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Abstract

Multimodal language generation, which lever-
ages the synergy of language and vision, is
a rapidly expanding field. However, exist-
ing vision-language models face challenges
in tasks that require complex linguistic under-
standing. To address this issue, we introduce
Visual-Language models as Importance Sam-
pling weights (& VLIS), a novel framework
that combines the visual conditioning capa-
bility of vision-language models with the lan-
guage understanding of unimodal text-only lan-
guage models without further training. It ex-
tracts pointwise mutual information of each
image and text from a visual-language model
and uses the value as an importance sampling
weight to adjust the token likelihood from
a text-only model. VLIS improves vision-
language models on diverse tasks, including
commonsense understanding (WHOOPS, OK-
VQA, and ScienceQA) and complex text gen-
eration (Concadia, Image Paragraph Caption-
ing, and ROCStories). Our results suggest that
VLIS represents a promising new direction for
multimodal language generation.

1 Introduction

Visual Language Models (VLMs) extend unimodal
text-only language models by conditioning their
outputs on image context. Recent VLMs (Li et al.,
2022a, 2023b; Wang et al., 2022) can perform di-
verse multimodal tasks from commonsense VQAs
(Marino et al., 2019; Schwenk et al., 2022) to in-
context learning (Alayrac et al., 2022; Awadalla
et al., 2023; Huang et al., 2023). Moreover, instruc-
tion tuning with visual inputs (Liu et al., 2023; Li
et al., 2023a; Dai et al., 2023) has improved the
VLMs’ responsiveness to an even more extensive
variety of tasks (Lu et al., 2022a; Yang et al., 2021).

However, most VLMs only partially inherit the
linguistic understanding capability of the unimodal
models (Iki and Aizawa, 2021). We here illustrate
two intriguing failure cases of the recent VLMs,
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Figure 1: TOP: VLIS correctly recognizes named enti-
ties, unlike the VLMs. Bottom: VLIS is not deceived
by the distractor images. Note that the images show a
seagull and a monkey, not an ostrich and a chimpanzee.
VLIS inherits this favorable linguistic capability from a
text-only language model (Touvron et al., 2023; Zhang
et al., 2022), and use VLMs as a guide for visual align-
ment. The examples are truncated for visualization
purposes: we provide the full-text in appendix A.2.

using both a strong image captioning model (BLIP-
2 (Li et al., 2023b)) and an instruction-tuned model
(LLAVA (Liu et al., 2023)). Firstly, VLMs avoid
specifying named entities. The upper examples of
Figure 1 show the VLM failing to describe a pub-
lic figure (Diego Maradona) or movie character
(Don Corleone). The problem is not the lack of
knowledge: after applying our zero-shot method
(VLIS), the VLM tells the names. We further inves-
tigate this phenomenon in the landmark recognition
experiment in appendix A.1.

Secondly, VLMs rely on the image context, even
when they should not. The lower examples of the
same figure show the VLM being misled by im-
age context to deny commonsense knowledge. The
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Q: What is the cause of
the color of the vehicle?

A: because it
has been
painted green.

(a) Standard VLM Decoding

Pointwise Mutual
Information
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(b) VLIS

Figure 2: Comparison of VLIS and standard VLM decoding process. Using the VLM, we first obtain the image-
conditional p,;(Answer|image) and text-only likelihood p,;(Answer) given an image and a prompt or question.
Then, we compute the exponentiated pointwise mutual information (PMI) with the likelihoods. Finally, the
exponentiated PMI score is used as the importance weights for the text-only model likelihood p;e.: (Answer).

questions are not unanswerable: the text-only lan-
guage model without the image context answers
both correctly. We provide more samples on visual
distraction in appendix A.2.

Hence, the linguistic capabilities of the VLMs
are not optimal yet. On the other hand,
the unimodal text-only language models them-
selves (Brown et al., 2020; Touvron et al., 2023)
show reliable linguistic understanding and known
for their knowledge understanding (Petroni et al.,
2019; Meng et al., 2022) and complex reasoning
capabilities (Kojima et al., 2022; Qin et al., 2023).
Hence, it becomes reasonable to delegate the bur-
den of language modeling to the text-only models.

To this end, we propose Visual-Language mod-
els as Importance Sampling weights (@ VLIS) as
a plug-and-play method to enhance the unreliable
linguistic understanding of the VLMs. When gen-
erating each text token, VLIS follows the token
likelihoods of the unimodal text-only language
model. Furthermore, VLIS multiplies importance
sampling (Tokdar and Kass, 2010) weights derived
from a VLM to provide the visual alignment sig-
nals. To isolate the visual conditioning capabil-
ity of the VLMs from their language modeling
preference, we incorporate the exponentiated point-
wise mutual information (PMI) (Church and Hanks,
1990) of the image context and the current text to-
ken as the weights. As a result, VLIS can maintain
the favorable language modeling capability of the
text-only model and control the visual conditioning
strength simultaneously.

We evaluate VLIS on two VLM backbones to
test whether VLIS is effective both when the lan-
guage modeling capability of the VLM is weaker
than that of the text-only model (BLIP-2 (Li et al.,
2023b)) and when the VLM is expected to model
language well owing to the visual instruction tun-
ing process (LLAVA (Liu et al., 2023)). Our ex-

periments consist of various tasks that require
both reliable language modeling and strong vi-
sual conditioning, including weirdness identifica-
tion (WHOOPS (Bitton-Guetta et al., 2023)) and
commonsense VQA (OK-VQA (Marino et al.,
2019), ScienceQA (Lu et al., 2022a)), extended
image captioning (Concadia (Kreiss et al., 2022)
and Image Paragraph Captioning (Krause et al.,
2017)), and open-ended generation (ROCSto-
ries (Mostafazadeh et al., 2016)). Compared to the
dataset-specific state-of-the-art baselines and the
base VLMs, VLIS improves linguistic capabilities
such as responsiveness to prompts while maintain-
ing visual conditioning according to a comprehen-
sive set of evaluation metrics.

2 VLMs as Importance Sampling Weights

We propose Visual-Language models as Impor-
tance Sampling weights (VLIS) to harmonize the
visual conditioning capability of the VLMs with the
linguistic fluency of the text-only language mod-
els. We provide the intuition behind our approach
in §2.1, describe our token-level visual alignment
scores in §2.2, and combine the said scores with the
text-only model via importance sampling in §2.3.

2.1 Intuition

Many recent Visual Language Models (VLMs) (Li
et al., 2023b; Alayrac et al., 2022; Liu et al., 2023)
are often built on top of text-only language mod-
els (Iyer et al., 2022; Hoffmann et al., 2022; Tou-
vron et al., 2023). At each timestep ¢, the per-token
likelihood of the autoregressive text-only language
models is modeled as pyeyt(z¢|r <), where = de-
notes a text token. To build a VLM p,,;, one can
finetune the text-only model on data S consisting
of paired image c and text z with maximum likeli-
hood estimation as the objective.

Out ~ argmingE g oyes[—logpa(z|c)] (1)
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However, while this objective only maximizes
the image-conditional likelihood p,;(z¢|c), it may
lead to unpredicted artifacts in the marginal likeli-
hood p,; () that does not depend on any particular
image. For example, image captioning models are
known to not only reflect but also amplify the social
bias present in the training data (Hendricks et al.,
2018), or distort the original language model’s com-
monsense knowledge as described in §1.

We henceforth seek to extract the visual condi-
tioning capability of the VLMs isolated from their
dubious language modeling skills.

