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Abstract
Text classifiers are an indispensable tool for
machine learning practitioners, but adapting
them to new classes is expensive. To reduce
the cost of new classes, previous work exploits
class descriptions and/or labels from existing
classes. However, these approaches leave a gap
in the model development cycle as they support
either zero- or few-shot learning but not both.
Existing classifiers either do not work on zero-
shot problems, or fail to improve much with
few-shot labels. Further, prior work is aimed at
concise class descriptions, which may be insuf-
ficient for complex classes. We overcome these
shortcomings by casting text classification as
a matching problem, where a model matches
examples with relevant class descriptions. This
formulation lets us leverage labels and complex
class descriptions to perform zero- and few-
shot learning on new classes. We compare this
approach with numerous baselines on text clas-
sification tasks with complex class descriptions
and find that it achieves strong zero-shot perfor-
mance and scales well with few-shot samples,
beating strong baselines by 22.48% (average
precision) in the 10-shot setting. Furthermore,
we extend the popular Model-Agnostic Meta-
Learning algorithm to the zero-shot matching
setting and show it improves zero-shot perfor-
mance by 4.29%. Our results show that ex-
pressing text classification as a matching prob-
lem is a cost-effective way to address new
classes. This strategy enables zero-shot learn-
ing for cold-start scenarios and few-shot learn-
ing so the model can improve until it is capable
enough to deploy.

1 Introduction

Advances in supervised text classification have en-
abled the automation of countless classification
pipelines, but such methods struggle when new
classes are introduced. In the typical setting, labels
are collected for a fixed number of classes, and a
model is trained to assign examples to their respec-
tive classes. However, incorporating new classes

into the model incurs substantial costs. The process
often involves labeling new examples, relabeling
existing examples, and retraining the model. To
reduce these costs, we seek a method which rapidly
adapts from seen classes to new/unseen ones, using
few to no labeled examples.

We study a common scenario wherein we have
labeled data for a multi-class or multi-label text
classification problem and then new classes are
introduced. Crucially, we assume access to class
descriptions. Such information is not uncommon
in applications with frequent class changes. For
example, in product compliance, new classes are
often accompanied by documentation describing
the products covered by the new regulations. Con-
cise descriptions may suffice for simple classes
like books, but detailed descriptions are needed for
more specific or complicated classes like books
from genre 1 or genre 2 or . . . or genre 10. Given
labeled data and descriptions for existing classes,
and only descriptions for new classes, our goal is to
build a model to classify examples into new classes
with minimal additional labeling, making it deploy-
able in read-world scenarios. We focus on mod-
est sized language models rather than large ones
since they more readily scale to the large problems
common in real-world applications. This paper
addresses three problems in this setting: how to
(1) leverage both class descriptions and existing la-
beled data to generalize to new classes (in zero- and
few-shot settings); (2) effectively use long, com-
plex class descriptions; and (3) align training with
zero-shot evaluation.

First, to generalize from seen classes to unseen
ones, an ideal approach should exploit all available
data sources and be applicable in both zero- and
few-shot settings. Intuitively, a model which incor-
porates more information should be more accurate.
Labels from existing classes help language models
adapt from pre-training objectives to the problem
domain, while class descriptions aid in generaliz-
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Matching Model

[CLS]     example text xi [SEP] [SEP] cj section 1  cj section 2 [SEP]

Figure 1: A matching model outputs a matching
score f(xi, cj) by assessing whether example text xi

“matches” class description cj .

ing to new classes with fewer labels. Flexibility
between zero- and few-shot learning is important
for ensuring the model works when no or few labels
are available. Additionally, zero-shot performance
is often insufficient to meet real-world performance
requirements, making it desirable for the model to
significantly improve with more collected labels.
Existing techniques for zero- and few-shot learn-
ing tend to satisfy only some of these desiderata.
They either specialize in only zero- or few-shot
settings, or they exploit only one of the aforemen-
tioned data sources. To address this, we follow Yin
et al. 2019; Halder et al. 2020; Wang et al. 2021
and reformulate multi-class or multi-label text clas-
sification as a binary matching problem, where we
train a model to match example texts with class de-
scriptions based on semantic similarity. The model
assigns each (example text, class description) pair
a score, representing the likelihood of the example
belonging to the respective class as in Figure 1. We
use seen class labels to teach the model to match ex-
amples with applicable class descriptions. For the
zero-shot setting we simply pass in descriptions for
new classes, and for few-shot setting we continue
to fine-tune the model on labels and descriptions
from new classes. Therefore this approach uses (a)
class descriptions and existing labels to perform
zero-shot classification and (b) additional labels
from new classes to accomplish few-shot learning.

Second, we seek a model which is effective for
long, complex class descriptions, but this area is
relatively unexplored. Previous work (Yin et al.,
2019; Wang et al., 2021; Schick and Schütze, 2021;
Pappas and Henderson, 2019; Pushp and Srivas-
tava, 2017; Xiao et al., 2019; Zhang et al., 2019)
has primarily focused on short inputs such as class
names or brief sentences. They work when classes
can be concisely summarized in a few words (e.g.
bicycle or socks) but may be inadequate when class
descriptions are necessarily long or specific (e.g.
Category I equipment). To fully leverage the in-

formation in long, complex class descriptions, we
use a cross-encoder architecture with a pre-trained
transformer backbone. This approach facilitates
rich interaction between example text and class de-
scriptions by ingesting them together as a single
concatenated input.

Third, the matching formulation described above
unifies zero- and few-shot learning, but it still ex-
hibits a discrepancy between training and evalua-
tion. Matching model training follows the standard
supervised learning paradigm: training loss is com-
puted on seen classes and descriptions in the hope
that the model will generalize to unseen descrip-
tions. We propose a novel extension of Model-
agnostic meta-learning (MAML) (Finn et al., 2017)
to the matching setting, specifically targeting zero-
shot learning. Similarly to how MAML was de-
signed to align model training to few-shot evalua-
tion, our extension augments the training process
to better mimic zero-shot evaluation.

In this paper we investigate the efficacy of the
matching approach using a cross-encoder architec-
ture for zero- and few-shot text classification with
long, complex class descriptions. Our contribu-
tions are as follows:

• We show that the matching model effectively
leverages existing labels and complex class
descriptions to reduce the label cost of adapt-
ing to new classes: it exhibits strong zero-
shot performance (13.30% better than 10-
shot BERT) and outperforms the baselines
by 22.48% (macro average precision) in the
10-shot setting.

• We extend MAML from few- to zero-shot
learning to improve zero-shot performance
for matching models by 4.3%.

The remainder of this paper is structured as fol-
lows. We review related work in Section 2. Sec-
tion 3 formalizes our problem statement, introduces
the matching model and baselines, and details our
extension of MAML to zero-shot learning. In Sec-
tion 4 we discuss our experiment setup then present
and interpret the results of our experiments. We
give closing thoughts in Section 5.

2 Related work

Few-shot learning Few-shot learning was orig-
inally explored in the domain of image classifica-
tion (Koch et al., 2015; Vinyals et al., 2016; Snell
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et al., 2017; Bateni et al., 2022) where a subset of
classes—train classes—have sufficient examples,
while the remaining classes—test classes—have
relatively few examples. Such methods have since
been repurposed for NLP tasks (Dopierre et al.,
2021), and new techniques, such as in-context and
prompt-based learning, have shown great promise
for few-shot text classification. Large language
models like GPT-3 and 4 (Brown et al., 2020) can
solve NLP tasks by including few-shot examples in-
context. However, their large parameter sizes and
maximum token limitations hinder their ability to
efficiently utilize more labels. Prompt-based meth-
ods like pattern exploiting training (PET) (Schick
and Schütze, 2021, 2020) address these challenges
by prompt-tuning language models and using them
to annotate large unlabeled datasets for downstream
tasks. However, PET’s dependence on domain-
specific data and handcrafted patterns limits its ap-
plicability. Methods like LM-BFF seek to automate
prompt selection, but they are limited to cases when
classes can be described in a few tokens (Gao et al.,
2021a). SetFit (Tunstall et al., 2022) addresses
the shortcomings of prompt-based methods by fine-
tuning a sentence transformer in contrastive manner
with a prompt-free framework. Finally, adapters
(Houlsby et al., 2019; Pfeiffer et al., 2020a,b) have
been shown to perform well in few-shot settings be-
cause of their ability to preserve the generalizability
of pre-trained transformers while avoiding catas-
trophic forgetting and overfitting. In this work we
test methods which do not require tailored prompts:
prototypical networks, adapters, and SetFit.

Zero-shot learning Zero-shot learning for text
classification involves classifying texts into classes
which were not seen during the learning stage (un-
seen classes). To this end, zero-shot techniques
often rely on transferring knowledge from seen to
unseen classes by leveraging semantic attributes or
descriptions of classes (Meng et al., 2020), inter-
class correlations (Rios and Kavuluru, 2018), or
joint embeddings of classes and examples (Nam
et al., 2016; Schopf et al., 2022). Given the com-
plexity of class descriptions in our datasets, we fo-
cus on methods that use semantic attributes. Match-
ing models, one such approach, are of particular
interest. These models take pairs of texts as input—
in our case a class description and example text—
and output a score. They differ from “matching
networks” (Vinyals et al., 2016), which are instead
aimed at few-shot learning. Matching models can

be categorized into a taxonomy (Trabelsi et al.,
2021; Khattab and Zaharia, 2020) based on the
amount of interaction they allow between input
pairs. In increasing order of interaction, perfor-
mance, and computational complexity, we have (1)
representation-based models (or bi-encoders) (Pap-
pas and Henderson, 2019; Pushp and Srivastava,
2017), which embed the inputs separately before
computing their matching score; (2) late interaction
models (Trabelsi et al., 2021; Khattab and Zaharia,
2020), which allow more interplay between input
pairs, but still have separate encoding stacks; and
(3) all-to-all models (or cross-encoders) (Ye et al.,
2020; Yin et al., 2019; Halder et al., 2020), which
facilitate immediate interaction. Matching models
also have close ties to information retrieval (see
Appendix A).

Label-aware classification Label-aware classi-
fication techniques enhance classifiers by incorpo-
rating additional label information alongside stan-
dard input features. These methods use various
types of label information, including label hierar-
chy (Nam, 2019), label dependency or correlation
(Zhang et al., 2018; Yang et al., 2018; Xun et al.,
2020), or label semantic information. The datasets
in this paper lack label hierarchies, and label corre-
lation is not practical in zero- and few-shot settings
due to the need for data to learn the correlations.
However, label semantic information is useful for
zero- and few-shot applications. In the absence of
labeled examples, models require some sort of in-
formation to scale to new classes. Early approaches
gravitated toward representation-based or late inter-
action models and usually assumed short label de-
scriptions (Xiao et al., 2019). Recent work (Schick
and Schütze, 2021; Pappas and Henderson, 2019;
Pushp and Srivastava, 2017; Nayak and Bach, 2020;
Ye et al., 2021) has shown the promise of using
textual entailment as a format for data-poor NLP
tasks. These methods convert NLP tasks into en-
tailment problems then leverage trained entailment
models. This approach has yet to be explored for
datasets with long class descriptions. Other label-
aware classification methods use combinations of
different types of label information, such as com-
monsense knowledge graphs for labels (Nayak and
Bach, 2020); heterogeneous label graphs (Chen
et al., 2017; Xu and Lapata, 2020); and word em-
beddings, class descriptions, class hierarchy, and
knowledge graphs (Zhang et al., 2019).
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3 Models

Matching differs from standard supervised learning
because it uses class descriptions as model inputs,
in addition to other features. We formalize the
matching problem in Section 3.1. Next we describe
our proposed solution in Section 3.2: a matching
model that measures semantic similarity between
class descriptions and examples. Finally, we dis-
cuss the baselines against which we compare the
matching model in Section 3.3.

