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Abstract

We study whether linguistic information in pre-
trained multilingual language models can be
accessed by human language: So far, there is
no easy method to directly obtain linguistic in-
formation and gain insights into the linguistic
principles encoded in such models. We use the
technique of prompting and formulate linguis-
tic tasks to test the LM’s access to explicit gram-
matical principles and study how effective this
method is at providing access to linguistic fea-
tures. Our experiments on German, Icelandic
and Spanish show that some linguistic proper-
ties can in fact be accessed through prompting,
whereas others are harder to capture.

1 Introduction

With pre-trained language models becoming ever
larger and continuously better at solving a variety
of tasks, there is a growing interest in understand-
ing how they represent knowledge, particularly lin-
guistic information. While pre-trained language
models carry out impressive feats of linguistic gen-
eralization, there is no simple way to directly access
the linguistic knowledge encoded in them. Easy
access to linguistic information, and — in a more
long-term vision — the ability to modify parts of
the linguistic representation, would be a powerful
instrument. For instance, a linguist without expert
knowledge in machine learning could use linguistic
querying to gain insights into a model’s linguistic
properties and to pinpoint problems with its linguis-
tic representation. Similarly, for a language learner,
interacting with a language model in the form of
textual instructions could provide interesting new
learning opportunities.

In this work, we focus on accessing linguistic
information through natural language queries. We
propose using prompting as a simple way to test
the LM’s access to explicit grammar principles. We
study on German, Icelandic and Spanish how effec-
tive prompting is for querying linguistic informa-

tion, and what type of information can be obtained,
versus what is out of reach for the method. There
has been limited work on prompting English mod-
els for English linguistic information, while our
focus is on other languages. We are also interested
in prompting in one language and obtaining lin-
guistic information in another, such as a language
learner or linguist might do. This will be also of
interest for working with linguistic information in
low-resource languages, both when looking only at
a low-resource language individually, or in combi-
nation with another (high-resource) language, such
as the pair of Spanish and Mayan languages.

In our experiments, we formulate question
prompts for different linguistic tasks, for exam-
ple to “ask” for the grammatical case of a word in
a given context sentence. The tasks are designed as
classification tasks, where the labels correspond to
linguistic properties (e.g., singular, plural for the
feature number). Our experiments address standard
morphological features, such as tense, case, num-
ber, gender, but also syntactic information, such as
the distinction between subject and object, and the
distinction between active and passive voice.

Our findings indicate that features corresponding
to concrete and locally defined properties like num-
ber of nouns are easier to obtain than more abstract
features like the grammatical case of nouns. They
also support the hypothesis that abstract grammat-
ical terms (e.g., dative case) are not always well-
suited for formulating prompts or answers as they
are not necessarily well-covered in the grammatical
sense in general-language data.

We present this analysis as some first steps in
evaluating how relevant linguistic properties of a
language can be made accessible through human
language queries. Possible next steps can be to fo-
cus on low-resource languages, as well as identify-
ing problems in representing linguistic information
and strategies to solve such problems.
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2 Related Work

There is strong interest in how linguistic informa-
tion is represented in pre-trained LMs: Liu et al.
(2019) is a well-known probing study transferring
linear probing techniques to contextual models.
Shapiro et al. (2021) study multilabel probing to
assess the morphosyntactic representations of mul-
tilingual word embeddings. Stanczak et al. (2022)
investigate whether the same subsets of neurons en-
code universal morpho-syntactic information and
therefore enable cross-lingual generalization. Lasri
et al. (2022) study how BERT encodes grammat-
ical number in a number-agreement task. Hewitt
and Manning (2019) by contrast focus on struc-
tural probes to find out whether BERT and similar
models encode parse trees according to their the-
ory. Warstadt et al. (2020) provide a challenge set
using acceptability contrasts to evaluate the mor-
phosyntactic and semantic knowledge of LMs, test-
ing for a range of phenomena. Liu et al. (2021) is
a probing study of English RoBERTa across time.
The authors test a range of probes and downstream
tasks at dozens of checkpoints. Li et al. (2022)
argue that prompting acts as a model-free probe,
thus eliminating the distinction between what the
model knows and what the probe learns. They
compare prompting to linear regression and MLP
probing. Zhang et al. (2022) also probe GPT-3
using prompts, specifically on tense and number
features. Blevins et al. (2023) prompt GPT models
to append POS tags to each word in a given sen-
tence. However, most of the above works focus
on English-only settings. We work with multilin-
gual models and for the presented experiments, use
mixed-language prompts, where the question is for-
mulated in English to obtain information about a
another language, in which the target word and the
context sentence are given.