2.2 Extracting Visual Weights

Here, we aim to find a quantity that extracts the
visual conditioning strength of a VLM stripped
of its language modeling preference. We employ
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990), which measures the association be-
tween two events (text and image in our setting).
On each step, we want to compute the PMI between
the image context ¢ and the next token x; given the
previous text context & ;:

Pul (T, c|T<t)
pvl($t|x<t)pvl(c)
-1 pvl(xt|ca x<t>
pui(t|T<t)

PMI(z¢|c,z<;) = log

2
3

eq. (3) reformulates the definition in eq. (2) for
better tractability. The numerator is the image-
conditional likelihood of the VLM and is easily
obtainable. However, the denominator requires
marginalization over the image context c. We enu-
merate three proxies below that bypass the exces-
sive computation required to obtain the expectation
over all possible images.

Approximating the marginal. The first approx-
imation is training a separate text-only model with
the VLMs’ training data S. Considering the mas-
sive scale of dataset S, this option requires a consid-
erable burden of additional training. Also, there is
no guarantee that the newly trained model will ac-
curately estimate the marginal likelihood due to the
additional complexity of training another model.
The second option is using a sample mean of the
pre-selected image set as a proxy to the real mean.
Lastly, the score for only one or two images might
suffice as the sample image set.

We use the last method with the least computa-
tional overhead. Here, the sample set is a tiny set
of images with close to no visual information. In

practice, we use two images: a black-filled image
¢y and a white-filled image c,,.

1
pvl($t|1‘<t) ~ 5

> pulmilranc) @)

c€[cp,cw)

This efficient alternative works reasonably well
in practice and is used in all our experiments. As
a result, VLIS runs three forward passes of VLM
(one for the conditional likelihood and two for the
marginal likelihood) and a single pass of the text-
only model on each step of the generation process.
We explore more choices of selecting the marginal
image set later in appendix C, which shows that
our specific set of images provides a reasonable
trade-off between generation quality and inference
time.

2.3 Computing VLIS Scores

We start from the token likelihood of text-only lan-
guage models pyezt(x¢|c, x<4). To control the de-
gree of confidence in the text-only models’ deci-
sions, we introduce a language temperature 7 to
smooth or de-smooth the text-only distributions:

_ 1
pte;rt(xt‘c; 9U<t) X Ptemt(xt\C, $<t)f 5

Then, we multiply the exponentiated PMI intro-
duced in §2.2 with the likelihood for better visual
alignment. VLIS decides the next token x; with the
following score f(x):

F(21) = Preat(ze|c, ay)ePMI@nclz<d) (g

pui(Te]c, x<t)
pvl($t|95<t)

= Dtext (fL‘t|C, :E<t) (7
Written as eq. (7), VLIS performs importance
sampling of the smoothed text-only model like-
lihood pyeyt. Importance sampling (Tokdar and
Kass, 2010) is a Monte-Carlo method of estimat-
ing a quantity v(x) from the nominal distribu-
tion p(x) with samples from another distribution
called importance distribution q(z). The estimated
quantity here is the text-only model likelihood
Dtext(T¢), the nominal distribution is the VLMs’
image-conditioned likelihood p,,; (z¢|c), and the im-
portance distribution is the marginal p,;(x).

B @)+ P~ B () 509] ®)
V() = Preat(Tt|T<t)
p(x¢) = poi(wile, v<t)
q(xt) == poi(@t|r<t)

702



Implementation-wise, we replace the expecta-
tion with a single sample (current generated text).
Thus, VLIS effectively treats the current token
candidate as sampled from the VLMs’ marginal
poi(x4) and reweigh its importance with the VLM’
conditional py;(z¢|c).

Fluency masking. The log visual weights
PMI(z,clz<;) of VLIS is a log-likelihood ratio
and is unbounded. Hence, some extreme cases,
such as tiny values of the marginal likelihood
pui(z¢|z<¢) may overrule the language generation
process of the text-only model, yielding degenerate
text. To prevent such text degeneracy, we apply
a fluency mask to our importance sampling score
f(z¢|z <, ¢): only the tokens with text-only likeli-
hood larger than the threshold « are allowed to be
selected. We omit the dependency on the contexts
Z«¢, ¢ in the equation below for simplicity.

7 ) (@), if 2 € Vigp
flae) = {—inf, otherwise ©)
Viop = {@t|Dteat(x1) > a} (10)

Intuitively, this mask filters out any token can-
didates the text-only model sees as the next token
with a probability lower than .. We fix the fluency
threshold to a = 0.001 in all experiments except
for an alternative architecture (appendix E). Still,
VLIS is not overly sensitive to the specific value of
the fluency threshold. We conduct a hyperparame-
ter search experiment to verify this in appendix D.

The token that maximizes this final score
f(x¢|c, ;) is greedily selected as the next token.
When VLIS is combined with other decoding meth-
ods, such as beam search, the score substitutes the
original token likelihood as per-token scores.

3 Experiments: Describing Facts

We verify that VLIS can alleviate the factual inac-
curacy concern raised in Figure 1 with various mul-
timodal benchmarks: weirdness identification §3.1,
commonsense understanding §3.2, and scientific
reasoning §3.3. VLIS consistently outperforms the
backbone VLM and shows comparable factual cor-
rectness to the strong baselines.

Experimental setups. We explore two experi-
mental setups. Our experiments on the WHOOPS
dataset incorporate LLAVA (Liu et al., 2023) and
Lynx (Zeng et al., 2023) as the VLMs and Vi-
cuna 7B (Chiang et al., 2023) as the text-only
model. In the VQA experiments, we use BLIP-
2 OPT 2.7B (Li et al., 2023b) and OPT IML Max

Models Pipe 0-shot | Acc (%)
Chance 50
BLIP-2 v 50
BLIP-2 73
Model Caption v v 59
GT Caption v v 74
VLM (LLAVA) | v v 59
VLM (Lynx) v v 71
Ours (LLAVA) v v 73
Ours (Lynx) v v 80

Table 1: Results in the identification of weird images
task of WHOOPS dataset (Bitton-Guetta et al., 2023).
Pipe represents further pipelining with GPT3 and 0-
shot denotes a zero-shot method. The best numbers are
bolded and the second best ones are underlined.

1.3B (Iyer et al., 2022) as our backbones.! Note
that the choices of model pairs are intentional: we
impose similar computational requirements on both
the VLM and the text-only model to limit the ad-
ditional computational burden of VLIS. In both
cases, we use the base VLM as a general baseline
to evaluate the gain from VLIS. Also, to verify the
contribution of the PMI weights, we implement
Naive Ensemble which simply multiplies the token
likelihood of the VLM and the text-only model.

Evaluation metrics. We evaluate closed-ended
questions with binary (WHOOPS) and multi-
choice (ScienceQA) accuracy. The open-ended
VQAs (OK-VQA and VQAV2) use the task-specific
VQA metric (Antol et al., 2015).

3.1 Identification of Weird Images

WHOOPS (Bitton-Guetta et al., 2023) is a visual
commonsense benchmark to check a VLM’s capa-
bility to understand images that defy commonsense.
We adopt identification of weird images, a subtask
of the WHOOPS benchmark, which tasks a model
to discriminate potentially weird images.
Approach and Baselines. Following the origi-
nal paper (Bitton-Guetta et al., 2023), we employ
pipelining to turn the original binary classifica-
tion problem into a description generation prob-
lem. Specifically, pipelining means that a model
first generates explanation-of-violation (EoV) de-
scription of the given two images, which is then

'We assign different tasks for different backbones for fair
comparisons: BLIP-2 fails to generate long explanation-of-
violation since it is only trained on short captions, while it is
not trivial to evaluate LLAVA on short-answer VQAs in a zero-
shot manner due to its tendency to generate long explanations.
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What is unusual about this image?

VLIS

Albert Einstein holding a smartphone is
unusual because he lived before the
invention of such technology.

VLM

it is not common to see a professional in a
field like science using a cell phone.

VLIS

Duck swimming alongside baby rubber
ducks in the image is unusual as they are
= not a real animal.

VLM
It is not very common to see a large bird
with three ducklings at once.