3.1 Problem formulation

Multi-label and multi-class classification problems
can be converted to matching problems and vice-
versa. For a multi-label classification task with
p labels, we learn a function h : X → YS =
{0, 1}p from a multi-label training set Dtrain =
{(xi, yi)}Ni=1, where xi represents an input and
yj is a p-dimensional binary vector. To general-
ize to a matching problem, our objective shifts to
learning a function f : X × C → [0, 1], where
X denotes a text-based instance space and C a
set of class descriptions. Here f maps (example,
class description) pairs to probability scores. This
change requires expanding the dataset Dtrain into
a triplet format: D̃train = {(xi, cj , yij)}, where
(xi, cj , yi,j) ∈ X×C×{0, 1} for i = 1, 2, · · · , N
and j = 1, 2, · · · , p. In this formulation, instead of
predicting the entire multi-label yi, models predict
a single binary label yij for class j. The proba-
bility scores f(xi, cj) can be converted back into
multi-label predictions via thresholding (Zhang and
Zhou, 2013), i.e., ŷi = {1[f(xi, cj) > γj ]|j =
1, 2, . . . , p} for a set of thresholds {γj}pj=1, where
1 is the indicator function.

By viewing a multi-class problem as a con-
strained multi-label problem, we can convert it to
or from a matching problem. To do so we replace
the multi-class target yMC

i ∈ {1, 2, . . . , p} with a
multi-label target yi = (1[yMC

i = 1],1[yMC
i =

2], . . . ,1[yMC
i = p]). Then, to get a class predic-

tion, we take the argmax of f over all classes, i.e.,
ŷi = argmaxjf(xi, cj).

One drawback of the matching formulation is
that the computational complexity of inference
scales linearly with the number of examples N and
the number of classes p: O(Np). Standard classi-
fiers’ computational complexities depend only on
the number of examples: O(N).

We evaluate the proposed solution and base-
lines in zero-shot and few-shot settings. Zero-shot

means that a classifier is only trained on the seen
label set YS without seeing any examples from
the unseen label set YU . That is to say, the train-
ing set Dtrain is a subset of X × YS , whereas
the test set Dtest is a subset of X × Y , where
Y = YS ⊕ YU = {0, 1}p+q and YU = {0, 1}q
with q > 0. We refer to the q new classes as un-
seen classes since they are not seen during training.
The others are seen classes. Note that in order to
build a triplet version of this dataset we require
class descriptions {cp+m}qm=1 for classes that are
introduced at evaluation time.

In Perez et al. 2021, the authors show that prior
work tends to overestimate few-shot performance
due to hyperparameters and prompt selections
tuned on held-out samples. Therefore, we follow
the “true” few-shot learning setting. This means
that validations sets contain no unseen class labels.
Few-shot learning involves first training a classifier
on Dtrain ⊂ X × YS , then updating the classifier
using a few-shot dataset Dfew-shot ⊂ X × Y before
evaluating it on a test dataset Dtest ⊂ X × Y with
the new classes. Here, k-shot learning indicates
that Dfew-shot contains k positive examples of each
new class.

3.2 Matching model

A matching model (Figure 1) learns semantic re-
lationships between examples and class descrip-
tions. We interpret its output f(xi, cj) as a match-
ing score between example xi and class descrip-
tion cj . During training, we teach the model to
relate class descriptions with examples so that, dur-
ing testing, the model can classify examples into
unseen classes by matching examples with corre-
sponding (potentially new) class descriptions.

Our model design largely follows previous
works (Schick and Schütze, 2021; Pappas and
Henderson, 2019; Pushp and Srivastava, 2017).
For comparability with prior research, we adopt
a pre-trained BERT model (Devlin et al., 2018) as
our base matching model, though other architec-
tures can augment performance (see Appendix E.2,
where we show larger models increase perfor-
mance). We express the input to the model (xi, cj)
as “[CLS] xi [SEP] cj [SEP]”. When class descrip-
tions have multiple sections we use [SEP] tokens
to separate them, e.g. “[CLS] xi [SEP] cj section
1 [SEP] cj section 2 [SEP].” Including the [SEP]
token allows the model to distinguish between sec-
tions. We use the hidden vector for [CLS] in the

7657



final layer as the aggregate representation of the
input: g(xi, cj). We then apply a dropout layer,
a linear layer, and a softmax to obtain matching
score f(xi, cj). In the ranking model taxonomy of
Siblini et al. 2020; Nam 2019 this is considered an
all-to-all interaction or cross-encoder model since
BERT’s attention mechanism facilitates immediate
interaction between example and class description
texts.

For zero-shot classification of an example xi we
use the model trained on Dtrain to compute match-
ing scores between xi and unseen class descrip-
tions f(xi, cp+1), f(xi, cp+2), . . . , f(xi, cp+q) in
addition to matching scores on the seen class de-
scriptions f(xi, c1), f(xi, c2), . . . , f(xi, cp). To
adapt a model trained on Dtrain to new classes with
few-shot data, we fine-tune the model on Dfew-shot
as in Wang et al. 2021. The matching model is
applicable to both multi-class and multi-label prob-
lems. And it can generalize to any number of new
classes in the zero-shot setting via additional class
descriptions. However, there are likely practical
constraints on the number of classes it can learn
during fine-tuning. We leave the question of how
many to future work.

This approach is closely related to the one pro-
posed in Yin et al. 2019 (and, later, Wang et al.
2021; Halder et al. 2020), except for two key dif-
ferences. We extend the maximum token length
of 128 in Yin et al. 2019 to 512 to account for our
datasets’ longer class descriptions. We also skip
pre-training on the MNLI dataset (Williams et al.,
2018) since our initial experiments showed it harms
performance on our datasets.

3.2.1 Meta-learning
Model-agnostic meta-learning (MAML) (Finn
et al., 2017) is a popular algorithm for meta-
learning neural networks. It is highly versatile,
and has been applied to classification in vision and
NLP, and to regression and reinforcement learn-
ing problems (Lee et al., 2022; van der Heijden
et al., 2021). MAML attempts to learn ideal pa-
rameter initializations of arbitrary neural networks
for rapid improvement on new tasks with gradi-
ent descent optimization, making it ideal for few-
shot learning. This is accomplished by aligning
the training objective with few-shot performance
on randomly chosen downstream tasks. Training
proceeds in a series of episodes; each episode simu-
lating several few-shot learning problems. Starting
from the current parameter initialization θi, sev-

eral models are fine-tuned for a fixed number of
iterations on one support set out of the batch of
tasks selected from this episode: few-shot training
samples from a subset of the classes. The fine-
tuned model is then tested on the query set—test
samples from the classes in the support set—and
the parameter initialization is updated for the next
episode: θi → θi+1. Together, a support and query
set make up a task. Typically episodes consist of
batches of tasks, which are resampled at the start
of each episode. Bringing training and testing into
agreement results in a parameter initialization that
is primed for few-shot learning. It is natural to
wonder whether we can improve matching model
performance further with MAML.

The standard MAML classification framework
limits meta-learning to the encoder layers sitting
below the classification head, which is task-specific.
The classification head is replaced and randomly
initialized for each new task in MAML’s inner loop,
and then frozen in the outer loop. By formulat-
ing text classification as a binary “class-to-text”
matching task, we can use the same classification
head across new tasks, and, therefore, expand meta-
learning through the classification head, allowing
the MAML framework to improve zero-shot perfor-
mance. In particular, recall that the MAML training
algorithm proceeds by sampling, at each episode, a
set of n support classes S, a set of n query classes
Q, and labeled samples for each class in S and Q.
The few-shot application and the need to randomly
initialize the classification head for each new task
enforce S = Q so that the n-class classification
head learned during the inner loop (on classes in S)
can be used during the outer loop (on classes in Q).
In our matching MAML formulation, this restric-
tion is relaxed – the query set can consist of new
unseen classes, which corresponds to directly evalu-
ating the performance under the zero-shot scenario.
We note that this generalization is not dependent
on the model architecture. It is dependent on our
ability to formulate the text classification task as a
binary matching task.

We propose two novel ways of sampling the
query set classes in MAML: (1) Local zero-shot:
the query and support set classes do not overlap
within a given task but may overlap across tasks;
(2) Global zero-shot: query set classes and support
set classes have no overlap. Both are aimed at
improving zero-shot performance by mimicking
zero-shot evaluation during training. Each is a
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different way of enforcing S ∩Q = ∅, as opposed
to the usual constraint S = Q.

3.3 Baselines

We consider four baselines: two standard super-
vised models and two few-shot approaches. Un-
like the matching model, the baselines do not con-
sider the class descriptions. Therefore, they tackle
classification in the usual way rather than refor-
mulating it as a matching problem. The super-
vised models consist of gradient boosted trees via
LightGBM (Ke et al., 2017) and a BERT classi-
fier (Devlin et al., 2018). Both are popular tools
for text classification. We consider two few-shot
classifiers: a BERT model with adapter modules
(BERT + Adapter) (Houlsby et al., 2019) and Set-
Fit (Tunstall et al., 2022). BERT + Adapter inserts
lightweight adapter layers with bottleneck archi-
tectures in each transformer block of a pre-trained
BERT model. When fine-tuning on a downstream
task, we only train the weights of adapter layers.
The small number of trainable parameters acts as
a regularizer to prevent overfitting. SetFit (Tun-
stall et al., 2022) is a recently proposed method
that uses a two-stage training approach to achieve
strong few-shot performance without prompts or
verbalizers. It first fine-tunes a pre-trained sentence
transformer on contrastive pairs sampled from the
few-shot set, then it trains a classification head on
the resulting embeddings. See Appendix C for
more information about each model.

Beyond the above baselines, we also gener-
alized prototypical networks (Snell et al., 2017)
to the multi-label setting (Multi-Label Prototypi-
cal Classifier—MLPC). MLPC uses labeled ex-
amples from the seen classes to learn a metric
space in which to classify new examples by com-
parison against class prototypes. Each class has
two prototypes—one for positive (in-class) exam-
ples and one for negative (out-of-class) examples—
formed by averaging the embeddings of few-shot
positive or negative instances of each class. As
MLPC is novel, we give more details in Ap-
pendix B.

Besides prototypical networks, which necessi-
tate labeled examples for class representations,
there are also unsupervised similarity-based meth-
ods such as Haj-Yahia et al. 2019; Schopf et al.
2022. They perform classification based on simi-
larity between class and example representations,
relying on keywords to describe each class. In

addition to the baselines above, we also compare
Lbl2TransformerVec (Schopf et al., 2022) against
a matching model in a zero-shot setting (see Ap-
pendix E.3).

