel better.

Table 8: Results of generation texts of DailyDialog.

content

A:姐做的好喝
B:这句姐喜欢
A:如果做给俺喝，那绝对是美味啊，人间极品，佳肴中滴佳肴
B:家里有蕃茄但现在姐不想做哩

greedy 我也喜欢喝，但是我不会做给你喝

beam search 我也不想做，我喜欢吃番茄

top-k sampling 我也喜欢吃这种美味

nucleus search 我也不想做了，就是喜欢吃"
contrastive search 我也不想做，就是喜欢吃这种东西而已

IPS 我也不想做，但是我喜欢吃

content
A:魔都都不冷了？
B:这两天有点反常吧…估计过两天会冷下去…

greedy 我们这里也是

beam search 我们这里也是这样的天气

top-k sampling 我们这里也是这样的天气

nucleus search 这两天有点冷，但是也不是特别冷

contrastive search 这两天好冷啊，估计明天开始就冷

IPS 这两天天气不错，不过今天有点冷

content A:我饿了。
greedy 我也饿了。

beam search 我也想吃，但是没有时间。

top-k sampling 我饿了，我要去吃饭了。

nucleus search 你怎么这么早就睡了。

contrastive search 我也饿了。

IPS 我也饿了，你吃了吗？

Table 9: Results of generation texts of LCCC.
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content

A: You are good at beverage
B: I like your comment.
A: If made for me to drink, it would definitely be delicious, an exquisite delicacy among delicacies.
B: There are tomatoes at home, but right now, I just don’t feel like dealing with them.

greedy I also like to drink, but I won’t make it for you to drink.
beam search I don’t want to cook either, I enjoy eating tomatoes.
top-k sampling I also enjoy eating this delicious treat.
nucleus search I don’t want to make it anymore, I just like to eat it
contrastive search I don’t want to cook either, I simply enjoy eating this kind of thing.
IPS I don’t want to do it either, but I’d love to eat.

content
A: Is Shanghai not cold anymore?
B: These two days have been a bit abnormal... I estimate it will get colder in the next two days

greedy We here the same
beam search We have the same weather here
top-k sampling We have the same weather here
nucleus search It’s been a bit cold these two days, but it’s not particularly cold either
contrastive search It’s been so cold these two days. It’s expected to start cold tomorrow
IPS The weather has been good these two days, but it’s a bit cold today
content A: I’m hungry
greedy I’m also hungry
beam search I want to eat too, but I don’t have time
top-k sampling I’m hungry, I’m going to eat now
nucleus search Why did you go to bed so early
contrastive search I’m also hungry
IPS I’m also hungry, have you eaten?

Table 10: Translation of generation texts of LCCC.
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