Figure 3: Qualitative samples from WHOOPS (Bitton-
Guetta et al., 2023) experiments. As marked in green,
specific descriptions are required to explain weirdness.

processed to the off-the-shelf text-only classi-
fier GPT3 (Brown et al., 2020) to yield a bi-
nary decision on which image is weird. We use
VLIS to generate such EoV descriptions. The
pipelined baselines include EoV from the backbone
VLM (LLAVA), conventional machine-generated
captions, and ground-truth captions from the
WHOOPS dataset. We also include pipeline-less
BLIP-2 (both supervised and zero-shot) as a base-
line. The same prompt we used for both VLIS and
the backbone VLM is illustrated in appendix F.
Results. Table 1 and Figure 3 presents results
with LLAVA (Liu et al., 2023), an instruction-tuned
VLM. VLIS-generated weirdness explanations per-
form on par with the ground-truth captions, which
are manually annotated to contain details necessary
to identify the strangeness. Also, our method as a
zero-shot method shows comparable performance
to the supervised baseline BLIP-2. Interestingly,
LLAVA alone cannot outperform conventional cap-
tions, even with instruction tuning and prompting.

3.2 Commonsense Understanding

Unimodal language models embody commonsense
knowledge (Petroni et al., 2019; Davison et al.,
2019; Tamborrino et al., 2020). If VLIS can in-
herit this commonsense understanding capability,
it would outperform the base VLM in tasks requir-
ing both commonsense and visual understanding.
Here, we examine this possibility with a common-
sense VQA benchmark of OK-VQA (Marino et al.,
2019). Further, VLIS is also shown to maintain
visual specificity in VQAv2 (Goyal et al., 2017).
Approach and baselines. @ We use OK-

Models V L | OKVQA VQAv2
FewVLM v 16.5 47.7

Frozen v 59 29.6

VLKD v 13.3 42.6

BLIP-2 v 31.7 53.5

OPT-IML v 19.1 36.0

Naive

Ensemble v v 26.6 34.6

Ours v v 34.2 53.6

Table 2: Results in the validation set of OK-

VQA (Marino et al., 2019) and VQAv2 (Goyal et al.,
2017). V denotes using a VLM and L denotes using a
unimodal language model.

Models IMG TXT NO | ALL
UnifiedQAgman | 44.1 502 445 | 45.8
UnifiedQAgse 48.1 53.1 46.7 | 48.5
GPT-3 657 742 79.6 | 740
BLIP-2 355 346 242 | 282
OPT-IML 454 522 49.8 | 49.0
Naive Ensemble | 45.9 53.6 49.7 | 49.7
Ours 49.3 53.1 49.1 | 50.2

Table 3: Zero-shot results on ScienceQA test set (Lu
et al., 2022a). IMG denotes subset with image context,
TXT the text context subset, and NO the subset without
any context.

VQA (Marino et al, 2019) as an exam-
ple of commonsense-augmented VQA and
VQAV2 (Goyal et al., 2017) as a visually intensive
VQA problem. We compare VLIS with strong
VLM models, including FewVLM (Jin et al.,,
2022), Frozen (Tsimpoukelli et al., 2021), and
VLKD (Dai et al., 2022).

Results: commonsense knowledge. In the OK-
VQA (Marino et al., 2019) experiment in Table 2,
we show that VLIS achieves meaningful develop-
ment over the backbone VLM (BLIP-2). Also, the
text-only backbone (OPT-IML) and Naive Ensem-
ble perform substantially worse, proving that VLIS
is not just imitating the text-only model outputs.
Instead, VLIS adaptively fuses the commonsense
understanding capability of the text-only model
with the visual conditioning of the VLM.

Results: maintaining visual specificity. When
VQAs do not require text-based reasoning, VLIS
should focus on visual conditioning only. The right-
most column of Table 2 summarizes results on
VQAV2 (Goyal et al., 2017) dataset, a VQA dataset
that has its textual bias intentionally removed. As
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Model Zeroshot | Cap | Desc
Kreiss et al. 113 ] 174
Socratic Model v 389 | 22.6
BLIP-2 v 20.0 | 30.6
Naive Ensemble v 247 | 184
Ours v 44.1 | 28.3

Table 4: Results on Concadia (Kreiss et al., 2022) test
set. Cap denotes caption and Desc description annota-
tions. We report CIDEr following the literature.

Model Shots | M C B4
Krause et al. Full | 16.0 | 13.5 | 8.7
Liang et al. Full | 17.1 | 16.8 | 9.0
SCST Full | 13.6 | 13.8 | 5.9
SCSTRep. Penalty Full | 179 | 30.6 | 10.6
HSGED Full | 183 | 36.0 | 11.3
PaG-MEG-SCST | Full | 182 | 294 | 11.5
BLIP-2 3 10.8 | 6.5 | 49
OPT-IML 3 95 | 25 | 22
Naive Ensemble 3 9.8 6.0 | 3.6
Ours 3 14.6 | 148 | 6.4

Table 5: Results on the Paragraph Captioning (Krause
et al., 2017) test set. M denotes METEOR, C CIDEr,
and B4 Bleu-4 scores.

shown in the VQA score, VLIS (Ours) preserves the
VQA capability of the backbone VLM (BLIP-2).
Note that Naive Ensemble falls behind the text-only
backbone (OPT-IML), offering a poor trade-off be-
tween visual and linguistic understanding.

3.3 Scientific Reasoning

ScienceQA (Lu et al., 2022a) evaluates multimodal
science reasoning capability. Here, the goal of
VLIS would be to improve the answers in the pres-
ence of image contexts (IMG) and preserve the
answers from the text-only model in the absence of
such visual context (TXT and NO).

Baselines. We compare our zero-shot VLIS
against zero-shot baselines including a VLM (Uni-
fiedQA (Khashabi et al., 2020)) and a text-only
language model (GPT-3 (Brown et al., 2020)).

Results. Table 3 demonstrates the findings in
ScienceQA. On IMG split, VLIS significantly im-
proves the text-only OPT-IML and Naive Ensemble
baselines. Also, VLIS maintains the performance
of the text-only backbone in TXT and NO split.
Finally, the base VLM (BLIP-2) falls behind by a
wide margin, indicating that solid language under-
standing is necessary for scientific reasoning.

4 Experiments: Text Generation

In addition to factual knowledge, text-only lan-
guage models manifest two critical capabilities:
following prompt instructions and generating flu-
ent and diverse text. We demonstrate that VLIS
extends these qualities to the visual domain with
contextualized captioning (§4.1), paragraph cap-
tioning (§4.2), and visual story generation (§4.3).

Metrics. Both captioning benchmarks use au-
tomatic text metrics, including CIDEr (Vedantam
et al., 2015), METEOR (Banerjee and Lavie, 2005),
and Bleu-4 (Papineni et al., 2002). In the open-
ended generation problem of visual storytelling, we
use various fluency metrics (2-gram repetition, di-
versity, coherence, MAUVE (Pillutla et al., 2021))
and a visual strength metric (CLIPScore (Hessel
et al., 2021)). Refer to (Su et al., 2022a) for details
on the fluency metrics.

4.1 Contextualized Captioning

Concadia (Kreiss et al., 2022) is an image caption-
ing dataset with the additional context of a para-
graph from the Wikipedia article. The dataset pro-
vides two types of annotations: caption, which
takes the article into account and description,
which ignores the article context.

Approach and Baselines. Following the orig-
inal evaluation scheme (Kreiss et al., 2022), we
generate a single text to compare against both the
ground-truth caption and description. We include
both supervised (Kreiss et al., 2022) and zero-shot
(Socratic Model (Zeng et al., 2022)) baselines.