4 Experiments

We conduct two experiments to test the models
from Section 3 in zero- and few-shot scenarios. Our
primary experiment compares the ability of each
model to adapt to new classes. We then explore
whether we can improve the zero- or few-shot per-
formance of the matching model by incorporating
meta-learning during training. Both experiments
involve four text classification datasets: two public
and two internal real-world e-commerce datasets.
The experiment setup is similar in each case. We
first select 20% of classes to be unseen, simulating
new classes. Next we partition the data into train-
ing, few-shot, and test sets consisting of examples
from seen, unseen, and seen and unseen classes,
respectively. We train the models to predict seen
classes on the train sets, update them to predict un-
seen classes using the few-shot sets, and evaluate
them on the test sets. In order to measure the speed
at which the models adapt to unseen classes we
vary the number of labels available in the few-shot
sets as 10, 50, 100, 500, and 1000. The few-shot
samples are nested, e.g. a 100-shot dataset is a
subset of the 500- and 1000- shot sets.

Section 4.1 describes the four datasets. Sec-
tions 4.2 and 3.2.1 present the results of our model
comparison and meta-learning experiments, re-
spectively, and discuss their implications. Ap-
pendix D gives details on how we constructed
Dtrain, Dfew-shot, Dtest and their triplet counterparts.

4.1 Setup
We tested the matching model and baselines from
Section 3 on four text classification datasets: Yahoo
Answers (Yahoo) (Zhang et al., 2015), Amazon Re-
view Data 2018 (Amazon) (Ni et al., 2019), Product
Classification 1 (PC1), and Product Classification 2
(PC2). Yahoo and Amazon are public datasets and
PC1 and PC2 are internal. Amazon, PC1, and PC2
are all e-commerce product classification datasets.
We describe each dataset in more detail below and
put additional information in Appendix D.

Few-shot Yahoo (Yahoo) The Yahoo Answers
dataset involves a multi-class text classification
task: to classify historical Q&A data from the Ya-
hoo Answers website into one of 10 categories
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based on the question and top answer. The labels
are noisy as they were assigned by the original ques-
tion posters. And there is often ambiguity about
which category a question belongs to. These fac-
tors make it hard for any classifier to reach high
accuracy. This dataset has also been used for more
constrained learning tasks. For example, Yin et al.
2019 adapts this dataset for zero-shot text classi-
fication and Schick and Schütze 2020 uses it for
few-shot text classification.

Amazon Review Data 2018 (Amazon) Amazon
review data 2018 (Ni et al., 2019) is a review rating
classification dataset. The dataset comprises over
230 million reviews of 15 million Amazon products
along with metadata. We extract product text (e.g.
title, description) from the metadata and convert
it into a multi-class text classification task. The
task aims to classify products into one of the top
23 product categories based on product text.

PC1 and PC2 Product Classification 1 and
2 (PC1 and PC2) are multi-label classification
datasets consisting of products sold on an e-
commerce website and their associated regulatory
classes. Inputs xi are the concatenation of texts
associated with the products, like item names, de-
scriptions, and product types. Some classes are
general in scope and others are narrow. PC1 has
50 classes, with each sample belonging to at least
one class. PC2 can be viewed as a collection of
28 binary classification tasks; one task per class.
Labels for both datasets are from human annotators.
Each class description comes from a policy doc-
ument describing the class. These documents are
much more complex than class descriptions previ-
ously studied in the literature. They have multiple
sections indicating, for example, specific negative
examples for the class and general characteristics
of positive examples.

Metric: macro average precision We measure
model performance, relative to a 10-shot BERT
baseline, via average precision (AP). To get a sum-
mary score, we compute the AP for each unseen
class, then take an unweighted average (i.e. macro
AP). Next, to obtain a relative score, we subtract
the macro AP for a 10-shot BERT baseline. Finally,
we further average across three seen/unseen class
splits to reduce the impact of unseen class selection.
We chose AP because we do not know a priori at
which operating point a model will be deployed.
AP summarizes performance across all operating

points. Further, for imbalanced datasets like the
PC1 and PC2 test sets, AP is a more indicative of
performance than accuracy.

4.2 Model comparison
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Figure 2: Absolute improvement in macro average pre-
cision (AP) over a BERT 10-shot baseline (gray lines),
averaged across unseen classes and three seen/unseen
class splits. Note the log scale of the x-axes and the
different scales of the y-axes. See Table 1 for details.

No one approach does best on all four datasets
across all amounts of few-shot data, but the match-
ing model comes close (Figure 2). The way perfor-
mance varies with additional labeled examples is
model-dependent, but the matching model exhibits
favorable performance in both the low- and high-
data regimes. At low sample counts the matching
model uses unseen class descriptions to achieve
modest levels of performance, whereas the Light-
GBM, BERT, and BERT + Adapter baselines tend
to struggle. With 10 shots the matching model
outperforms these models by an average of 33.8%,
25.4% , and 44.1%, respectively, emphasizing the
importance of class descriptions in enabling classi-
fication in zero-shot and k-shot scenarios for small
k. With enough labels most baselines eventually
learn class boundaries without the aid of descrip-
tions: for larger label counts they tend to “catch
up” with the matching model. However, the match-
ing model remains competitive in such cases. This
shows that, with a matching model, we may use
class descriptions to buoy performance levels in
the low-data regime and still make efficient use of
extra labels in high-data scenarios.

MLPC and SetFit are most competitive when few
labels are available, but they struggle to improve
with more samples. For MLPC this is because la-
beled data from unseen classes do not improve its
embedding. Instead it uses these data to build class
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Dataset Model 0 shot 10 shots 50 shots 100 shots 500 shots 1000 shots

Yahoo

LightGBM - 8.40 20.07 33.47 54.57 58.43
BERT - 0.00 15.07 40.10 64.08 66.63
BERT+Adapter - 7.61 35.71 55.98 66.59 67.33
MLPC - 56.88 61.65 61.33 62.57 62.86
SetFit - 53.93 59.66 60.77 57.90 57.49
Matching 46.45 54.17 61.49 63.98 66.56 67.11

Amazon

LightGBM - −28.06 -3.68 10.12 32.59 36.98
BERT - 0.00 31.45 36.52 42.75 44.22
BERT+Adapter - −28.22 29.07 36.15 44.06 45.72
MLPC - 14.86 20.88 20.39 20.94 20.95
SetFit - 7.12 28.18 33.25 36.54 3.68
Matching 0.91 24.05 36.01 39.27 44.96 46.96

PC1

LightGBM - −10.16 11.55 16.82 22.34 -
BERT - 0.00 15.83 19.05 22.68 -
BERT+Adapter - −52.69 10.43 17.65 23.18 -
MLPC - 3.92 5.75 6.18 5.48 -
SetFit - 2.67 12.49 14.64 13.18 -
Matching −5.51 9.82 16.83 18.67 23.32 -

PC2

LightGBM - −3.82 16.84 24.98 40.22 45.13
BERT - 0.00 12.22 21.78 39.77 44.22
BERT+Adapter - −1.22 9.60 16.87 36.12 44.37
MLPC - 20.47 24.11 24.58 24.90 24.95
SetFit - 7.28 17.70 24.76 22.26 32.14
Matching 11.36 13.69 20.09 25.89 40.70 46.75

Average

LightGBM - −8.41 11.20 21.35 37.43 46.85
BERT - 0.00 18.64 29.36 42.32 51.69
BERT+Adapter - −18.63 21.21 31.66 42.49 52.47
MLPC - 24.03 28.10 28.12 28.47 36.25
SetFit - 17.75 29.51 33.35 32.47 31.11
Matching 13.30 25.43 33.61 36.95 43.88 53.61

Table 1: Average absolute improvement in macro AP (%) compared to 10-shot BERT. We average the scores across
unseen classes and three seen/unseen class splits. The matching model achieves the best performance, on average,
across each few-shot setting.

prototypes. If, after model training, the embedding
is insufficient to separate positive and negative ex-
amples from unseen classes, improving the class
prototypes can only help so much. For SetFit we
hypothesize that sentence transformer fine-tuning is
best suited to low-data scenarios and has diminish-
ing returns with more samples. The other models,
however, improve rapidly with additional data.

Matching model performance is improved fur-
ther by using a more powerful backbone. Using
DeBERTa (He et al., 2020) instead of BERT in-
creases zero- and max-shot performance by 5.24%
and 2.02%, respectively (see Appendix E.2).

There is a gap between the matching model’s
seen and unseen class metrics in the zero-shot set-
ting, as one would expect (Table 2). With enough
labels, however, performance on unseen classes
exceeds the original performance on seen classes.
This is likely because there are ~4 times fewer un-
seen classes for the model to learn during few-shot
fine-tuning compared to seen class training.

Dataset Seen Unseen

Yahoo 52.83 46.45
Amazon 43.74 0.91
PC1 13.61 -5.51
PC2 53.74 11.36

Table 2: Zero-shot matching model performance (macro
AP %) relative to 10-shot BERT. We average across seen
or unseen classes and three seen/unseen class splits.

Meta-learning To test meta-learning applied to
matching we follow the same experiment design
as above but substitute standard fine-tuning with
MAML when training on seen classes. Fine-
tuning on few-shot data is unchanged. We use
the MAML++ training algorithm, which stabilizes
and improves on MAML (Antoniou et al., 2019),
adapted from computer vision models to transform-
ers as in van der Heijden et al. 2021. We test the
three query set sampling strategies discussed above.
See Appendix C for further details.
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Model 0 shots 10 shots 50 shots 100 shots 500 shots 1000 shots

Standard training −9.65 0.00 7.16 10.05 16.68 22.06
MAML++ few-shot −8.83 −2.26 5.72 8.98 15.81 20.83
Local zero-shot −5.36 0.36 6.40 8.74 15.14 21.14
Global zero-shot −16.75 −7.45 1.67 5.14 13.76 18.94

Table 3: Average absolute improvement in macro AP (%) compared to a 10-shot matching model (BERT backbone)
with standard training. We average the scores across unseen classes then across all four datasets.

Local zero-shot query sampling achieves a signif-
icant lift over standard training in the zero-shot set-
ting (+4.29% on average) with negligible or harm-
ful impact in the few-shot setting (Table 3). Hence
we recommend this approach for zero-shot but not
few-shot learning. Interestingly, we observe no
improvement for few-shot learning with standard
MAML++, perhaps due to the persistent binary
classification layer of the matching setting. Global
zero-shot query sampling significantly degrades
performance in all settings.

5 Conclusion

This paper shows that casting text classification as
a matching problem is an effective way to address
new classes. Matching models have multiple bene-
fits relative to other methods in this space. Namely,
they (1) leverage both class descriptions and stan-
dard labels; and (2) can perform zero- and few-shot
classification—both of which are often needed in
practical scenarios. We show that they are able to
exploit long, complex class descriptions, achieving
13.30% macro AP with zero-shots (relative to 10-
shot BERT) and surpassing few-shot baselines by
22.48% with 10-shots. We also generalize MAML
to the zero-shot setting and show that our proposed
method improves zero-shot performance by a fur-
ther 4.29%. This demonstrates that, when class
descriptions are available, the proposed matching
models are capable of handling new classes from
the beginning (zero-shot, cold-start) to the end of
the model development cycle (few- to many-shot).

Limitations

The proposed model leverages long text (class
description) to measure similarity, however text
length is limited to 512 tokens due to the underly-
ing language model. This limitation may impact
the model’s performance on longer texts. We used
four datasets in our study, but three of them (one
public and two internal) are for e-commerce prod-
uct classification. As a result, our model’s perfor-

mance may vary for other text classification tasks.
An inherent disadvantage of the matching formula-
tion is that the inference cost scales linearly with
both the number of examples and the number of
candidate classes, whereas for a traditional classi-
fier the cost scales with the number of examples.
Therefore, a matching formulation may be too com-
putationally expensive for applications with many
classes. Finally, our results may not generalize to
much larger or smaller language models as we only
considered modest-sized models with 66 to 336
million parameters.

