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Abstract

New Intent Discovery (NID) aims to recognize
both new and known intents from unlabeled
data with the aid of limited labeled data con-
taining only known intents. Without consid-
ering structure relationships between samples,
previous methods generate noisy supervisory
signals which cannot strike a balance between
quantity and quality, hindering the formation of
new intent clusters and effective transfer of the
pre-training knowledge. To mitigate this limi-
tation, we propose a novel Diffusion Weighted
Graph Framework (DWGF) to capture both se-
mantic similarities and structure relationships
inherent in data, enabling more sufficient and
reliable supervisory signals. Specifically, for
each sample, we diffuse neighborhood relation-
ships along semantic paths guided by the near-
est neighbors for multiple hops to characterize
its local structure discriminately. Then, we sam-
ple its positive keys and weigh them based on
semantic similarities and local structures for
contrastive learning. During inference, we fur-
ther propose Graph Smoothing Filter (GSF)
to explicitly utilize the structure relationships
to filter high-frequency noise embodied in se-
mantically ambiguous samples on the cluster
boundary. Extensive experiments show that our
method outperforms state-of-the-art models on
all evaluation metrics across multiple bench-
mark datasets. Code and data are available at
https://github.com/yibai-shi/DWGF.

1 Introduction

Even though current machine learning methods
have achieved superior performance on many NLP
tasks, they often fail to meet application require-
ments in an open-world environment. For instance,
general intent classification models trained on pre-
defined intents cannot recognize new intents from
unlabeled dialogues, which is a clear obstacle for
real-world applications. Therefore, research on
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Figure 1: Illustration of the transformation of supervi-
sory signal generation method. Bottom Left: generat-
ing supervisory signals indiscriminately along all direc-
tions of the hypersphere, which is sensitive to threshold
changing. Top: an example of selecting samples with
semantic paths. Bottom Right: generating supervisory
signals directionally with structure relationships com-
posed of multiple semantic paths in a relaxed feature
hypersphere.

New Intent Discovery (NID), which aims to dis-
cover new intents from unlabeled data automati-
cally, has attracted much attention recently.

Most existing NID methods (Lin et al., 2020;
Zhang et al., 2021; Wei et al., 2022; Zhang et al.,
2022; An et al., 2023) adopt a two-stage training
strategy: pre-training on labeled data, then learning
clustering-friendly representation with pseudo su-
pervisory signals. However, previous methods only
rely on semantic similarities to generate supervi-
sory signals based on the assumption that samples
within the feature hypersphere belong to the same
category as the hypersphere anchor, e.g. cluster
centroids (Zhang et al., 2021), class prototypes
(An et al., 2022b), or query samples (Zhang et al.,
2022).

Even though these methods can learn some dis-
criminative features, they still face limitations in
generating both adequate and reliable supervisory
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signals, which we call the Quantity and Quality
Dilemma. Specifically, as shown in Fig.1 Bot-
tom Left, these methods rely on a fixed threshold
to determine the search radius of the hypersphere.
Shrinking the threshold (blue solid line) helps re-
trieve more accurate positive keys, but it loses infor-
mation from positive keys out of the hypersphere,
resulting in a low recall. However, simply relaxing
the threshold (red dashed line) will introduce much
noise and lead to low accuracy.

Quantity and Quality Dilemma is caused by the
fact that the previous methods searched positive
keys indiscriminately along all directions of the
hypersphere with a fixed search radius. In order
to selectively sample both adequate and reliable
positive keys to ensure the formation of new intent
clusters, we propose to model and utilize structure
relationships inherent in data, which reflect the
semantic correlations between samples from the
perspective of connectivity. As shown in Fig.1 Top,
for each sample, we first initialize its k-nearest
neighbors with a tightened threshold. Then we
connect any two samples if they have at least one
shared neighbor since the semantics of the shared
neighbor are highly correlated with the samples on
both sides. According to this rule, we identify two
samples (with brown borders in Fig.1 Top) that can
be used as bridges and diffuse the anchor along
them to search positive keys near the boundary of
the hypersphere, forming the final semantic path.
In the case of the same semantic similarity, we
additionally require the positive keys to appear on
the semantic paths diffused from the anchor.