Result. In Table 4, VLIS outperforms the
Socratic Model (Zeng et al., 2022) implementa-
tion based on a stronger language model (GPT-3
175B (Brown et al., 2020)). Interestingly, the base
VLM (BLIP-2) and VLIS (Ours) show a completely
different text style. VLIS captions are better aligned
with caption-style, showing that our method re-
flects the Wikipedia article better than the baselines.
On the other hand, the VLM generates description-
style texts better. Still, VLIS captions are similar
to the visually intensive caption (description) com-
pared to all other baselines except for the VLM.

4.2 Paragraph Captioning

Image Paragraph Captioning (Krause et al., 2017)
has paragraph-long captions that describe the im-
age in finer detail than sentence-level captions.
Approach and baselines. We saw that neither
the VLM nor the text-only model could follow the
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Models rep-2). div.t coh.t Mauve? CLIP.{
Cont. Search 260 097 034 086 0.65
MAGIC 249 097 038 0.85 0.68
BLIP-2 2426 039 032 047 0.87
Naive Ensemble | 1.85 0.98 0.27 0.93 0.67
Ours 231 097 038  0.96 0.72

Table 6: Results in the ROCStories story generation
dataset (Mostafazadeh et al., 2016). rep-2 denotes 2-
gram repetition, div. diversity, coh. coherence, and
CLIP. CLIPScore. Higher is better except for rep-2.

style of the ground-truth annotation in early experi-
ments. Hence, we provide the model with three in-
context examples (3-shot). Note that the setting is
still much more challenging compared to that of the
fully supervised baselines (Krause at el. (Krause
et al., 2017), Liang et al. (Liang et al., 2017),
SCST with repetition penalty (Melas-Kyriazi et al.,
2018), HSGED (Yang et al., 2020), and PaG-MEG-
SCST (Nguyen and Fernando, 2022)).

Results. As visible in Table 5, VLIS greatly
improves the base VLM (BLIP-2) to generate para-
graph captions comparable to the supervised base-
lines. We provide an interpretation of this improve-
ment in qualitative samples in appendix G: VLIS
shows less text degeneracy than the base VLM,
while keeping visual hallucination at a minimum
unlike Naive Ensemble.

4.3 Story Generation

Story generation is an open-ended generation task.
To excel at it, VLIS should generate open-ended
text without falling into text degeneracy, all the
while staying close to the image context.

Approach and baselines. Unlike previous ex-
periments, here we use a supervised text-only
model (Su et al., 2022b) finetuned on text-only
ROCStories (Mostafazadeh et al., 2016) dataset.
Hence, we can safely assume that this specialist
text-only model knows the language "better" than
the VLM in story generation. We include both
visually-conditioned (MAGIC (Su et al., 2022a))
and text-only (Contrastive search (Su and Collier,
2023)) baselines. Refer to appendix B for more
details on the baseline results.

Results. Table 6 presents the results of open-
ended story generation. VLIS outperforms both
Contrastive Search and MAGIC in all metrics.
While Naive Ensemble builds more diverse text
(rep-2 and div.), its severely low coherence score
suggests that its stories are less consistent, as rep-
resented in qualitative samples of appendix G. Fi-

Question: What kind of dog is in this
picture?

GT: rottweiler

VLIS: rottweiler

BLIP-2: a dog

OPT: pug

Na'tve Ensemble: a dog

Question: Which one of these animals
is native to north america?

GT: deer

VLIS: deer

BLIP-2: zebra

OPT: wolf

Naive Ensemble: zebra

Question: What material is burning?
GT: wax

VLIS: paper

BLIP-2: umbrella

OPT: wood

Nave Ensemble: the material is
burning

Question: What ocean is being
surfed?

GT: atlantic, pacific

VLIS: water

BLIP-2: the ocean

OPT: ocean

Nave Ensemble: the ocean

Figure 4: Generation results in the OK-VQA
dataset (Marino et al., 2019). We color the intention of
the question green and answers that defy such intention
with red. (c) and (d) are failure cases.

nally, while the base VLM (BLIP-2) shows high
image-text correspondence as reflected in high
CLIPScore, it cannot generate an articulate story
as its low performance on other scores shows.

5 Qualitative Results

Commonsense Understanding. Figure 4 il-
lustrates zero-shot results in the OK-VQA
dataset (Marino et al., 2019). In (a) and (b), the
baselines including the base VLM and Naive En-
semble fail to understand the intention of the ques-
tion (kind of dog and native to north america).
While the text-only model understands the question
better and suggests plausible answer candidates
(pug and wolf), it has no access to the visual inputs
and ultimately outputs an incorrect answer. On the
other hand, VLIS sensibly combines commonsense
reasoning and visual context.

Results for images (c) and (d) depict the failure
cases. In (c), VLIS follows the reasoning process
of the text-only language model to deduce that the
answer should be a type of material. However, as
the VLM focuses on the frontal object (umbrella),
VLIS wrongly concludes the answer is the mate-
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Today | went

Hey, It’s me

VLIS:, your son's teacher, and
I'm going to show you a
picture of me and your son.
BLIP-2:, person.

| S

@ b

Hey, It’s me Today | went
VLIS: your friend. I have an apple
(b) computer and I'm going to be at the

convention in a few weeks.
BLIP-2: cynthia, I'm a computer
scientist.

computer.

VLIS: to the library to pick up a book for my
son and found out that they have a special
section for children with special needs.
BLIP-2: to the museum with my son.

VLIS: to an Apple store. | bought an iMac,
a keyboard, and a trackpad for my wife's

Here is a romantic message. Answer:
VLIS: | love you and | want to
spend the rest of my life in front of
you smiling and touching

BLIP-2: love you mom

Here is a romantic message. Answer:
VLIS: Dear John, | love you. You
are the apple of my eye. Yours truly
BLIP-2: | love you.

BLIP-2: to a conference.

Figure 5: Open-ended generation results with BLIP-2 (Li et al., 2023b) as the base VLM. We use three text prompts
(Hey, It’s me, Today I went, and Here is a romantic message. Answer:) to test whether VLIS can actively adjust its
response according to the text prompt while maintaining visual alignment.

rial of that object (paper, which is coincidentally
a flammable material as well). In (d), the text-
only model produces an incoherent output (ocean).
VLIS inherits this misinterpretation and likewise
generates an incorrect answer (water). In conclu-
sion, VLIS induces coordination of the VLM’s vi-
sual specificity and the text-only model’s common-
sense understanding but carries on the modeling
insufficiency of the individual modalities.

Open-Ended Generation. Lastly, we demon-
strate the open-ended generation capability of VLIS
in Figure 5. Here, VLIS should condition its output
on the diverse text prompt and the image. Unlike
the base VLM, it clings tighter to the prompt and
produces realistic self-introduction (hey, it’s me),
personal journal (foday I went), and romantic mes-
sages (here is a romantic message. answer:). Also,
VLIS plays pun on the word apple (see apple lap-
top in the image and apple of my eye). Refer to
appendix G for more baseline samples.

6 Related Work

Combining VLMs with text-only LMs. Early
large-scale VLMs (LXMERT (Tan and Bansal,
2019), VisualBERT (Li et al., 2019) and ViL-
BERT (Lu et al., 2019)) saw the benefits of
text-only pretraining by initializing their text en-
coder with a masked language model BERT (Ken-
ton and Toutanova, 2019). Later, Frozen (Tsim-
poukelli et al., 2021) started a trend of freezing
the language model and learning only the vision-
language relationship. More recent models such
as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li
et al., 2023b) also freeze the image encoder. ES-
PER (Yu et al., 2022) uses reinforcement learning
to combine image encoders with language models.

Better aligned with our approach are decoding-
oriented methods for image-conditioned text gen-

eration. ZeroCap (Tewel et al., 2022) uses the
gradient signal from a pretrained image-text align-
ment scorer (CLIP (Radford et al., 2021)) to up-
date the language model’s memory. Magic (Su
et al., 2022a) also utilizes CLIP. Unlike ZeroCap
and Magic, VLIS utilizes autoregressive VLMs (Li
et al., 2023b), rather than CLIP.