Ethics Statement

This research was conducted in accordance with
the ACL Ethics Policy.1 We proposed a classifica-
tion model that leverages class descriptions which
could be the most beneficial to those doing zero- or
few-shot text classification, especially in the prod-
uct compliance space. In our study, we used two
internal datasets, but they do not contain any per-
sonal or private information, which reduces privacy
concerns. It is also important to note that as we
used language models pre-trained on internet data
(BERT, RoBERTa, DeBERTa, and DistilBERT),
our model may inherit their biases. However, bias
and fairness are not investigated in the paper.
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A Additional related work

Information retrieval The goal for an informa-
tion retrieval (IR) system is to return objects—from
a large pool of candidates—which are most rele-
vant to a given query. We will assume the objects
to be text-based documents. We may view classi-
fication with class descriptions as an IR problem;
the example text provides the query and the class
descriptions are the documents to be searched. IR
systems are often used as components of other sys-
tems: QA (Chen et al., 2017), summarization (Xu
and Lapata, 2020), recommendation (Walker et al.,
2018), and search and navigation (Raman et al.,
2022). Modern architectures can generally be bro-
ken into two stages: a fast, high-recall retrieval
stage (e.g. BM25 (Robertson et al., 2009)) seek-
ing to quickly pare down the list of possibly rele-
vant documents, and a slower but more accurate
ranker which ranks the pruned list of documents
by relevance to the query. Many document ranking
models compute a score for each document with
respect to the query, much like a matching model.
Indeed, neural language models like BERT (De-
vlin et al., 2018) are common choices for ranking
models (Zhan et al., 2020; MacAvaney et al., 2019;
Lin et al., 2021; Li et al., 2020). One drawback of
such architectures, however, is the difficulty with
which they scale to longer documents. Researchers
have proposed various techniques (Lin et al., 2021)
for ingesting longer input texts such as aggregating
scores across different document sections (MacA-
vaney et al., 2019; Park et al., 2022) and using net-
works with larger maximum token lengths (Yang
et al., 2019). Though recent work has begun to
question the effectiveness of such methods for text
classification (Park et al., 2022).

B Multi-label prototypical classifier

Our multi-label prototypical classifier (MLPC)
adapts prototypical networks (Snell et al., 2017)
from multi-class image classification to the multi-
label text classification setting. In essence, MLPC
uses examples from seen classes to learn a met-
ric space in which it can classify new examples
via comparison against seen and unseen class pro-
totypes. Each class has two prototypes—one for
positive (in-class) examples and one for negative
(out-of-class) examples—formed by averaging the
embeddings of few-shot positive and negative in-
stances of each class. Hence our objective is to
learn a d-dimensional metric space with an embed-

ding transformation gθ : X → Rd with trainable
parameters θ which maps samples from the text-
based instance space X to the embedding space.
To handle text input we follow Dopierre et al. 2021
and implement this map with a transformer (BERT
(Devlin et al., 2018)).

Episodic training To simulate the few-shot test-
ing environment (few labels per class), we train the
transformer gθ with a series of few-shot episodes.
In each episode, we sample support sets Sj,0, Sj,1,
and a query set Tj from triplet training dataset
D̃train{(xi, cj , yij)}I×J for each class j, where
I = {1, . . . , N} and J = {1, . . . , p} are the in-
dex sets of text samples and classes. From the
samples (xi, cj , yij) of the support sets, we com-
pute class prototypes cj,0 and cj,1 for class j with
the embedding transformation gθ, and negative and
positive text samples in Sj,0, Sj,1, respectively.

cj,k =
1

|Sj,k|
∑

x∈Sj,k

gθ(x), j ∈ J, k ∈ {0, 1}.

(1)
For every text sample x in query set Tj , we com-
pute the Euclidean distances between its embed-
ding x = gθ(x) and class prototypes cj,0 and cj,1
and then we define the output distribution of proto-
typical classifier given an input x as

f(xi, cj) = Pr(yi,j = 1|x, cj)

=
exp(−d(x, cj,1))

exp(−d(x, cj,0)) + exp(−d(x, cj,1))
,

(2)

where d(x, c) = ∥x− c∥2 is the Euclidean dis-
tance. The output distribution is essentially a soft-
max over the distances between embedding x and
class prototypes cj,0 and cj,1. Given a labeled ex-
ample (x, cj , yi,j = k), k ∈ {0, 1} from query set
Tj , the sample cross-entropy loss between ground
truth label yi,j and prediction f(xi, cj) is

CE Loss = − log(Pr(yi,j = k|x, cj))

= d(x, cj,k) + log

(
1∑

k′=0

exp(−d(x, cj,k′))
)
.

(3)
We learn θ via SGD by minimizing the cross-
entropy loss summed over labeled examples, re-
peating the process multiple times for each class
with randomly generated support and query sets.
See Algorithm 1 in Appendix C for pseudocode.
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Inference The test datasets can be expressed in
triplet format as D̃test = {(xi, cj , yij)}Itest×Jtest ,
where Itest and Jtest are the index sets of test sam-
ples and test classes. The classifier produces proba-
bility score f(xi, cj) of xi belonging to class j for
all (i, j) ∈ Itest × Jtest given few-shot support sets
Sj,0, Sj,1, j ∈ Jtest as

f(xi, cj) = Pr(yi,j = 1|xi, cj)

=
exp(−d(xi, cj,1))

exp(−d(xi, cj,0)) + exp(−d(xi, cj,1))
,

∀(i, j) ∈ Itest × Jtest.
(4)

Note that MLPC does not use the class descrip-
tions, only the few-shot samples. We found that
incorporating class descriptions as in (Hou et al.,
2021) (using them to anchor class prototypes) hurt
performance.

C Model training

This section provides details of how each model
was trained, including model backbones and hyper-
parameter choices.

C.1 Matching model
We used the following hyperparameter configu-
ration when training the zero-shot version of the
matching model across all datasets:

• Base model: bert-base-uncased

• Dropout: 0.1

• Epochs: 2

• Batch size: 32

• Learning rate schedule: linear warmup for
10% of an epoch to a maximum value of 5e-6,
then linear decay to 0

When tuning the zero-shot matching models on
few-shot data we changed the following hyperpa-
rameters:

• Epochs: 3

• Learning rate schedule: start at 5e-6 with co-
sine decay to 0

For the few-shot experiments we randomly se-
lected 5% of the Yahoo training set to use as vali-
dation data and 1% of the Amazon, PC1, and PC2
training sets. For the sanity check experiment on
the Yahoo dataset we used the validation set given
in (Yin et al., 2019).

C.2 Multi-label prototypical classifier
We used the following hyperparameter configura-
tion to learn the parameters of embedding transfor-
mation gθ via episodic training with prototypical
network:

• Base model: bert-base-uncased

• Dropout: 0.1

• Batch size: 64

• Episodes: 5000

• Maximum learning rate: {1e-6, 2e-6, 5e-6,
1e-5, 2e-5}

• Learning rate schedule: linear warmup to max-
imum value at 6% of training steps and then
linear decay to 0

• Early-stopping: True

Our experiments show that few-shot Yahoo and
PC1 datasets favor lower learning rates (best at 1e-
6) while we get the best performance on the PC2
dataset at 1e-5.

Algorithm 1 gives an overview of the episodic
training for MLPC.

C.3 LightGBM
For LightGBM we used the default model param-
eters with objective=‘binary’ for the PC1 and
PC2 datasets and objective=‘multiclass’ for
the Yahoo dataset. We trained the model on the
few-shot datasets:

• Yahoo - train a single multi-class model using
samples in the few-shot dataset (rather than
training separate binary classifiers for each
class then taking the argmax of probability
scores)

• PC1 - train a separate binary model for each
unseen class using all samples in the few-shot
dataset

• PC2 - train a separate binary model for each
unseen class using all samples in the few-shot
dataset

We applied the same text preprocessing as for
the other models and used a simple Bag-of-Words
text featurization. The PC1 and PC2 datasets each
have four categorical features associated with them,
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Algorithm 1: Episodic training of
MLPC. E denotes the number of training
episodes, NS and NT denote the number
of support set and query set, respectively.
RandomSample(D, yij = k,N) denotes
a uniformly sampled subset of D with
N samples satisfying the condition of
yij = k.
Data: Triplet training data

D̃train = {(xi, cj , yij)}I×J

1 Initialize gθ // with an off-the-shelf

pre-trained transformer

2 for e in {1, . . . , E} do
3 for j in J do
4 Obtain a slice of dataset

D̃j = {(xi, cj , yij)}i∈I for class cj
5 Sj,0 =

RandomSample(D̃j , yij = 0, NS)
6 Sj,1 =

RandomSample(D̃j , yij = 1, NS)
7 Tj = RandomSample(D̃j \ Sj,0 \

Sj,1, yij = 0 or 1, NT )
8 Compute {cj,0, cj,0} from Sj,0, Sj,1

9 Compute loss L from Tj and
{cj,0, cj,0}

10 Update θ ← θ − η∇θL

// iterate through each class

// iterate through episodes

three of which we converted to text and appended to
the example text: product type, minimum age, and
maximum age. The LightGBM model, however,
can ingest categorical features directly. Therefore
we also passed these four features to LightGBM as
categorical variables using an ordinal encoding.

C.4 BERT

We trained the BERT models on text data with
the same preprocessing steps as with the matching
model and MLPC, using the following hyperparam-
eters:

• Base model: bert-base-uncased

• Epochs: 10

• Learning rate schedule: linear warmup for
10% of an epoch to a maximum value of 1e-6,
then linear decay to 0

• Dropout: 0.1

C.5 BERT + Adapter
We followed the adapter framework proposed in
Pfeiffer et al. 2020b to insert adapter module with a
768× 48 down-projection layer and a 48× 768 up-
projection layer in every BERT transformer block.
We then train BERT + Adapter models using the
following hyperparameters:

• Base model: bert-base-uncased

• Epochs: 10

• Learning rate schedule: linear warmup for
10% of an epoch to a maximum value of 5e-5,
1e-4, or 2e-4, then linear decay to 0

• Dropout: 0.1

We have found that training a BERT + Adapter
model with a higher maximum learning rate works
better since the adapter weights are initialized ran-
domly without pre-training.

C.6 SetFit
We used the official SetFit package2 to train the
SetFit models. Wherever possible, we chose de-
fault or recommended parameters. We list these
parameters below.

• Sentence transformer backbone:
all-mpnet-base-v2. We chose this
pre-trained backbone because it gave the
best all-around performance of the available
sentence transformers3.

• Contrastive loss: cosine similarity

• Epochs: 1 for contrastive training, 25 for tun-
ing the classification head

• Learning rates: 2e-5 for contrastive training,
1e-2 for tuning the classification head

• We froze the sentence transformer while train-
ing the classification head as otherwise we
faced CUDA OOM issues.

• The number of iterations (text pairs to gener-
ate for contrastive learning) differed based on
the number of few-shot samples k. Using a
fixed number of iterations across all values of
k results in an unwieldy number of samples
for large k. We set the number of iterations to:
5 if k < 500, 2 if k = 500, and 1 if k = 1000.