In this paper, we propose a novel Diffusion
Weighted Graph Framework to model and utilize
structure relationships. Specifically, from any an-
chor, we diffuse neighborhood relationships along
the nearest neighbor-guided semantic paths for mul-
tiple hops to construct the final DWG. As shown in
Fig.1 Bottom Right, then we sample positive keys
along the semantic paths (arrow lines) in DWG
within the relaxed feature hypersphere. Moreover,
sampled keys are assigned to different contrastive
weights according to their frequency of being sam-
pled on different semantic paths, where keys that
are diffused repeatedly from different outsets will
accumulate larger values and vice versa. We con-
duct contrastive learning with sampled positive
keys and corresponding weights in the embedding
space. Apart from considering the sample-sample
structure relationships from the local view, we

adopt the idea of Xie et al. (2016) to help learn
clustering-friendly representations from the global
view through self-training.

During the inference stage, in order to filter high-
frequency noise embodied in the semantically am-
biguous samples on the cluster boundary, we pro-
pose a novel inference improvement Graph Smooth-
ing Filter (GSF), which utilizes normalized graph
Laplacian to aggregate neighborhood information
revealed by structure relationships of testing sam-
ples. Smoothed testing features help to obtain bet-
ter clustering results.

Our main contributions can be summarized as
follows:

* We propose a Diffusion Weighted Graph
Framework (DWGF) for NID, which can cap-
ture both semantic similarities and structure
relationships inherent in data to generate ade-
quate and reliable supervisory signals.

* We improve inference through Graph Smooth-
ing Filter (GSF), which exploits structure re-
lationships to correct semantically ambiguous
samples explicitly.

* We conduct extensive experiments on multiple
benchmark datasets to verify the effectiveness.

2 Related Work

2.1 New Intent Discovery

Semi-supervised NID aims to discover novel in-
tents by utilizing the prior knowledge of known
intents. First, it is assumed that the labeled data
and the unlabeled data are disjoint in terms of cate-
gories. To tackle the NID challenge under this set-
ting, Mou et al. (2022a) proposed a unified neigh-
bor contrastive learning framework to bridge the
transfer gap, while Mou et al. (2022b) suggested
a one-stage framework to simultaneously classify
novel and known intent classes. However, a more
common setting in practice is that the unlabeled
data are mixed with both known and new intents.
Compared to the previous setting, the latter is more
challenging because the above methods have dif-
ficulty distinguishing a mixture of two kinds of
intents and are prone to overfit the known intent
classes. To this end, Lin et al. (2020) conducted
pair-wise similarity prediction to discover novel in-
tents, and Zhang et al. (2021) used aligned pseudo-
labels to help the model learn clustering-friendly
representations. Recently, contrastive learning has
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become an important part of NID research. For
example, An et al. (2022a) proposed hierarchical
weighted self-contrasting to better control intra-
class and inter-class distance. Wei et al. (2022)
exploited supervised contrastive learning (Khosla
et al., 2020) to pull samples with the same pseudo-
label closer. An et al. (2022b) achieved a trade-off
between generality and discriminability in NID
by contrasting samples and corresponding class
prototypes. Zhang et al. (2022) acquired compact
clusters with the method of neighbor contrastive
learning. However, these methods don’t fully ex-
plore the structure relationships inherent in data,
causing the generated supervisory signals to fall
into a Quantity and Quality Dilemma.