Language Model Decoding. Language model
decoding is the process of generating text from
a pretrained language model. Traditional decod-
ing methods use greedy decoding and beam search
to find the most likely sequence of words. The
truncated sampling algorithms such as Top K sam-
pling (Fan et al., 2018; Holtzman et al., 2018; Rad-
ford et al., 2019), Nucleus sampling (Holtzman
et al., 2020), and Typical P sampling (Meister et al.,
2022) have been proposed to avoid text degener-
acy. Recent deterministic algorithms, such as Con-
trastive decoding (Li et al., 2022b) and contrastive
search (Su et al., 2022b; Su and Collier, 2023),
provide a better trade-off between text fluency and
model likelihood. Neurologic (Lu et al., 2021) and
Neurologic A*esque decoding (Lu et al., 2022b)
control the language models to include given words
in their outputs. As shown in the experiments, VLIS
can be used jointly with any decoding method, in-
cluding beam search and contrastive search.

7 Conclusion

We propose VLIS, a novel framework to alleviate
the language modeling burden of visual-language
models (VLMs). VLIS combines the linguistic un-
derstanding capability of the text-only language
models with the visual conditioning strength of
the VLMs by importance sampling. To isolate
the VLMs’ visual conditioning power, VLIS uses
pointwise mutual information to suppress their
text-only marginal distribution. Our framework
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enhances the base VLM in commonsense reason-
ing (WHOOPS (Bitton-Guetta et al., 2023), OK-
VQA (Marino et al., 2019), and ScienceQA (Lu
et al., 2022a)) and complicated text generation
(Concadia (Kreiss et al., 2022), Image Paragraph
Captioning (Krause et al., 2017), and ROCSto-
ries (Mostafazadeh et al., 2016)) problems. In the
future, VLIS can be extended to incorporate other
modalities for which the paired multimodal data is
even scarcer. We hope that VLIS sparks an inter-
est in better utilization of off-the-shelf multimodal
pretrained models.

8 Ethical Considerations & Limitations

Potential ethical concerns. As an inference time
method, VLIS inherits some known problems of
both the VLMs and the unimodal text-only lan-
guage models as well:

* Hallucination: VLMs are known to hal-
lucinate information absent in the training
data (Rohrbach et al., 2018). While VLIS may
strengthen visual conditioning and thereby
contribute to reducing the rate of visual hallu-
cination, completely eradicating it is beyond
the scope of this research.

* Social bias: It is widely known that VLMs
reflect or even amplify (Hendricks et al., 2018;
Hirota et al., 2022) social bias (e.g. gender or
race) in the training data. We have yet to
determine how VLIS affects social bias in the
base models. Thus, outputs generated using
VLIS may contain social bias.

It is a meaningful direction to combine VLIS
with reinforcement learning (Ramamurthy et al.,
2023; Yu et al., 2023) or reward-based decoding al-
gorithm (Su et al., 2022a) to alleviate the problems
above, but we leave that to future research.

Limitation of VLIS and future work. Firstly,
we acknowledge that this paper only explores a
small fraction of the possible combinations of text-
only models and VLMs. A large-scale wide search
in this regard would reveal 1) the better-performing
pairs of text-only LM and VLM and 2) the required
characteristics of a good model pair.

Secondly, VLIS could be extended to more
modalities than the image-to-text generation prob-
lem covered here. Other modalities, such as audio
and document may also benefit from applying VLIS
to their modality-specific foundational model.

Finally, VLIS can be short-sighted. The method
combines the outputs of the VLMs and the text-
only models at the very last stage of token likeli-
hood. As a result, VLIS score might be misleading
when both models assign high probabilities to the
same token for different reasons (e.g. homophones).
It may help to estimate scores for the future gener-
ated text by rolling out a few generative steps and
aggregating the output (Lu et al., 2022b), which we
leave to future works.
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A VLM Failure Cases

A.1 Landmark Recognition Experiment

To better understand the named entity recogni-
tion problem in VLMs’ image descriptions, we
check whether their descriptions for pictures of
popular landmarks contain the proper names. We
first collect the names of the 100 most popular
landmarks 2. Then, we filter the list by remov-
ing names of landmarks without proper nouns (e.g.
Middle of the Earth), keeping 80 landmarks in total.
Finally, we download the corresponding pictures
from Wikipedia. Given the prompt What is this?,
we task the VLM to generate a response as long as
100 tokens and check whether the output contains
the name of the given landmark. Note that some
landmarks have alternative names. Hence, we col-
lect alternative names from Wikipedia and count
the model-generated answer as correct when it con-
tains any of the possible names. Finally, we check
whether the model tried to answer or not by inspect-
ing whether the model-generated text contains the
name of any landmark in our list. We calculate the
precision score by dividing the number of correct
predictions by the number of tries.

Our landmark dataset 3 is tiny compared to the
similar dataset (Weyand et al., 2020) for a purpose:
we want to check whether the VLM avoids telling
the named entities, not whether the VLM saw them
in the training process. Hence, we narrow the scope
of evaluation to the most popular landmarks, in
which we can assume that most of the entity names
are found in the VLM training dataset.

Table 7 and Figure 6 compare base LLAVA (Liu
et al., 2023) and VLIS in our landmark recognition
dataset. The result shows that the VLM (LLAVA)
knows at least about half the landmarks’ names, but
does not tell them without applying VLIS. Also,
VLIS shows good precision, showing that it does
not get more correct answers by guessing more.
We further demonstrate that a proper answer to our
prompt What is this? should contain the name of
the landmarks: when we present GPT3 with the
ground-truth alt captions and the prompt, GPT3
always includes the landmark names in its output.

A.2 More Qualitative Results

Figure 7 shows full raw text outputs for the VLM
failure cases shown in Figure 1. Figure 8 depicts

The list for landmarks is from www.listchallenges.
com/100-most-famous-1landmarks-around-the-world.
3We will release the dataset to the public.

Models | GT Caption | Acc Prec
GPT3 v 1.00 1.00
LLAVA 0.16 0.48
Ours 041 0.70

Table 7: Results on our landmark recognition experi-
ment. Acc denotes accuracy and Prec denotes precision.

Ours:

At nighttime, the Marina Bay Sands building, also known as the
hotel tower, is floodlit and its surrounding harbor is bustling with
activity.

LLAVA:

The image features a stunning view of a large building situated
on the water. The building appears to be a hotel or a resort, and it
is connected to a nearby island by a bridge.

Ours:

The structure in the pictures is the well-known Sagrada Familia
basilica in Barcelona, Spain.

LLAVA:

the image features a large cathedral with a tall tower and a
steeple, which is likely a famous landmark in the city.

Figure 6: Comparison of LLAVA and VLIS in the land-
mark recognition experiment.

more samples for the failure case 2: the base VLM
(LLAVA) is distracted by misleading visuals while
VLIS does not.

B Implementation Details

Computational Requirements. Using LLM.int8
approximation (Dettmers et al., 2022), a single
NVIDIA TITAN RTX GPU (24GB Memory) fits
both the BLIP-2 2.7B and OPT 1.3B models. Flan-
TS5 XL and XXL models need more memory and
VLIS using the larger backbones requires NVIDIA
A6000 GPU (48GB) for inference. Both LLAVA
13B and Vicuna 7B fit into an A6000 GPU at the
same time. Generating 50 tokens takes ~ 20 sec-
onds in all settings.

Hyperparameters. We fix the fluency thresh-
old = 0.001 in all experiments and use beam
search with beam size 5. For QA problems, we
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apply length penalty < 0 on the beam score to in-
duce succinct answers following the literature (Li
et al., 2023b). The opposite behavior is required for
longer text generation, so we set the value larger
than O for open-ended generation problems. The
language temperature 7 is manually selected by ex-
amining the text quality of three samples per task.