2https://github.com/huggingface/setfit
3https://www.sbert.net/docs/pretrained_models.

html#sentence-embedding-models/
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We trained a separate binary (one-vs-all) model
for each unseen class on each few-shot dataset be-
fore evaluating on the test set. We used the same
text processing steps as for the other models.

C.7 Meta-learning

The training and evaluation process for the meta-
learning experiments closely followed that for the
matching model. We simply substituted the stan-
dard method of training the zero-shot model with a
MAML++ (Antoniou et al., 2019) training routine.
The model inputs, few-shot fine-tuning process,
and evaluation are all unchanged. We used a BERT
model architecture.

Meta-training consists of a fixed number of
epochs, each with the same number of training
episodes. At the end of each epoch we estimate
the loss on the validation with a fixed number of
episodes. We use the model checkpoint with the
lowest validation loss. When drawing samples for
the support and query sets we balance the number
of positive and negative examples. The match-
ing formulation naturally induces an imbalance
between positives and negatives for datasets with
complete label information and large numbers of
classes (all datasets but PC2). Without enforcing
this balance the model sometimes becomes trapped
in local minima; assigning every sample a score
close to 0. Samples for the support and query sets
are drawn with replacement.

Below we give the important hyperparameters
from the meta-learning experiments.

• Batch size: 1

• Max token length: 512

• Minimum learning rate: 1e-8

• Classes per task: 4

• Support samples per class: 3

• Query samples per class: 7

• Inner and outer loop learning rates: 5e-5

• Total epochs: 50

• Episodes per epoch: 200

• Multi-step loss epochs: 10

• Number of evaluation tasks during validation:
200

Slightly different hyperparameters (shown be-
low) worked best for each query sampling method.
We selected the hyperparameters based on perfor-
mance on loss on the validation set.

• MAML++: 60 evaluation tasks

• Local zero-shot query sampling: inner and
outer loop learning rates were 1e-5

• Global zero-shot query sampling: 50% of
classes were reserved for the query set

D Few-shot datasets

In this section we provide additional details about
the Yahoo, PC1, and PC2 few-shot datasets. We
repeated the procedures below five times, selecting
different seen and unseen classes in each case to
test the models’ robustness. However in this paper
we only report results for the first three splits: 0, 1,
and 2.

D.1 Yahoo
To align the Yahoo Answers dataset from Pushp
and Srivastava 2017; Gururangan et al. 2020 with
our few-shot experiments, we pool all the exam-
ples from the original train, test, and dev sets and
build our own train, few-shot, and test sets. We
first randomly select two of the ten classes to act
as unseen classes (classes 3 and 4 for the experi-
ments that follow). From each of the remaining
eight seen classes we then sample 80% of the ex-
amples to serve as Dtrain, with the other 20% going
to Dtest. We randomly select 1000 examples from
each of the two unseen classes to build Dfew-shot.
We allocate the remaining examples from the un-
seen classes to Dtest. In order to ease the compu-
tational burden of evaluating on the test set, we
further downsample Dtest to form Dtest−small and
evaluate on that set instead. Finally, we convert
Dtrain, Dfew-shot, and Dtest into triplet format so that
each example (xi, yi) ∈ Dtrain is mapped to p = 8
examples {(xi, cj ,1[yi = j])}8j=1 and each exam-
ple (xi, yi) ∈ Dfew-shot ∪ Dtest−small is mapped
to p + q = 10 examples {(xi, cj ,1[yi = j])}10j=1.
See D for details about the datasets. We use the
same class descriptions described in Section E.1.
We measure performance by averaging the AP of
the model across unseen classes, i.e. we compute
a AP score for each unseen class, then take the
unweighted average as the final score.

Table 4 shows the distribution of samples across
the different splits.
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Split Total samples Samples per seen class Samples per unseen class

Train 934.4k 116.8k 0
Test 523.6k 29.2k 145k
Test (small) 100k 6k 26k
n-shot 2n 0 n

Table 4: Number of samples in the Yahoo few-shot data splits. n ∈ {10, 50, 100, 500, 1000}.

D.2 Amazon

We build a multi-class e-commerce product classi-
fication dataset by extracting the metadata from Ni
et al. 2019. We take ‘asin’ as the unique identifier
for product examples, ‘category’ as the target class,
and the concatenation of ‘title’, ‘description’, and
‘feature’ as example text. To build a balanced classi-
fication dataset, we first choose the top-23 product
categories which have more than 4000 product ex-
amples. We then downsample and obtain 4000
product examples per class. For each class, we
need class description which describes the product
category. We manually search on Wikipedia and
Google and combine text from difference sources
with minor modifications, e.g. removing irrelevant
information like citations, pronunciation, root, etc.

Next, we construct Dtrain, Dfew-shot, and Dtest by
selecting 5 unseen classes and 18 seen classes. For
each seen class, we put 2000 examples in Dtrain,
1000 examples in Dfew-shot, and 1000 examples
in Dtest; while for each unseen classes, we only
put 1000 examples in Dfew-shot and 1000 examples
in Dtest. Table 5 shows the number of positive
examples for each class.

D.3 Product Classification 1 (PC1)

Product Classification 1 (PC1) dataset contains 50
classes which have between 57 and 4,952 exam-
ples with a mean of 1,319. Examples can belong to
multiple class (multi-label classification problem)
with an average of 1.35 classes and a maximum
of seven. Labels were assigned by manual review-
ers. The labels are dense in the sense that every
example is a positive example for some classes and
a negative example for all the others. As a result,
after we convert these multi-label datasets into their
triplet versions, there are many more negative ex-
amples than positive examples; the modal example
becomes one positive and 49 negative examples.

We construct Dtrain, Dfew-shot, and Dtest by first
selecting q = 10 unseen classes (20%), building a

pool of examples falling into any of the 10 classes.4

From this pool we sample 500 examples from each
class to form Dfew-shot. We do not have enough
samples for 1000-shot learning. Note that because
examples can belong to multiple classes, it is pos-
sible for Dfew-shot to contain more than 500 sam-
ples from a given class. We assign the remaining
examples from unseen classes to Dtest. We then
split the data from seen classes between Dtrain and
Dtest at an 80/20 ratio, using iterative stratification
(Sechidis et al., 2011) to ensure different label com-
binations are distributed evenly across the train
and test sets. In the end |Dtrain| = 29, 917 and
|Dtest| = 13, 782. Finally, we convert the splits
into triplet format.

For compatibility with MLPC, Dfew-shot must
also have 500 positive examples from each seen
class. We sample these from Dtrain, upsampling for
classes with fewer than 500 positive examples.

Table 6 shows the number of positive examples
for each class in Dtrain and Dtest.

D.4 Product Classification 2 (PC2)
Unlike with the PC1 dataset, here the labels are
sparse. With the PC1 data we had full knowl-
edge of the multi-label for each example, e.g.
yPC1
i = (0, 1, 0, 0, 1, 0, . . . , 0), but with the PC2

data we have only partial knowledge, e.g. yPC2
i =

(?, ?, 1, ?, 0, . . . , ?). It is still possible to con-
vert such labels into a triplet format, however:
(xi, y

PC2
i ) is mapped to {(xi, cj , yPC2

ij )|1 ≤ j ≤
p, yPC2

ij ̸=?} rather than {(xi, cj , yPC2
ij )|1 ≤ j ≤

p} (replacing p with p + q for the test set). For
the PC2 dataset we perform this conversion before
constructing the train, few-shot, and test sets.

The train set D̂train has, wherever possible,
50,000 positive and 50,000 negative samples from
each seen class and no samples from unseen classes.
Therefore the PC2 train set is much more balanced
than the PC1 one. 9 of 22 seen classes have fewer

4We only consider classes with at least 700 examples as
viable candidates for unseen classes to ensure there are enough
to split between Dfew-shot and Dtest
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Split Total samples Samples per seen class Samples per unseen class

Train 36,000 2,000 0
Test 23,000 1,000 1,000
n-shot 2n n n

Table 5: Number of samples in the Amazon few-shot data splits, where n ∈ {10, 50, 100, 500, 1000}. In each split,
there are 5 unseen classes and 18 seen classes. For split 0, the unseen classes are: Home and Kitchen; Tools and
Home Improvement; CDs and Vinyl; Movies and TV; Musical Instruments, while the seen classes are: Clothing,
Shoes and Jewelry; Books; Automotive; Sports and Outdoors; Electronics; Toys and Games; Cell Phones and
Accessories; Kindle Store; Arts, Crafts and Sewing; Grocery and Gourmet Food; Patio, Lawn and Garden; Office
Products; Pet Supplies, Industrial and Scientific; Video Games; Appliances; Software; Collectibles and Fine Art.

than 100,000 samples due to a lack of labels (with
a minimum of 7,223). We equip D̂few-shot with
1,000 positive and 1,000 negative samples. When
we discuss k-shot learning with respect to the PC2
dataset, we use k positive and k negative samples.
As with the PC1 dataset, the few-shot data are
nested. The test set D̂test consists of 1,000 positive
examples and 19,000 negative examples for each
class.5 We intentionally created an imbalanced test
set to mimic a production environment, in which
examples from any given class are expected to be
rare.

Table 7 gives an overview of the number of sam-
ples (counting both positive and negative) for each
of the classes in the triplet versions of the PC2
datasets.

D.5 Dataset difficulty

All models perform better on the PC1 and Ama-
zon datasets compared to Yahoo and PC2 (Table 1).
This is likely because the Yahoo and PC2 prob-
lems are harder than PC1. The labels in the Yahoo
dataset are noisy. They were assigned by users of
Yahoo! Answers and are often wrong. Further-
more, it is common for questions to plausibly fall
under multiple categories even though the labels
are multi-class. Section E.1 shows that our results
are in line with those previously published in (Yin
et al., 2019). The PC2 dataset is challenging by de-
sign. Its list of classes is not exhaustive, but rather
consists of product classes which proved especially
difficult for existing ML models. Therefore we
expect lower scores on this dataset at small label
counts. However, most models appear to scale well
on this dataset, suggesting that high performance
is achievable with more labels.

5In the PC2 test set two classes have only 9,000 negative
examples and one has 4,000 due to data availability.

E Additional experiments

E.1 A sanity check
Aiming to verify the correctness of our implemen-
tations of the methods from 3 we conducted a san-
ity check by replicating an experiment from (Yin
et al., 2019) using our models and comparing the
results. The experiment involves zero-shot multi-
class text classification using class descriptions.
Our multi-label prototypical classifier is not a zero-
shot model, as it requires few-shot support sam-
ples for each class. In this experiment, we take
1000 support samples from the dev set (separated
from train and test sets). The comparison between
multi-label prototypical classifier and other zero-
shot models is not fair; however, this experiment
can still show us whether our implementations are
reasonable.

E.1.1 Setup
For this experiment we use a Yahoo Answers
dataset introduced in Zhang et al. 2015, with the
data split and experiment setup used in Yin et al.
2019. The objective for this dataset is to use the
concatenation of a Yahoo Answers question and
its top answer to predict which of 10 categories
the poster filed the question under: Society & Cul-
ture, Science & Mathematics, Health, Education
& Reference, Computers & Internet, Sports, Busi-
ness & Finance, Entertainment & Music, Family &
Relationships, Politics & Government.