2.2 Contrastive Learning

Contrastive learning pulls similar samples closer,
pushes dissimilar samples far away, and has gained
promising results in computer vision (Chen et al.,
2020; He et al., 2020; Khosla et al., 2020) and nat-
ural language processing (Gao et al., 2021; Kim
et al., 2021). Inspired by the success of contrastive
learning, a large number of works extend the defi-
nition of positive and negative keys in it to adapt to
more research fields. For example, Li et al. (2021)
conducted cluster-level contrastive learning in the
column space of logits, Li et al. (2020) proposed to
use cluster centroids as positive keys in contrastive
learning, and Dwibedi et al. (2021) treated nearest
neighbors in feature space as positive keys. These
works all help model to learn cluster-friendly rep-
resentations that benefit NID. However, they solely
rely on semantic similarities to search positive keys,
which inevitably generate noisy pseudo supervisory
signals.

3 Methods

3.1 Problem Formulation

Traditional intent classification task follows a
closed-world setting, i.e., the model is only devel-
oped based on labeled dataset D' = {(z;,y:)|y; €
yk}, where V¥ refers to the set of known intent
classes. New Intent Discovery follows an open-
world setting, which aims to recognize all intents
with the aid of limited labeled known intent data
and unlabeled data containing all classes. There-
fore, in addition to the above D!, D% = {z;|y; €
VEu Y™} from both known intents V* and new in-
tents )" will be utilized to train the model together.
Finally, the model performance will be evaluated

on the testing set D* = {xz;|y; € YF U Y" ).

3.2 Approach Overview

Fig.2 illustrates the overall architecture of our pro-
posed Diffusion Weighted Graph Framework. The
framework includes two parts: training with Diffu-
sion Weighted Graph (DWG) and inference with
Graph Smoothing Filter (GSF). Firstly, we con-
duct pre-training detailed in Sec.3.3. Secondly, as
shown in Fig.2’s I, we extract intent representations
to simultaneously conduct self-training from the
global view and contrastive learning with DWG
from the local view. More training details are pro-
vided in Sec.3.4. Finally, as shown in Fig.2’s II,
we construct GSF to smooth testing features and
adopt KMeans clustering to complete the inference.
More inference details are provided in Sec.3.5.

In summary, combined with structure relation-
ships, our proposed DWGF can 1) break through
the limitation of tightened threshold and achieve
higher sampling accuracy and recall simultane-
ously; 2) suppress sampling noise while retaining
rich semantics through soft weighting; 3) consider
the local sample-sample supervision and the global
sample-cluster supervision simultaneously; 4) fil-
ter high-frequency noise embodied in semantically
ambiguous samples on the cluster boundary during
inference.

3.3 Model Pre-training

We use BERT (Devlin et al., 2019) to encode input
sentences and take all token embeddings from the
last hidden layer. Then we apply average pooling
to acquire the final intent representations.

z; = mean-pooling(BERT (x;)) €))

where x; and z; refer to i-th input sentence and cor-
responding representation. Motivated by (Zhang
et al., 2021), we use Cross-Entropy loss on labeled
data to acquire prior knowledge from known in-
tents. Furthermore, we follow (Zhang et al., 2022)
to use Masked Language Modeling (MLM) loss on
all training data to learn domain-specific semantics.
We pre-train the model with the above two kinds
of loss simultaneously:

»Cpre - »Cce (Dl) + ['mlm(Du) (2)

where D! and D* are labeled and unlabeled dataset,
respectively.
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Figure 2: Overall architecture of our proposed Diffusion Weighted Graph Framework (DWGF). I: illustration of
the model training. II: illustration of the inference. III: illustration of self-training. IV: illustration of contrastive

learning based on DWG.

3.4 Representation Learning with DWG

After pre-training, we extract all training samples’
[2-normalized intent representations and initialize
the instance graph Ag with a monomial kernel (Is-
cen et al., 2017) as the similarity metric.

A0 {maw(z;fzj,())", i £ jNJE Np(zi)
J 0, otherwise
3)
Here N (z;) saves the indices of k-nearest neigh-
bors of z;, and p controls the weights of similarity.
We set p to 1 for simplicity and generality.