Task-Specific Hyperparameters. For
VQAV2 (Goyal et al., 2017), OK-VQA (Marino
et al., 2019), and ScienceQA (Lu et al., 2022a)
datasets, we set the language temperature 7 = 1.25
and length penalty —1.0 to induce succinct answers
generated with stronger visual conditioning. In
Concadia (Kreiss et al., 2022), 7 = 0.67 and length
penalty —2.0 is used for succinct caption-style text
with better text conditioning. For Image Paragraph
Captioning (Krause et al., 2017) experiments we
use 7 = 0.67 and length penalty 1 to induce longer
captions. Also, we apply contrastive search (Su
and Collier, 2023) with a penalty of 0.6 to avoid
text degeneracy.

Flan-TS Hyperparameters. For the backbone
comparison study in appendix E, we set the VLM
backbone to BLIP-2 Flan-T5 (Li et al., 2023b) and
text-only model to Flan-T5 (Chung et al., 2022).
For Flan-T5 variants, we compensate the overconfi-
dence of the model with a large temperature of 1.5
to normalize the logit outputs. For the same reason,
we also relax the fluency threshold o = 0.0001.
Finally, the language temperature 7 is set to 0.9.

Baseline Hyperparameters. We share the same
hyperparameters as in VLIS for all our imple-
mented baselines; LLAVA, BLIP-2, OPT-IML, and
Naive Ensemble. We do not modify the beam size
5 and fluency threshold o = 0.001, and change the
length penalty accordingly to the task following the
VLIS hyperparameters.

Few-Shot Settings. For Image Paragraph
Captioning (Krause et al., 2017), we use three
ground-truth examples to prime the models for
the paragraph-long generation task. However, one
cannot provide multiple images as inputs to the
backbone VLM model (BLIP-2 (Li et al., 2023b)).
Hence, we simply insert the few-shot samples in
the text domain and provide only the single target
image as the visual context.

uint8 Inference. LLM.int8 (Dettmers et al.,
2022) is an approximated inference technique for
large language models. It applies vector-wise quan-
tization and mixed-precision decomposition to re-
duce memory consumption without performance

Models Random # Images | OKVQA
VLM-only 31.7
Ours False 2 34.2
Ours True 1 29.0
Ours True 2 32.2
Ours True 10 35.3

Table 8: Results in the OK-VQA validation set. Our
default option (prefined set with two images) is marked
bold.

degradation. We employ the technique to jointly
run both text-only LM and VLM on a single GPU.

Randomness. As VLIS is a deterministic infer-
ence time algorithm, no randomness is involved
in any of the experiments. A stochastic sampling
version of VLIS may require variance analysis, but
we leave that to future research.

Evaluating Story Generation. While the offi-
cial repository of MAGIC (Su et al., 2022a) shares
the inference results, it does not contain the eval-
uation scripts. Thus, we consult the repository
Contrastive Decoding (Li et al., 2022b) for the eval-
uation script for an open-ended generation problem.
Due to the difference in the evaluation code, our
baseline scores are different from the results re-
ported in MAGIC (Su et al., 2022a). However, we
still use the public inference results for the base-
lines and evaluate each model with a publicly avail-
able code, making our evaluation pipeline unbiased,
transparent, and reproducible.

C Marginal Approximation Experiment

In the main paper, we propose using one or two
images with minimal visual information (black-
filled and white-filled) as a functional candidate
with minimum computational overhead. To investi-
gate the alternative approaches, we conducted an
additional experiment in the OK-VQA dataset. The
variables considered here are 1. Random vs. prede-
fined (black-filled and white-filled) set of images
and 2. The number of images used to approximate
the expectation. We keep everything else the same
as in Table 2 and only adjust the marginal approxi-
mation scheme.

Our results are summarized in Table 8. First,
a random set of images is inferior to our prede-
fined set of images for approximating the marginal.
Second, 10 random image set offers a better approx-
imation than the predefined set of two images. Still,
the 10 random images option requires 11 passes
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Models « OKVQA
VLM-only 31.7
Ours le-1 13.8
Ours le-2 30.1
Ours le-3 34.2
Ours le-4 344
Ours le-5 33.1
Ours 0 32.3

Table 9: Results in the OK-VQA validation set. Our
default fluency threshold value (o« = 1e — 3) is marked
bold.

of VLM per token generation, making it largely
inefficient for practical usage.

D Fluency Threshold Experiment

Here, we examine the effect of fluency threshold
value a on the generation quality of VLIS. This
experiment extends the OK-VQA commonsense
reasoning experiment in Table 2 and keeps all other
variables the same except for c.

Table 9 shows that VLIS consistently outper-
forms the VLM-only baseline for all values of «
in the range of [le — 3, le — 5]. Too large values
([1e —1, 1e — 2]) still harm the performance as they
typically leave only one or two token candidates
for the VLIS Score to choose from.

E Backbone Scale Experiment

We conduct a comparison study to test whether
the improvement offered by VLIS is generalizable
to a wider set of architectures and model sizes.
Here, we mainly evaluate VLIS with Flan-T5 vari-
ants as both the text-only LM and VLM backbones.
T5 (Raffel et al., 2020) is an encoder-decoder trans-
former unlike the decoder-only autoregressive lan-
guage models (e.g. OPT (Zhang et al., 2022) and
GPT-3 (Brown et al., 2020)). Flan-T5 (Chung
et al., 2022) further trains T5 for better responsive-
ness in instruction prompts. Table 10 summarizes
the backbone comparison results on the OK-VQA
dataset (Marino et al., 2019). In all combinations of
model sizes except for FlanT5g,5¢, VLIS improves
the commonsense reasoning capability of the VLM
backbone. Also, Naive Ensemble performs unreli-
ably depending on the choice of the text-only LM
and performs worse than the VLM itself in most
of the settings. The FlanT5g,;c LM makes VLIS
work worse than the VLM. Since VLIS is built on
the assumption that the text-only LM knows the

VLM LLM Ours Vanilla Naive
Backbone Backbone LLM VLM Ensemble
OPT»78 OPT) 38 342 19.1 31.7 26.6
F-T5xL F-T5gase 20.8 125 40.7 344
F-T5xL F-T5xL 434 193 407 39.0
F-T5xL F-TS5xx. 439 21.3 40.7 42.0
F-T5xx.  F-T5xxvL 475 213 459 44 .4

Table 10: Backbone comparison experiments on the
validation set of the OK-VQA dataset (Marino et al.,
2019). F-T5 denotes T5 trained on FLAN dataset (Wei
et al., 2022).

human language distribution better than the VLM,
this deterioration of performance further supports
our explanation of why VLIS works.

F Prompt Templates

In the prompt templates below, TLM denotes the
prompt presented to the text-only model and VLM
denotes that given to the VLM.