We use the class descriptions (Yin et al., 2019)
found worked best for this dataset: cj = “this text
describes something about wj”, where wj is the
1-3 word name of the category (e.g. “Sports”).
The dev and test sets contain 6k and 10k examples
from each of the 10 classes, respectively (60k and
100k samples total). There are two non-overlapping
train sets, each with a different set of five seen
classes with 130k samples per class. The class
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Class Seen Train samples (+) Test samples (+)

0 ✓ 999 315
1 ✓ 867 226
2 ✓ 748 192
3 100 419
4 ✓ 847 216
5 ✓ 829 207
6 ✓ 499 126
7 ✓ 793 206
8 ✓ 890 223
9 ✓ 1,071 280
10 100 1,393
11 ✓ 760 438
12 ✓ 1,026 263
13 ✓ 853 219
14 ✓ 1,323 364
15 ✓ 1,756 469
16 ✓ 1613 449
17 107 714
18 ✓ 1,241 528
19 ✓ 1,503 554
20 ✓ 810 202
21 ✓ 388 111
22 ✓ 792 199
23 ✓ 2,676 1,569
24 ✓ 791 198
25 ✓ 818 218
26 ✓ 986 246
27 ✓ 522 130
28 ✓ 2,371 1,089
29 ✓ 1,026 579
30 ✓ 759 190
31 ✓ 1,107 305
32 ✓ 860 218
33 100 437
34 100 454
35 ✓ 216 54
36 ✓ 775 222
37 106 672
38 ✓ 545 286
39 100 669
40 ✓ 944 268
41 ✓ 990 250
42 ✓ 382 101
43 ✓ 45 11
44 100 965
45 ✓ 227 567
46 ✓ 822 208
47 100 416
48 ✓ 1,332 350
49 100 476

Table 6: Summary of the (non-triplet) versions of the
PC1 dataset (split 0). We report the number of positive
samples for each class.

Class Seen Train samples Test samples

0 ✓ 100,000 20,000
1 ✓ 100,000 20,000
2 0 20,000
3 ✓ 100,000 20,000
4 ✓ 100,000 20,000
5 0 10,000
6 ✓ 100,000 20,000
7 ✓ 48,790 20,000
8 ✓ 100,000 20,000
9 ✓ 63,334 20,000
10 ✓ 100,000 20,000
11 ✓ 19,842 20,000
12 0 20,000
13 ✓ 100,000 20,000
14 ✓ 42,009 20,000
15 ✓ 100,000 20,000
16 0 10,000
17 ✓ 7,223 5,000
18 ✓ 24,253 20,000
19 0 20,000
20 ✓ 100,000 20,000
21 0 20,000
22 ✓ 100,000 20,000
23 ✓ 25,899 20,000
24 ✓ 100,000 20,000
25 ✓ 100,000 20,000
26 ✓ 81,253 20,000
27 ✓ 15,885 20,000

Table 7: Summary of the triplet versions of the PC2
dataset (split 0).

index sets for the two train sets are {1, 3, 5, 7, 9}
and {2, 4, 6, 8, 10}, respectively. Converting these
datasets to from a multi-class format to a triplet
format increases the size of the dev and test sets
by a factor of 10 and the train set by a factor of 5.
Each example is mapped to a positive example for
one class and negative examples for the remaining
classes. The presence of unseen classes in the vali-
dation set means that this is not a “true” zero-shot
problem.

We compare our models against two models pro-
posed in (Yin et al., 2019). The “Binary-BERT”
model is equivalent to our matching model, but
uses a max token length of 128 (as opposed to 512
for the matching model). The “MNLI-entailment”
model is the same as the Binary-BERT model, ex-
cept it is pre-trained on MNLI. All models are
fine-tuned on the training data, with hyperparam-
eters tuned on the dev set, then evaluated on the
test set. We measure performance via multi-class
accuracy, as in (Yin et al., 2019). The Binary-
BERT, MNLI-entailment, and matching models use
an additional hyperparameter which dampens the
matching scores for seen classes by a fixed amount
because others (Pushp and Srivastava, 2017; Guo
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et al., 2021) have noted that matching scores for un-
seen classes tend to be lower than for seen classes
in the zero-shot setting.

E.1.2 Results
The results in Table 8 confirm that our implemen-
tations are sound. We find that we are able to get
similar or better performance on unseen classes
when comparing our approaches against those in
Yin et al. 2019. On unseen classes our MLPC
approach improves significantly on the accuracy
scores from Yin et al. 2019. This is not surpris-
ing given that MLPC gets to use few-shot samples
from unseen classes, whereas the other models are
zero-shot.

E.2 Matching model backbones

While we used BERT-base as the backbone for the
matching model in the main paper, other language
models could lead to different levels of perfor-
mance. In this experiment we replaced BERT-base
with other transformer models with sizes ranging
from 66 million to 336 million parameters (Table
9). The model weights came from Hugging Face:6.
We replicated the experiments from the main pa-
per on seen/unseen class split 0, changing only the
backbone models. To understand the trade-offs
between compute cost and performance we also
tracked the training time and inference latency for
each backbone (Table 11).

0 10 50 10
0

50
0

10
00

0.10

0.05

0.00

0.05

0.10

0.15

Yahoo

0 10 50 10
0

50
0

10
00

0.3

0.2

0.1

0.0

0.1

0.2

Amazon

0 10 50 10
0

50
0

10
00

0.20

0.15

0.10

0.05

0.00

0.05

0.10
PC1

DistilBERT (66M)
BERT-base (110M)
RoBERTa (123M)
DeBERTa (184M)
BERT-large (336M)

0 10 50 10
0

50
0

10
00

0.00

0.05

0.10

0.15

0.20

0.25

0.30
PC2

Shots

(M
ac

ro
 A

P)

Figure 3: A comparison of different matching model
backbones. The baseline in this case is a matching
model with a BERT backbone trained on 10 few-shot
samples for each class (gray line). Note the log scale
of the x-axes and the different scales of the y-axes. See
Table 10 for details.

6https://huggingface.co/. In par-
ticular, we used the following models:
distilbert-base-uncased, bert-base-uncased,
roberta-base, microsoft/deberta-v3-base, and
bert-large-uncased

Increasing the size of the backbone generally
leads to improved performance. (see Figure 3
and Table 10). The larger DeBERTa and BERT-
large models consistently outperform RoBERTa
and BERT-base, which in turn tend to outperform
DistilBERT. Despite BERT-large having almost
twice as many parameters as DeBERTa, both mod-
els have comparable performance. This shows the
benefit of improved pre-training strategies.

The downside to larger models is their increased
training and inference cost. The train and inference
times for the backbones are proportional to the
parameter counts (Table 11). DeBERTa and BERT-
large are about 1.7 and 2.6 times slower than BERT,
respectively, while DistilBERT takes about 0.6 the
time of BERT. Which backbone is appropriate will
depend on the accuracy and compute constraints
of the problem at hand, but DeBERTa is a good
all-around choice.

E.3 Zero-shot comparison against
unsupervised similarity-based approach

In this section, we compare the matching
model and Lbl2TransformerVec (Schopf et al.,
2022), an unsupervised similarity-based approach.
Lbl2TransformerVec operates by relying on man-
ually defined keywords for each class, and em-
ploys a pre-trained embedding transformation,
such as Doc2Vec (Le and Mikolov, 2014), S-
BERT (Reimers and Gurevych, 2019), or Sim-
CSE (Gao et al., 2021b). The transformation em-
beds keywords, example texts, and classes into
the same space. Notably, the class representa-
tion is constructed as the average embedding of
a set of most relevant examples to given key-
words. In our experiment, we observe stronger
results with S-BERT among the three embedding
transformations. To perform zero-shot classifi-
cation, Lbl2TransformerVec leverages class key-
words, while the matching model uses class de-
scriptions. Lbl2TransformerVec is aimed at zero-
shot learning, and lacks a clear way to enhance
performance with additional few-shot labels, so we
focus on the zero-shot setting in this experiment.

The matching model significantly outper-
forms Lbl2TransformerVec across all four
datasets (Table 12). The lower performance of
Lbl2TransformerVec can be attributed, in part,
to the process of extracting class keywords from
long class descriptions. These descriptions often
involve complex elements such as negations and
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Split 0 Split 1

Model Seen classes Unseen classes Seen classes Unseen classes

Binary-BERT 72.60% 44.30% 80.60% 34.90%
MNLI-entailment 70.90% 52.10% 77.30% 45.30%
MLPC 71.41% 58.21% 77.11% 57.67%
Matching 66.54% 56.50% 74.84% 44.52%

Table 8: Comparison of models with entailment approach on the original Yahoo Answers dataset (zero shots). We
measure multi-class accuracy. We obtained metrics for the first two models from Yin et al. 2019.

Model Parameters Paper

DistilBERT 66 million Sanh et al. 2019
BERT-base 110 million Devlin et al. 2018
RoBERTa 123 million Liu et al. 2019
DeBERTa 184 million He et al. 2020
BERT-large 336 million Devlin et al. 2018

Table 9: Transformer backbones tested for the matching
model.

keywords or keyphrases to be excluded from the
class. Such information cannot be fully captured
by a small number of keywords, potentially leading
to suboptimal results. Furthermore, we mostly
relied on default values for Lbl2TransformerVec
hyperparameters (besides keyword extraction and
the pre-trained embedding transformation). It is
likely that hyperparameter optimization would
improve the metrics reported here.

E.4 Full meta-learning results

This section reports the full results of the meta-
learning experiments from Section 3.2.1. Figure 4
shows a summary plot and Table 13 provides the
raw numbers.

0 10 50 10
0

50
0

10
00

0.05

0.00

0.05

0.10

0.15

Yahoo

0 10 50 10
0

50
0

10
00

0.3

0.2

0.1

0.0

0.1

0.2

Amazon

0 10 50 10
0

50
0

10
00

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10
PC1

Standard training
MAML++ few-shot
Local zero-shot
Global zero-shot

0 10 50 10
0

50
0

10
00

0.05

0.00

0.05

0.10

0.15

0.20

0.25
PC2

Shots

(M
ac

ro
 A

P)

Figure 4: Absolute improvement in macro AP of meta-
learning approaches over a 10-shot matching model
with a BERT backbone (gray lines), averaged across
unseen classes. Note the log scale of the x-axes and the
different scales of the y-axes. See Table 13 for details.

F Future work

There are myriad avenues for building upon the
work described in this paper. Pre-training the
matching model on either an entailment or clas-
sification dataset could improve performance sig-
nificantly. For instance one might consider pre-
training on one or more of the datasets in this pa-
per, then fine-tuning on the other. The zero-shot
capabilities of the matching model create the possi-
bilities of employing active learning to select few-
shot samples or pseudo-labeling to bootstrap addi-
tional training samples. It would also be interesting
to investigate how the models scale to even more
labeled samples. The class descriptions consid-
ered in this work were, for the most part, short
enough to fit within the maximum token length of
the transformer-based models. Additional work
is needed to generalize these approaches to even
longer class descriptions. Analyzing the attention
layers or token salience scores could provide valu-
able insights into what information matching mod-
els are using to make predictions. There are also
other ways one might exploit the structure inherent
in policy documents besides separating them [SEP]
tokens (Li et al., 2020). Finally, there are “free”
means of further improving model performance,
which we did not explore in this work. These in-
clude, but are not limited to, applying domain adap-
tive and/or task adaptive pre-training (Gururangan
et al., 2020), performing additional hyperparam-
eter optimization, or incorporating additional fea-
tures beyond text (categorical, relevance features
from simple retrieval models like BM25 (Robert-
son et al., 2009), etc.) (Siblini et al., 2020; Chen
et al., 2017).