Different from Zhang et al. (2022), we reduce
the neighborhood size and retain the similarities
with anchor instead of 0-1 assignment. We aim
to model the structure relationships through KNN
rather than directly sample positive keys. With
the initial high-confidence neighbors, we perform
subsequent diffusion to complete the DWG and
implement sampling and weighting.

Sampling Strategy. As shown in Fig.2’s IV,
the smaller neighborhood size first ensures that se-
mantically unrelated heterogeneous samples are not
used as outsets for diffusion. Then we start with the
anchor and diffuse its neighborhood relationships
along semantic paths guided by high-confidence
neighbors, which would be included as new an-
chors for the next diffusion. We define DWG as
the accumulation of multiple self-multiplications
of Ao.

A=>"0"1 A) (4)
=1

where r refers to the diffusion rounds, 6 is the
magnitude of diffusion, which is set it to 1 for
simplicity. Combined with a relaxed semantic sim-
ilarity threshold ~, we further filter keys in DWG
with similarity below the threshold, i.e. flz-j = 0if
zZ-T zj <7.

Weighting Strategy. Apart from semantic simi-
larity, DWG A also reflects the confidence of sam-
pled keys to the anchor from the perspective of the
frequency that the key is repeatedly diffused. How-
ever, the numerical scale of each row in A varies
significantly due to the different diffusion process.
To ensure consistency in subsequent contrastive
learning, we normalize them to [0, 1] interval with
the degree D; = Zj AZJ of x; and modulation
factor A.

wi; = min(l,)\ : %Z), Aij >0 (5)
! Aij=0

As shown in Fig.2’s IV, such a soft weighting
strategy has two advantages. Firstly, the blue line
shows that homogeneous samples will prevail in
contrastive learning because of the cumulative influ-
ence from the multiple diffusion of different keys.
Secondly, the red line indicates that even if hetero-
geneous samples are selected, they will be assigned
smaller weights because of infrequent sampling
and lower similarity to the diffusion outset.

To fully utilize sampled positive keys, we main-
tain a momentum encoder and a dynamic queue
following (He et al., 2020), which can help the
model benefit from contrasting large amounts of

8036



consistent keys at once. At the end of each itera-
tion, the dynamic queue will be updated by adding
current samples and removing the oldest samples.
We denote the final DWG contrastive learning loss
as:

B N
R —T
N 1 : N 6hl h],/ /T

j '=1
(6)
where B and N refer to the size of the batch and dy-
namic queue, respectively. h; is the embedding of
x;. ilj is the embedding of x; stored in the dynamic
queue. T is the temperature hyperparameter.
Apart from considering the sample-sample
neighborhood structure from the local view, we
adopt the idea of Xie et al. (2016) to add the sample-
cluster supervision from the global view. Firstly,
we initialize the cluster centroids with the KMeans
result on pre-training features and use ¢-distribution
to estimate the distance between intent representa-
tions z; and cluster centroid fux:

ﬁlocal =

n+1

(1+ ||z — gl /m)~ 2
_n+1
Zk’(l"‘“zi_ﬂk ) E

Here we set n = 1 for simplicity. Then we generate
the auxiliary distribution with both instance-wise
and cluster-wise normalization:

_ QW
Zk' Q?k//fl;

where f, = . Q; are soft cluster frequencies.
Finally, the cluster assignment distribution ) is
optimized by minimizing KL-divergence with the
corresponding auxiliary distribution P:

Qir =

(7

Py, (8)

B Y|

5230

zlkl

©))

gl obal =

Overall, the training objective of our model can
be formulated as follows:

L= Llocal + o ‘Cglobal (10)

where « is the relative weight of self-training loss.