* OK-VQA & VQAv2

— Variables:
[QUESTIONI]

- TLM
Question:

- VLM
Question: [QUESTION] Answer:

[QUESTION] Answer:

e ScienceQA

— Variables:
[QUESTION], [CONTEXT], [CHOICES]
- TLM

Answer the multi-choice question

given the image. Question:
[QUESTION] [CONTEXT] Choices:
[CHOICES] Answer:

- VLM

Answer the multi-choice question

given the image. Question:
[QUESTION] [CONTEXT] Choices:
[CHOICES] Answer:

¢ Concadia
- TLM
Write a short caption that
describes the image. Article:

"[ARTICLE]" Caption:
- VLM
The image describes
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 Image Paragraph Captioning G More Qualitative Samples

— Variables: We include more qualitative samples for image
[ARTICLE] paragraph generation in Figure 9, story generation
— TLM in Figure 10, and open-ended generation in Fig-

Write a multi-sentence 1long ure 11.

paragraph describing the image.
Each sentence should describe a
different aspect of the image and
should be concise.\n
(Image 1) Image Description:
[Description Sample 1]\n
(Image 2) 1Image Description:
[Description Sample 2]\n
(Image 3) Image Description:
[Description Sample 3]1\n
(Image 4) Image Description:

- VLM

Write a multi-sentence long
paragraph describing the image.
Each sentence should describe a
different aspect of the image and
should be concise.\n

(Image 1) Image Description:
[Description Sample 1]1\n

(Image 2) Image Description:
[Description Sample 2]\n

(Image 3) Image Description:
[Description Sample 3]1\n

(Image 4) Image Description:

* ROCStories

— Variables:
[TOPIC]
- TLM
[TOPIC] <|endoftext|>
- VLM
The image describes

* WHOOPS

- TLM

Decide whether the image 1is
strange or natural in terms of
physics, commonsense, or etc.\n
Start with "The image shows”

- VLM

Decide whether the image 1is
strange or natural in terms of
physics, commonsense, or etc.\n
Start with "The image shows”
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(a) Describing named entities

BLIP-2

person, argentina's greatest player of all time

LLAVA

The image features a soccer player who has just won a championship, as he is lifted up by a crowd of people
celebrating the victory. The soccer player is holding a trophy, signifying the achievement.

Ours

Sources suggest that the person being described is Diego Maradona, a professional footballer who won the
Golden Boot award at the 1982 World Cup. In the image, Maradona is being lifted above a stadium crowd

BLIP-2

yes

LLAVA

While I cannot determine the man's intentions or emotions as an Al, the image shows a man in a suit, who
appears to be smiling and has his fingers crossed. This body language might suggest that he is confident
Ours

Michael Corleone, also known as Vito Andolini Corleone, the character depicted in the Godfather film
series, is shown to care deeply for his immediate family.

Does he care for his family?

(b) Visual distractors for simple facts

GPT3

No, ostriches are not capable of flying. They are the largest living species of bird and are known for their

long, powerful legs and neck, which they use to run at high speeds, but they do not have the physical

characteristics

BLIP-2

yes, but they are not very good at it

LLAVA

Yes, ostriches can fly. Although they are large birds, they are capable of taking flight using their powerful

wings. Ostriches have strong muscles and a high lift-to-drag ratio, which enables them to become air

Ours

Can ostriches fly? No, ostriches are not capable of flying. They are ground-dwelling birds that are known for their long,
powerful legs and fast running speed. In the wild, ostriches migrate by running long distances, but

[Image of a Seagull]

[Image of a Monkey] GPT3

: — No, chimpanzees do not have tails. They are one of the few primates that lack a tail. Chimpanzees belong to
the family Hominidae, along with humans, bonobos, gorillas, and orangutans.

BLIP-2

yes.

LLAVA

Yes, chimpanzees do have tails. Their tails are short and usually held upright or curled up over their backs.
In the image, the chimpanzee is walking on a tree branch with its tail in

Ours

Chimpanzees do not have tails. Chimpanzees are primates and are closely related to humans. They are also
known as great apes and are characterized by their large brains, hands and feet, and the ability to

Do chimpanzees have tails?

Figure 7: Raw text output for samples described in Figure 1.
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Visual distractors for simple facts

Do cats swim?

Can I withdraw cash from
a blood bank?

Are sharks herbivores?

Do coins float on water?

GPT3

While cats are generally known for their aversion to water, some cats are capable of swimming. However,
swimming is not a natural behavior for most cats, and they usually prefer to avoid water whenever
possible.

LLAVA

Yes, cats can swim. In the image, a gray cat is swimming in a body of water, demonstrating that cats have

the ability to navigate and move efficiently through water.

Ours

Some cats may be able to swim to some extent, but they are not natural swimmers and are not as
comfortable in water as dogs are. In the wild, cats typically avoid water and do not have the same instinctive
swimming capability

GPT3

No, you cannot withdraw cash from a blood bank. Blood banks are facilities that collect, process, and store
donated blood for medical use.

LLAVA

While it is possible to withdraw cash from a blood bank, the context of the image suggests that the person
is actually taking money out of an ATM (Automated Teller Machine).

Ours

No, it is not possible to withdraw cash from a blood bank. Blood banks are typically medical facilities that
collect and process blood donations, and they do not provide cash withdrawals.

GPT3

No, sharks are not herbivores. Sharks are carnivorous predators, meaning they primarily feed on other
animals.

LLAVA

Yes, sharks are generally considered herbivores. They primarily feed on a variety of plants, including algae,
as well as small animals and fish. In the image, the shark is consuming sea vegetation, which is a

Ours

No, sharks are not herbivores. In the wild, sharks primarily feed on fish, squid, and other marine animals.
However, in aquariums and marine parks, it is common for sharks to be fed

GPT3

In general, most coins made of metals such as copper, nickel, or zinc alloys will sink in water due to their
higher density. However, if a coin has a very small size or a unique shape that allows it to trap air, it may
float momentarily or for a short period of time before eventually sinking.

LLAVA

Yes, coins do float on water. In the image, a single penny is floating on the surface of a body of water, such
as a lake or a pool. This is because the coin is made of materials that are denser than water.

Ours

Coins do not float on water. In fact, they will usually sink to the bottom. This is because coins are made of a
material that is denser than water, so they will tend to sink rather than float. In the case of

Figure 8: More examples in which the visual context deceives the base VLM (LLAVA (Liu et al., 2023)) into

denying simple facts.
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(b)

GT: Two elephants are standing together outside by a concrete wall. One elephant is considerably smaller
then the other one. Right by the elephants there is a large amount of bushes and trees with green leafs. The
ground is mostly dirt with patches of green grass throughout. On the grass eating there is about a dozen or so
large black crows.

Ours: An elephant in an enclosure surrounded by crows and pigeons is looking around for something to eat.
The elephant has a trunk in its mouth and is sniffing the ground. The ground around the elephant is covered in
dirt and grass. The elephant is standing on its tusks.

BLIP-2: An elephant stands in the middle of a field of grass. The grass is green and lush. The elephant has a
brown trunk and a brown face. The elephant has a brown trunk and brown face. The elephant has a brown

. trunk and brown face.

OPT: Ayoung man is sitting on a park bench. He is wearing a black t-shirt and blue jeans. He is holding a
baseball bat in his right hand. He is throwing the ball from a pitcher's mound. The pitcher has a uniform on
that is grey and blue. His cap is black with a fork shaped symbol.

Nave Ensemble: A young man is sitting on a bench in a park. He is wearing a blue shirt and blue jeans. He is
holding a baseball bat in his right hand. He is looking at the ball that is being thrown from a pitcher's mound.
The pitcher has a uniform on that is grey and blue. His cap is black with a fork shaped symbol.

GT: Atrain is opening it's doors. The train is currently parked at a train station. The train is blue, the doors are
red, and it has white stripes on it. There is a long yellow line near the train area.

Ours: A passenger train is parked at a train station. The train is red in color with blue and white stripes on it.
There are power lines overhead that are connected to the train. The train is pulling into the station. A man is
sitting on the train with his back to the camera.

BLIP-2: The man on the skateboard is leaning his body or balance. He is in motion riding along the road. He
is wearing a grey helmet with a print on it. There is an orange cone in the street that he will have to go around.
OPT: Ayoung man is sitting on a park bench. He is wearing a black t-shirt and blue jeans. He is holding a
baseball bat in his right hand. He is throwing the ball from a pitcher's mound. The pitcher has a uniform on
that is grey and blue. His cap is black with a fork shaped symbol.

Nave Ensemble: The man on the skateboard is leaning his body or balance. He is in motion riding along the
road. He is wearing a grey helmet with a print on it. There is an orange cone in the street that he will have to
go around.

GT: Four airplanes are flying in the sky in order to put on a show. The planes are dark colored and rather
small. Each plane is flying straight up into the sky and a large plume of white exhaust is leaving a trail from

| the planes. The trail of exhaust shows that the planes started our flying up close together, but they are now

separating and flying away from each other. The sky in the background is blue with a layer of light white

. clouds.