G Example inputs

Here we give examples of the class descriptions
and example texts fed into our models, after prepro-
cessing. Note that only the matching model used
the class descriptions.
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Dataset Backbone 0 shot 10 shots 50 shots 100 shots 500 shots 1000 shots

Yahoo

DistilBERT -7.58 0.63 5.85 9.39 14.97 16.42
BERT-base -7.17 0.00 7.66 11.16 15.27 16.03
RoBERTa -8.97 -1.35 5.37 9.87 16.03 17.10
DeBERTa -1.83 3.76 8.30 12.19 16.82 17.89
BERT-large -3.43 2.65 9.85 12.36 16.18 16.43

Amazon

DistilBERT -34.20 -20.75 2.43 7.24 18.03 22.57
BERT-base -17.01 0.00 12.24 15.58 22.46 25.11
RoBERTa -18.90 -6.65 7.60 10.80 20.68 23.52
DeBERTa -5.92 4.59 15.74 19.25 25.15 26.67
BERT-large -12.27 7.53 14.55 16.15 23.85 25.53

PC1

DistilBERT -19.12 -3.24 3.06 4.65 8.30 -
BERT-base -13.48 0.00 4.04 5.72 9.18 -
RoBERTa -11.99 1.14 4.92 6.02 9.02 -
DeBERTa -11.02 1.19 6.06 7.12 9.51 -
BERT-large -7.10 2.46 5.23 6.87 9.46 -

PC2

DistilBERT -3.11 -1.98 1.41 4.87 17.89 23.58
BERT-base -1.24 0.00 3.99 8.12 19.55 25.05
RoBERTa 0.36 3.59 6.64 10.62 22.23 27.40
DeBERTa 0.85 6.00 9.52 13.32 23.06 27.91
BERT-large -0.73 1.82 12.41 16.53 25.71 30.32

Average

DistilBERT -16.00 -6.33 3.19 6.54 14.80 20.86
BERT-base -9.72 0.00 6.98 10.15 16.62 22.06
RoBERTa -9.87 -0.82 6.13 9.33 16.99 22.67
DeBERTa -4.48 3.88 9.91 12.97 18.64 24.16
BERT-large -5.88 3.61 10.51 12.98 18.80 24.09

Table 10: Comparison of backbones for the matching model, measured as absolute improvement in macro AP (%)
over 10-shot BERT. Results are averaged across unseen classes.

Dataset Backbone Train time (s) Inference time /
sample (ms)

Yahoo

DistilBERT 66,601 2.469
BERT 133,523 3.912
RoBERTa 142,860 3.914
DeBERTa 241,303 6.590
BERT-large 336,248 10.127

Amazon

DistilBERT 5,521 2.406
BERT 9,832 3.724
RoBERTa 10,027 3.796
DeBERTa 17,089 6.073
BERT-large 26,314 9.813

PC1

DistilBERT 10,613 2.474
BERT 18,812 3.757
RoBERTa 19,113 3.839
DeBERTa 33,117 6.537
BERT-large 49,581 9.883

PC2

DistilBERT 14,451 2.497
BERT 25,742 3.663
RoBERTa 26,725 3.891
DeBERTa 45,435 6.405
BERT-large 68,481 9.851

Table 11: Train and inference times for different match-
ing model backbones on a p3.16xlarge ec2 instance. We
measured inference latency by dividing the total infer-
ence time (not including time to instantiate the model
or preprocess data) by the number of samples.

Dataset Model 0 shot

Yahoo
Lbl2TransformerVec 23.68
Matching 46.45

Amazon
Lbl2TransformerVec -29.14
Matching 0.91

PC1
Lbl2TransformerVec -31.29
Matching -5.51

PC2
Lbl2TransformerVec -0.29
Matching 11.36

Average
Lbl2TransformerVec -9.26
Matching 13.30

Table 12: Zero-shot performance (macro AP %) of
Lbl2TransformerVec and matching model on four
datasets relative to a supervised 10-shot BERT model.
We average the scores across unseen classes and three
seen/unseen data splits.
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Dataset Model 0 shot 10 shots 50 shots 100 shots 500 shots 1000 shots

Yahoo

Standard training -7.17 0.00 7.66 11.16 15.27 16.03
MAML++ few-shot -0.51 2.27 7.89 10.58 15.69 16.96
Local zero-shot 4.45 6.28 10.29 12.93 16.58 17.41
Global zero-shot -5.67 -0.68 5.11 7.95 14.13 16.25

Amazon

Standard training -17.01 0.00 12.24 15.58 22.46 25.11
MAML++ few-shot -20.15 -6.85 8.73 12.57 22.00 24.45
Local zero-shot -12.31 -1.97 10.16 12.66 21.32 24.60
Global zero-shot -29.96 -20.39 0.07 8.17 20.52 23.61

PC1

Standard training -13.19 0.00 4.77 5.34 9.43 -
MAML++ few-shot -11.38 -1.60 4.04 5.97 9.12 -
Local zero-shot -9.46 0.14 4.24 5.66 9.27 -
Global zero-shot -25.72 -3.92 4.36 5.73 9.04 -

PC2

Standard training -1.24 0.00 3.99 8.12 19.55 25.05
MAML++ few-shot -3.31 -2.88 2.21 6.81 16.44 21.07
Local zero-shot -4.13 -3.00 0.88 3.69 13.40 21.41
Global zero-shot -5.65 -4.80 -2.86 -1.31 11.35 16.96

Average

Standard training -9.65 0.00 7.16 10.05 16.68 22.06
MAML++ few-shot -8.83 -2.26 5.72 8.98 15.81 20.83
Local zero-shot -5.36 0.36 6.40 8.74 15.14 21.14
Global zero-shot -16.75 -7.45 1.67 5.14 13.76 18.94

Table 13: Average absolute improvement in macro AP (%) of different meta-learning strategies compared to a
10-shot matching model (BERT backbone) with standard training. We average the scores across unseen classes.

G.1 Yahoo
For the Yahoo Answers dataset the class descrip-
tions were of the form “this text has to do with
<class label>” where class label is one of Society
& Culture, Science & Mathematics, Health, Edu-
cation & Reference, Computers & Internet, Sports,
Business & Finance, Entertainment & Music, Fam-
ily & Relationships, Politics & Government". Ta-
ble 14 shows examples of input texts and their
labels (selected from the first 40 examples in the
test set). Notice that some labels are questionable
(see the last two rows).

G.2 Amazon
Tables 15, 16, and 17 show example texts of prod-
ucts on amazon.com and their labels of the Amazon
e-commerce product classification dataset. The
class labels are the assigned product categories.
This classification task is challenging since the
dataset is a web crawl data, and hence the example
texts may contain misleading, irrelevant, or noisy
information.
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Example text label

why does n t an optical mouse work on a glass table or even on some surfaces optical mice use an
led and a camera to rapidly capture images of the surface beneath the mouse the infomation from the
camera is analyzed by a dsp digital signal processor and used to detect imperfections in the underlying
surface and determine motion some materials such as glass mirrors or other very shiny uniform surfaces
interfere with the ability of the dsp to accurately analyze the surface beneath the mouse since glass is
transparent and very uniform the mouse is unable to pick up enough imperfections in the underlying
surface to determine motion mirrored surfaces are also a problem since they constantly reflect back the
same image causing the dsp not to recognize motion properly when the system is unable to see surface
changes associated with movement the mouse will not work properly

Computers & Inter-
net

what is the best off road motorcycle trail long distance trail throughout ca i hear that the mojave road is
amazing search for it online

Sports

what is trans fat how to reduce that i heard that tras fat is bad for the body why is that where can we find
it in our daily food trans fats occur in manufactured foods during the process of partial hydrogenation
when hydrogen gas is bubbled through vegetable oil to increase shelf life and stabilize the original
polyunsatured oil the resulting fat is similar to saturated fat which raises bad ldl cholesterol and can
lead to clogged arteries and heart disease until very recently food labels were not required to list trans
fats and this health risk remained hidden to consumers in early july fda regulations changed and food
labels will soon begin identifying trans fat content in processed foods

Health

how many planes fedex has i heard that it is the largest airline in the world according to the www fedex
com web site air fleet 670 aircraft including 47 airbus a300 600s 17 boeing dc10 30s 62 airbus a310
200 300s 36 boeing md10 10s 2 atr 72s 5 boeing md10 30s 29 atr 42s 57 boeing md11s 18 boeing 727
100s 10 cessna 208as 94 boeing 727 200s 246 cessna 208bs 30 boeing dc10 10s 17 fokker f 27s

Business & Fi-
nance

why do people blush when they are embarrassed why do people blush when they are embarrassed from
ask yahoo http ask yahoo com ask 20040113 html blushing is a unique blend of evolutionary and social
behavior it s an involuntary reaction of the sympathetic nervous system which is responsible for our
fight or flight response but blushing is solely triggered by social cues people generally blush when
they re feeling embarrassed scared or stressed as a result of the fight or flight response the capillaries
that carry blood to the skin widen and the increased blood flow lends the face as well as sometimes
the chest neck or even the body or legs a reddened color excessive facial blushing or erythrophobia is
caused by overactivity of the sympathetic nervous system the condition can cause a lot of psychological
duress and has engendered several support groups it s common knowledge that animals do n t blush so
while there are some evolutionary cues behind blushing it s also linked to something uniquely human
moral consciousness

Science & Mathe-
matics

is lin qingxia aka brigitte lin the most beautiful woman in chinese cinema this is according to stephen
chow http www hkentreview com 2005 features kfh kfhprem html is it true who is the best looking
male star did they make any movies together well everyone has different description on what beauty is
i like lin qingxia but i think many girls are prettier than she was she is more than 40 years old now if lin
qingxia is the most beautiful woman in the chinese cinema the most handsome man in chinese cinema
should be chin han because they always made movies together however a male movie star once was
asked his girlfriend in real life or the girlfriend in movie is more beautiful he gave a very good answer i
think my mother is the most beautiful woman in the world

Entertainment &
Music

what s the best way to create a bootable windos dos cd i do n t use floppies any more and need to boot
from something other than my hard disk well the best way is to look at whatever program you have
for burning cds and see if it has an option to create a bootable cd if you ca n t find it or use windows
itself to burn cds then it s a little more complicated note if you find that booting from cd does n t work
you may have to adjust your bios setting to allow your machine to boot from cd if you want to boot to
windows the easiest way is probably to go here http www nu2 nu bootcd and download a utility that
will do it for you there are instructions there depending on what type of boot you want if you do n t trust
using a third party utility microsoft has some instructions here http support microsoft com kb 167685
en us this process is not very straightforward though if you just need to get into your filesystem and
poke around you might consider booting a different os for example http www freedos org freedos and
http www knoppix net knoppix linux may do what you want for these you can download iso images
and burn bootable cds

Computers & Inter-
net

what is the best riddle that you know i m trying to have a library of the best riddles that people
encountered so a good riddle would be a riddle that has no ugly tricks in it pure logic answer ‚Äì no
tricks no funky solutions if you were standing in front of a door one leading to heaven and one leading
to hell neither of which are labeled and guarding that door is a guard one who always lies and one who
always tells the truth but you do n t know who s who what question would you ask to definitively know
which one is the door to heaven versus hell answer what would the other guard say that you would say
is the door to heaven hell then you know the opposite door is the door to heaven hell