3.5 Inference with GSF

During the training phase, we model and utilize
the structure relationships to help the encoder learn
representations that are aware of the local struc-
tures. Therefore, the structure relationships inher-
ent in the testing set can be captured by the trained

Dataset \VF| [V DY DY |DY|
BANKING 58 19 673 8330 3080
StackOverflow 15 5 1350 16650 1000
CLINC 113 37 1344 16656 2250

Table 1: Statistics of datasets. |V*|, |)"|, |D!|, |D¥|
and | D! | represent the number of known categories, new
categories, labeled data, unlabeled data and testing data.

encoder and utilized to improve inference in an
explicit way.

Specifically, we extract features of the testing
set and construct corresponding instance graph A,
as in Sec.3.4. Then, with the renormalization trick
A = I + A, (Kipf and Welling, 2016), we compute
the symmetric normalized graph Laplacian:

Lsym = D7 'LD™! (11)
where ﬁn’ => j fiij and L = D — A are degree
matrix and Laplacian matrix corresponding to A.
According to (Wang et al., 2019), we denote the
Graph Smoothing Filter (GSF) as:

H = (I—0.5%Lgym)" (12)
where t refers to the number of stacking layers. We
apply the filter to the extracted features and acquire
the smoothed feature matrix Z = H Z for KMeans
clustering. To the best of our knowledge, this is the
first attempt to apply the structure-based filter to
inference in NID.

4 Experiments

4.1 Datasets

We evaluate our method on three benchmark
datasets. BANKING (Casanueva et al., 2020) is
a fine-grained intent classification dataset. Stack-
Overflow (Xu et al., 2015) is a question classifica-
tion dataset collected from technical queries online.
CLINC released by (Larson et al., 2019) is a multi-
domain intent classification dataset. More details
of these datasets are summarized in Table 1.

4.2 Comparison Methods

We compare our method with various baselines and
state-of-the-art methods.

Unsupervised Methods. GloVe-KM: KMeans
with GloVe embeddings (Pennington et al., 2014);
SAE-KM: KMeans with embeddings learned by
stacked auto-encoder; DEC: Deep Embedded Clus-
tering (Xie et al., 2016); DCN: Deep Clustering
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Method BANKING StackOverflow CLINC

NMI ARI ACC NMI ARI ACC NMI ARI ACC
DeepCluster 39.72 7.78 1893 17.52 3.09 18.64 53.82 1227 28.46
GloVe-KM 4875 1274 2792 21.79 454 2426 54.57 12.18 29.55
SAE-KM 60.12 24.00 37.38 48.72 2336 37.16 73.13 29.95 46.75
DEC 6292 25.68 3935 61.32 21.17 57.09 74.83 27.46 46.89
DCN 62.94 25.69 3936 61.34 2498 57.09 75.66 31.15 49.29
DTC 74.51 44.57 57.34 67.02 55.14 71.14 90.54 65.02 74.15
CDAC+ 71.76 40.68 53.36 76.68 4397 7534 86.65 5433 69.89
DAC 79.56 53.64 6490 75.24 60.09 78.74 93.89 79.75 86.49
DSSCC 81.24 58.09 69.82 77.08 68.67 82.65 93.87 81.09 87091
PTIN 81.69 5920 7177 7543 6190 74.18 9441 81.07 87.35
DPN 82.58 61.21 7296 7839 6859 8423 9511 86.72 89.06
DCSC 84.65 64.55 75.18 - - 9528 84.41 89.70
CLNN 8577 676 7682 81.62 7474 86.6 96.08 8697 91.24
Ours 86.41 68.16 79.38 81.73 7530 87.6 96.89 90.05 94.49

Table 2: Evaluation (%) on testing sets. Average results over 3 runs are reported. We set the known class ratio
|Vl /| Vi 0 Vn| to 0.75, and the labeled ratio of known intent classes to 0.1 to conduct experiments.

Methods NMI ARI ACC
Ours 86.41 68.16 79.38
- GSF 85.82 6696 78.21
- Self-training 85.78 66.77 77.73
-DWG 53.89 19.30 33.05

Table 3: Ablation study on the effectiveness of different
components. ’-’ means that we remove the correspond-
ing component.