Ours: Four planes fly through the blue sky with smoke trailing behind them. They are performing for the
public. The planes are flying in formation. One of the planes is in the middle of the formation and the other
three planes are in front of the plane in the middle of the formation.

BLIP-2: An airplane is flying in the sky. The airplane has a red, white, and blue color scheme. The airplane is
flying in a blue sky. The airplane is flying in a clear blue sky. The airplane is flying in a clear blue sky.

OPT: Ayoung man is sitting on a park bench. He is wearing a black t-shirt and blue jeans. He is holding a
baseball bat in his right hand. He is throwing the ball from a pitcher's mound. The pitcher has a uniform on
that is grey and blue. His cap is black with a fork shaped symbol.

Naive Ensemble: A young man is sitting on a bench in a park. He is wearing a blue shirt and blue jeans. He is
holding a baseball bat in his right hand. He is wearing a baseball cap on his head. He is looking up at the sky
with his left eye. He is looking down at the ground with his right eye.

Figure 9: Generation results on the Image Paragraph Captioning dataset (Krause et al., 2017). The correct visual
expressions are marked in green and wrong ones are in red.
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Title: Joanne Went Sky Diving

GT: Joanne always wanted to go skydiving but was hesitant. Joanne was hesitant to go because she was afraid of

heights. Joanne decided to face her fears head on and go skydiving. On her way in the car, she listened to music and

took deep breaths. Joanne went sky diving and was very proud of herself.

Ours: Joanne went skydiving with her friends. She had a great time on the water at the end of the day. When it was

time to take off the parachute was broken. Joanne's friends had to call for help to get it fixed.

Natve Ensemble: Joanne was at the beach with her friends. She decided to go on a dive. When she got to the water,
(@) AN she saw her friends in the water. Joanne jumped out of the water and ran to the other side of the water. She had no

idea what was going on until she was rescued by rescue workers.

MAGIC: Joanne was at the beach with her friends. She decided to jump off the sand to see what was out there.

When she landed, she saw a huge wave. The wave was so big that she had to stop and get help. Joanne was able to

land safely and return to the beach.

Contrastive Search: Joanne was at the beach with her friends. She decided to go on a dive. When she got to the

water, she saw her friends in the water. Joanne jumped out of the water and ran to the other side of the water. She

had no idea what was going on until she was rescued by rescue workers.

Title: Jobs

GT: Lana liked to spend money, but she didn't have a job. One day, her dad made her find a job so she could spend
her own money. Lana found a job, but didn't work very hard. Eventually, Lana got fired. Her dad stopped giving her
money to spend.

Ours: Steve wanted a job. But he didn't know what to do with his money. So he went to the bank and asked for one.
And it turned out to be very cheap. Steve started his own company that same year.

Nave Ensemble: Steve wanted to start a career in his spare time after high school. So he went to college and got his
bachelor's degree at the age of 18. But he didn't know what he wanted to do with his free time. He decided to
become an electrician for the city of New York.

MAGIC: The man went to work. He was asked to join a new job. He did not like the job. He quit the job. His boss
found out that he had quit.

Contrastive Search: The man went to work. He wanted to be a manager. He asked his boss for help. His boss said
he had no idea. The man quit his job.

(b)

Title: Looking for peace

GT: Nina was dreaming of world peace her whole live. She knew she couldn't change the world but made small
changes. She contributed to her community and then to her country. She came up with so many good ideas, she was
congratulated. She was proud when she received a Nobel prize for her work.

Ours: Yesterday | went for a walk in the woods. It was dark and windy so | couldn't see anything out of the corner
of my eye. After walking through the woods for an hour I found peace. | decided to return home and look for peace
in the future.

Naitve Ensemble: A girl with long hair walked into my yard. She wanted to talk to me but | didn't see her in front of
me. | asked her if she was looking for someone and she said yes. The next day my neighbor called me to tell me her
hair was in bad shape

MAGIC: The man walked into a house. He saw an empty lot. He asked his neighbors to look for peace. The
neighbors were skeptical. It was not enough to solve the problem.

Contrastive Search: The man went into a house. He saw an old woman sitting on the porch. She was crying. The
man asked her to leave. Her mother took her to the police station.

Figure 10: Generation results on the ROCStories dataset (Mostafazadeh et al., 2016). Expressions showing alignment
to the title are colored in green, alignment to the image in blue, and misinterpretations in red.

720



Hey, It’s me

Ours:, your son's teacher, and I'm
going to show you a picture of me
and your son.

BLIP-2:, person.

OPT: your brother. Hey it's me,
your sister.

Naive Ensemble: , the guy who
wrote the article about the guy
who wrote the article about the
guy who wrote the

Hey, It’s me

Ours: your friend. | have an apple
computer and I'm going to be at the
convention in a few weeks.
BLIP-2: cynthia, I'm a computer

{ scientist.

OPT: your brother. Hey it's me,
your sister.

Naive Ensemble: , your friend. I'm
here to tell you that you're a
douchebag and you should feel bad
for being such an asshole to your
friends and family.

Hey, It's me

Ours: and my friend. We were
wondering if you would sell us a
pizza and a coke at the same time.
Would you be able to do that
BLIP-2: again!

OPT: your brother. Hey it's me,
your sister.

Naive Ensemble: again. | just
wanted to let you all know that |
will be out of town for the next
couple of days. | will be out of
town

Today | went

Ours: to the library to pick up a book for my
son and found out that they have a special
section for children with special needs.
BLIP-2: to the museum with my son.

OPT: to the gym for the first time in two
weeks. It felt good to be back in the swing of
things.\nThat’s awesome! What did you do?
Nave Ensemble: to the doctor's office for the
first time in a long time, and the doctor's
office is in the same building as the doctor’s...

Today | went

Ours: to an Apple store. | bought an iMac, a
keyboard, and a trackpad for my wife's
computer.

BLIP-2: to a conference.

OPT: to the gym for the first time in two
weeks. It felt good to be back in the swing of
things.\nThat’s awesome! What did you do?
Nave Ensemble: to the library to check out
a book, but the librarians wouldn't let me
check it out because it was too late in the day.
So | had to wait until the next day

Today | went

Ours: to a pizza place and got a large
pepperoni pizza. It was pretty good. | also
got a diet coke

BLIP-2: to a pizza place.

OPT: to the gym for the first time in two
weeks. It felt good to be back in the swing of
things.\nThat’s awesome! What did you do?
Natve Ensemble: to the grocery store to get
some food for dinner. When | got to the deli
counter | noticed that there was a very large
amount of food

Here is a romantic message. Answer:
Ours: | love you and | want to
spend the rest of my life in front of
you smiling and touching

BLIP-2: love you mom

OPT: I love you and | want to
spend the rest of my life with you.
You are the best thing that ever
happened to me

Natve Ensemble: | love you and |
want to spend the rest of my life
with you and | want you to

Here is a romantic message. Answer:
Ours: Dear John, | love you. You
are the apple of my eye. Yours truly
BLIP-2: | love you.

OPT: I love you and | want to spend
the rest of my life with you. You are
the best thing that ever happened to
me

Nave Ensemble: love you and miss
you and hope you are having a great
time with your family and friends. |
love you and miss you and hope you

Here is a romantic message. Answer:
Ours: (Romantic) | would like to
take my girlfirend to eat pizza. What
do you think is the best pizzeria in
your area

BLIP-2: pizza on a table.

OPT: I love you and | want to spend
the rest of my life with you. You are
the best thing that ever happened to
me

Nave Ensemble: how many pints
of cocteau are in the fridge at the
end of the work day on friday the
thirteenth and saturday

Figure 11: Open-ended generation results with various text prompt. Here we include more baselines than in Figure 5.
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