Business & Fi-
nance

why would big ten keep its name inspite of adding a 11th school colleges univs xd br br upto 1980s
and early 90s big ten conference had only 10 schools but then somehow it was decided to add psu as
the 11th big ten school xd br br any thoughts insight on why the name of the conference not changed i
would think to keep the brand recognition and the history of the big ten the conference has invested a
lot in building the big ten name as well as any merchandising and corporate sponsorship

Education & Refer-
ence

Table 14: Examples from the Yahoo Answers dataset.
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Example text label

speedo essential endurance jammers aw18mix inc polyamide and elastane machine washable endurance
fabric protects against fading and retains the garments original shape chlorine resistant ensures your
swimwear wont degrade integral support hugs the contours of the body speedo essential endurance
plus jammers sporty secure and comfortable the timelessly stylish essential endurance plus jammers
are perfect for fitness training constructed using endurance fabric the speedo essential jammers are
hardwearing and comfortable the fabric protects against fading allowing your swimwear to look newer
for longer it also clings to the body and retains its shape meaning you don’t have to worry about baggy
shorts after multiple uses a 100 chlorine resistant coating ensures your swimwear won’t degrade in the
swimming pool adding to the overall durability of the product integral support is designed to hug the
contours of the body to create a hydrodynamic profile in the water whilst four way stretch technology
allows for a wider range of motion in all directions lastly a drawstring waist provides an enhanced fit
and added security

Clothing, Shoes &
Jewelry

a guide to the wildflowers of south carolina a most comprehensive state plant field guide and an
excellent resource for the natural history of plants in south carolina and surrounding states choice
magazine richard dwight porcher is a professor of biology and director of the herbarium at the citadel
in charleston south carolina an authority on the flora of south carolina he is the author of wildflowers of
the carolina lowcountry and lower pee dee and a co author of lowcountry the natural landscape he was
born in berkeley county south carolina and received his b s from the college of charleston and ph d
from the university of south carolina porcher trained under dr wade t batson and serves on the south
carolina heritage trust advisory board and the scientific advisory board of the south carolina nature
conservancy porcher lives in mount pleasant

Books

home 2 pack value round square swirl shaped silicone mold for chocolate jelly and candy 15 piece per
mold chocmoldc1301 100 food grade silicone 15 round cavities each safe to use in the oven microwave
freezer and dishwasher can be used in temperatures from 76 degrees f to as high as 446 degrees f now
with this chocolate mold you can design your very own chocolates for gift boxes or party trays size of
each cavity inch 1 2’create luscious and delicious chocolate treats from the comfort of your own home
now with this chocolate mold you can design your very own chocolates for gift boxes or party trays
this is easy to use flexible non toxic and long lasting safe to use in the oven microwave freezer and
dishwasher

Home & Kitchen

storm trooper side white vinyl car laptop window wall decal decal automatically comes in white
approximate size as shown 4 2 w x 5 5 h additional sizes available upon request made with premium
high quality indoor outdoor vinyl lasts for several years of interior and exterior use without fading
cracking or peeling discounts available with larger quantities purchased easy to apply instructions
included free tester decal included with every orderthe decal is a single color white and does not have a
background decals can be applied to any smooth clean surface car windows home windows interior
walls laptop covers cell phone cases boats etc

Automotive

navy 550lb 8 strands cores reflective paracord parachute cord lanyard 50ft 100ftitem 550 lb 8 cores
strands reflective paracord breaking strength 550 lb diameter 4 mm length 50ft 100ft inner strand core
8 tightly twisted inner strands coresthe reflective tracers appear to be light gray with normal light but in
no or low light conditions the tracers will reflect back any light on them this makes the cord ideal for
low light visibility conditions

Sports & Outdoors

audiopipe studio z 15 quot loudspeaker 8 ohm 350w wireless stream w remoteaudiopipe dzc1540ub
studio z 15 loudspeaker 8 ohm 350w wireless stream w remoteprofessional abs loudspeakerwoofer
15 voice coil 2 magnet 40 oztweeter 1 titanium diaphragm drivermax power 350 wattsvoltage 110
220vimpedance 8 ohmsensitivity 98 dbfrequency response 20 hz 20khzlcd screen usb sd player wireless
music stream fm radio remote controlspeaker output for a passive enclosureaux in for multimedia
devicesblue led power indicatorwheels and handle for easy transportation

Electronics

disney goofy goof troop goofybrand new in original packagingbrand new in original packaging Toys & Games

smartseries screen protector 3pk for the samsung r760 d710 gsii epic touchanti glare and scratch
resistant washable and dust free easy to apply and remove made from a durable self adhesive polymer
includes a cleaning cloth and an applicator cardmade from a tough self adhesive polymer the screen
protector prevents fingerprints dirt dust and scratches from marking up your device the screen protector
is both easy to apply and remove

Cell Phones & Ac-
cessories

Table 15: Examples from the Amazon dataset, label index 0 to 7.
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Example text label

spy games lethal limits kindle edition Kindle Store

seekingtag plastic beach towel clips towel holder pack of 6pcs100 brand new made of durable plastic
with zinc galvanized steel rust resistant also great for hanging towels to dry won’t blow away or fold up
includes 6 clips in bright colors 3pcs in blue 3pcs in yellow size about 12 3 5 cmseekingtag plastic
beach towel clips towel holder pack of 6pcs

Tools & Home Im-
provement

geminigemini is a feel good cd with a mixture of r b hip hop jazz gospel for all to enjoy CDs & Vinyl

tarnish resistant craft wire 20 gauge gold colortarnish resistant craft wire 20 gauge with a gold color on
a tarnish resistant spool 15 yards per spool ideal for use as an embellishment wirethis tarnish resistant
craft wire is ideal for use as an embellishment wire it is 20 gauge and gold in color there are 15 yards
per spool

Arts, Crafts &
Sewing

seattle’s best blend decaf 12 ounce pack of 2 seattle’s best coffee decaf level three seattle’s best blend
decaf ground coffee decaffeinated ground coffee balanced smooth full flavored character profile two
parts great flavor one part relaxation 3 how to enjoy measure one rounded tablespoon 7g of coffee per
6 fl oz 180ml of water add more or less coffee to achieve the perfect cup for you statements regarding
dietary supplements have not been evaluated by the fda and are not intended to diagnose treat cure or
prevent any disease or health condition

Grocery &
Gourmet Food

greenworks 15 inch 5 5 amp corded string trimmer 21272lightweight easy to use design only 7 05 lbs
15 inch cut path with pivoting head allows for edging and trimming capability with edging wheel 065
dual line auto feed with electric start gets you going within seconds no gas hassle ideal for small to
medium size yards compatible greenworks replacment spool model 29082green works 5 5 amp corded
15 inch cutting width auto feed 0 065 single line electric string trimmer model no 21272

Patio, Lawn & Gar-
den

2016 monthly mini wall calendar paths to god by tf publishing2016 paths to god mini calendar all
calendar pages are printed on fsc certified paper and use environmentally safe inks size 7 x 7 in open
size 7 x 14 in package quantity 1let the words of god instill peace throughout the year this paths to
god mini wall calendar offers some of the most inspiring and spiritual teachings of the bible as well as
images of nature’s paths all calendar pages are printed on fsc certified paper and use environmentally
safe inks

Office Products

american war generalsfor the first time national geographic gathers the nation s 10 leading war generals
for an unprecedented look at the history of the u s army from the vietnam war to america s war on al
qaeda american war generals reveals many never before heard stories and opinions from the legendary
leaders of the modern u s army their accounts reveal the big changes that have transformed the u s
military from the first troops to enter vietnam to the last combat troops to exit afghanistan explaining
the critical personal experiences that shaped their lives and the way they approached modern warfare

Movies & TV

Table 16: Examples from the Amazon dataset, label index 8 - 15.
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Example text label

hooded alpaca wool dog cat knit hoodie sweater orange amp ivoryhooded striped alpaca sweater made
of warm alpaca yarn perfect for dogs cats handmade by skilled artisans in peru exclusive design by
alpaca warehouse made in peruthis is a brand new handmade dog and cat hooded sweater made of
soft alpaca yarn it is very comfortable and warm and features a gorgeous color combination small size
measures length 14 chest girth 16 medium size measures length 15 chest girth 18 large size measures
length 16 chest girth 20 xlarge size measures length 17 chest girth 22

Pet Supplies

wall mount disposable glove dispenser rackunique open design allows you to see what size or type of
glove is being dispensed ideal for use in patient rooms doctor’s offices labs kitchens morethe open
design allows you to see what size or type of glove is being dispensed the holders accommodate most
glove boxes and are universal enough to be used for many tissue boxes as well warning this product
can expose you to chemicals which is are known to the state of california to cause cancer and birth
defects or other reproductive harm

Industrial & Scien-
tific

wedgie wrpr50m 5 0mm medium wedgie rubber pick refill 18 piecesa revolutionary new sound for your
acoustic or classical guitar the special elastomer material nearly eliminates pick noise leaving you with
clean warm tones this pick sounds like your fingers yet plays like a pick rubbers come in 2 thicknesses
and 3 levels of stiffness soft medium hard so that you can find your perfect sound mediumwedgie
rubber pick refill 5 0mm med 18pcs

Musical Instru-
ments

200 pcs lot fancy colorful butterfly sticker cover for ps3 controller playstation 3 skins games 1 skinunit
type lot 200 pieces lot package weight 0 200kg 0 44lb package size 10cm x 6cm x 10cm 3 94in x 2
36in x 3 94in unit type lot 200 pieces lot package weight 0 200kg 0 44lb package size 10cm x 6cm x
10cm 3 94in x 2 36in x 3 94in

Video Games

2 pack replacement maytag mfd2561hes refrigerator water filter compatible maytag ukf8001 fridge
water filter cartridgereplacement maytag mfd2561hes refrigerator water filter quantity 2 replaces
ukf8001 fridge water filter cartridge refrigerator water filter retains beneficial nutrients in water
while removing the taste of chlorine and odor leaving you with a fresh and clean tasting water reduces
waterborne contaminants including cysts asbestos particulates lead mercury without removing beneficial
minerals restricting the flow rate of the water cut down water bottle waste and save money while also
helping the environment by using water filters for the highest quality water and best contaminant
reduction replace the filter every 6 months on sale for a limited time please note this is an denali pure
brand replacement part not an oem product this product is not affiliated with any oem brands and is not
covered under any warranties offered by the original manufacturers any warranties for this product are
offered solely by denali pure all mentions of brand names or model descriptions are made strictly to
illustrate compatibility all brand names and logos are registered trademarks of their respective owners

Appliances

professional business card workshop 2 0create your own templates or choose a layout from 20 000 pro-
fessional quality templates premium collection of clipart images photos and heart warming sentiments
to finish each project new tools for creating animations and web pages for your projects select from
over 250 000 premium images and 150 creative fonts including editable clipart stunning photography
and more design your own photo calendars flip books collages slide shows and photo bouquets

Software

2015 topps baseball card 83 david wright nm mt2015 topps 83 david wright new york mets baseball
cards one single 2015 topps series 1 trading card single card ships in top load and or soft sleeve cards
combined card condidtion is near mint mint nm mt mint note stock image used2015 topps 83 david
wright new york mets baseball cards

Collectibles & Fine
Art

Table 17: Examples from the Amazon dataset, label index 16 - 22
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