Network (Yang et al., 2017); DeepCluster: Deep
Clustering (Caron et al., 2018).

Semi-supervised Methods. DTC: Deep Transfer
Clustering (Han et al., 2019); CDAC+: Constrained
Adaptive Clustering (Lin et al., 2020); DAC: Deep
Aligned Clustering (Zhang et al., 2021); DSSCC:
Deep Semi-Supervised Contrastive Clustering (Ku-
mar et al., 2022); DCSC: Deep Contrastive Semi-
supervised Clustering (Wei et al., 2022); DPN: De-
coupled Prototypical Network (An et al., 2022b);
CLNN: Contrastive Learning with Nearest Neigh-
bors (Zhang et al., 2022); PTIN: Robust Pseudo
Label Training and Source Domain Joint-training
Network (An et al., 2023). Notably, for a fair com-
parison, the external dataset is not used in CLNN
as other methods.

4.3 Evaluation Metrics

We adopt three metrics for evaluating clustering
results: Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), and clustering Accu-

80 -
w/o diffusion(r=0)
—e— w/ diffusion(r=1)
79- —=— w/ diffusion(r=2)

Clustering Acc
-
~]

75-

744 . ‘ . .
05 15 25 50 100
Neighborhood Size
Figure 3: Evaluation (%) under non-diffusion and
diffusion-based conditions.

racy (ACC) based on the Hungarian algorithm.

4.4 Implementation Details

We use the pre-trained BERT model (bert-bsae-
uncased) as our backbone and AdamW optimizer
with 0.01 weight decay and 1.0 gradient clipping
for parameter update. During pre-training, we
set the learning rate to 5e~ and adopt the early-
stopping strategy with a patience of 20 epochs. Dur-
ing representation learning with DWG, we set the
first-order neighborhood size/number of diffusion
rounds k£ = 15/r = 2 for BANKING and CLINC,
and k = 50/r = 2 for StackOverflow to construct
DWG, which is updated per 50 epochs. Relaxed
threshold ~, modulation factor A, loss weight «
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and temperature 7 are set to 0.3, 1.1, 0.3 and 0.2,
respectively. We adopt the data augmentation of
random token replacement as (Zhang et al., 2022).
We set the learning rate to le-5 and train until con-
vergence without early-stopping. During inference
with GSF, we set the number of stacking layers ¢
to 2 and neighborhood size to one-third of the av-
erage size of the testing set for each class. All the
experiments are conducted on a single RTX-3090
and averaged over 3 runs.

4.5 Main Results

The main results are shown in Table 2. Our method
outperforms various comparison methods consis-
tently and achieves clustering accuracy improve-
ments of 2.56%, 0.90% and 3.25% on three bench-
mark datasets compared with previous state-of-the-
art CLNN, respectively. It demonstrates the effec-
tiveness of our method to discover new intents with
limited known intent data.

5 Discussion

5.1 Ablation Study

To investigate the contributions of different com-
ponents in our method, we remove GSF, self-

training and contrastive learning based on DWG
in sequence to conduct experiments on BANKING
again. As shown in Table 3, removing them impairs
model performance consistently, indicating GSF re-
ally alleviates the negative effect of high-frequency
noise, and both local and global supervision pro-
vided by Eq.10 benefit new intent discovery, espe-
cially DWG contrastive learning.

5.2 Analysis of DWG

To validate the effectiveness of DWG contrastive
learning, we compare the model performance under
diffusion and non-diffusion conditions. Moreover,
we also explore the sensitivity of our method to
hyperparameter changes, including the first-order
neighborhood size k and the number of diffusion
rounds 7. As shown in Fig.3, DWG generally helps
the model outperform the original non-diffusion
method adopted by (Zhang et al., 2022) and dra-
matically reduces the search scope of k&, indicating
our method is both effective and robust.

To further illustrate the positive effect brought
by structure relationships, we separately analyze
the sampling strategy and weighting strategy based
on DWG.

Sampling Strategy. Taking the BANKING
dataset as an example, we choose 4 representative
classes from it according to the sampling difficulty.
Fig.4a and Fig.4b show the Top-50 positive keys
sampling accuracy at epoch 50 and 0, respectively,
indicating the connectivity required by structure
relationships can effectively improve sampling ac-
curacy, especially 1) on categories with high sam-
pling difficulty; 2) at the beginning of the training
that samples haven’t form compact clusters. Fig.4c
shows the Top-100 sampling accuracy at epoch 0,
which indicates our method is more robust to re-
trieve positive keys selectively when relaxing the
threshold.
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Figure 6: Influence of known class ratio on the CLINC dataset.

ARI ACC SC

w/o GSF 8848 92.84 0.64
k=5 | 88.57 92.89 0.70

t=1 k=10 | 90.34 9449 0.76
k=15 | 90.05 94.36 0.74
k=5 | 8995 9431 0.72
t=2 k=10 | 89.47 94.04 0.81
k=15 | 87.71 92.71 0.79

Table 4: Ablation study on hyperparameters of GSF.

Weighting Strategy. The average weight of
sampled positive and negative keys without seman-
tic similarity threshold is presented in Fig.5 per 10
epochs. It clearly shows that positive keys domi-
nate model training consistently, while semantic-
unrelated negative keys are suppressed, and the
semantic-related negative keys provide rich seman-
tics for training through soft weighting.

5.3 Analysis of GSF

To verify the effectiveness of GSF under different
stacking layers and neighborhood sizes, we freeze
the trained model and perform KMeans clustering
with representations smoothed to varying degrees.
Table 4 shows the results of ARI, ACC and Silhou-
ette Coefficient (SC) on CLINC. The performance
on different evaluation metrics is mostly superior
to direct clustering and robust to hyperparameter
changes. In particular, the SC value shows a signif-
icant improvement, indicating a reduction in clus-
tering uncertainty.

To further illustrate how GSF improves infer-
ence, we randomly sample 15 classes from CLINC
and t-SNE visualize them. Fig.7 clearly shows the
more compact cluster distributions after smoothing,
and the partially zoomed-in illustrations show that

/:.7-7 )

~

Figure 7: Visualization of embeddings on CLINC. Left:
w/o GSF. Right: w/ GSF.

GSF corrects some semantically ambiguous sam-
ples on the boundary by bringing them closer to
the side with stronger connectivity.

5.4 Influence of Known Class Ratio

To investigate the influence of the known class ratio
on model performance, we vary it in the range of
0.25, 0.50 and 0.75. As shown in Fig.6, our method
achieves comparable or best performance under
different settings on all evaluation metrics, which
fully demonstrates the effectiveness and robustness
of our method.

6 Conclusion

In this paper, we propose a novel Diffusion
Weighted Graph Framework (DWGF) for new in-
tent discovery, which models structure relation-
ships inherent in data through nearest neighbor-
guided diffusion. Combined with structure relation-
ships, we improve both the sampling and weighting
strategy in contrastive learning and adopt super-
vision from local and global views. We further
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propose Graph Smoothing Filter (GSF) to explore
the potential of structure relationships in inference,
which effectively filters noise embodied in seman-
tically ambiguous samples on the cluster bound-
ary. Extensive experiments on all three clustering
metrics across multiple benchmark datasets fully
validate the effectiveness and robustness of our
method.

Limitations

Even though the proposed Diffusion Weighted
Graph framework achieves superior performance
on the NID task, it still faces the following limita-
tions. Firstly, the construction of DWG and GSF
needs extra hyperparameters, and their changes
will slightly impact the model’s performance. Sec-
ondly, it is time-consuming to do nearest neighbor
retrieval on the entire dataset.
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