3 Methodology: PET

We apply Pattern-Exploiting Training (PET: Schick
and Schütze (2021a), Schick and Schütze (2021b),
Schick and Schütze (2022)).1 PET is a semi-
supervised training procedure which combines tex-
tual instructions with fine-tuning based on labeled
examples. Its key idea is providing textual instruc-
tions for the task (prompts) as cloze-style phrases
for a masked language model (Devlin et al., 2019),
where the mask token is then substituted by one of

1We use the implementation in https://github.com/
timoschick/pet

Sentence given as context: Label:
Die Regelung ist stark umstritten. SG
The regulation is highly controversial. gloss
Sentence. " Regelung " is _MASK_ .
Sentence. The number of " Regelung " is _MASK_ .
Sentence. Number of " Regelung " : _MASK_ .
Verbalizer mapping: PL → plural, SG → singular

Table 1: Prompts for the nominal feature number.

a set of possible output tokens. A verbalizer maps
the class labels to natural-language outputs, and
completions are sampled exclusively from this set
of output options. One example from the original
paper is predicting restaurant ratings given reviews,
where the verbalizer maps “terrible” to a 1-star-
rating and “great” to 5 stars. In our experiments,
the output classes typically correspond to the val-
ues of grammatical features to be predicted, for
example plural, singular for the feature number.

Typically, the training of PET relies on several
patterns, namely variations of the prompts. In a
first step, individual models are fine-tuned on a
small training set for each pattern. The resulting
models are then used to label a larger set of unla-
beled examples with soft labels as training data for
a final classifier with a regular sequence classifica-
tion head, similar to knowledge distillation.

PET has two advantages for our experiments: It
is designed to work well with small sets of training
data, which might be useful for tasks with only few
annotated data available; and it combines several
prompt formulations for the same task, which alle-
viates the problem of finding the “right” prompt.

4 Prompt Design and Data

To train PET, we need linguistically annotated data
to derive prompts and the respective labels which
are then mapped to natural-language words as can-
didates for the mask position in the LM.

Prompts and Labels For the formulation of
prompts, we first present a sentence as context,
and then variations of statements like “the feature
of W is _MASK_”, with W being a word in the
sentence. Table 1 shows example prompts and the
label vocabulary for the feature number.

We mix the language of the prompt (English)
and the languages of the queried feature (German,
Icelandic, Spanish). Even though multilingual lan-
guage models are robust to mixed-language input,
there are some considerations: The terminology
used in the prompts, namely grammatical features
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and their values, might be insufficiently covered in
the underlying training data of the language model
in general, and potentially even more so for English
labels referring to another language’s grammar. For
some terms, there might be a domain shift (gram-
matical gender vs. gender in the societal sense).

With the success of the method hinging on the
coverage of the relevant terminology (in English or
otherwise), we also experiment with substituting
grammatical terms with general-language discrim-
inative context of the respective target languages
(cf. “variants” in Section 5.1).

Data Our datasets2 stem from the Universal De-
pendency Treebank (Nivre et al., 2020), which con-
tains high-quality data for many languages. Our
main focus is on German, which has a complex
nominal morphology with many syncretic forms
making it often impossible to derive a word’s fea-
tures without context. In addition, we choose Ice-
landic, which has a similar feature distribution
(three gender values, four case values), but is a
lower-resource language compared to German. On
the other hand, Spanish has a comparatively simple
nominal morphology (two gender values, no noun
cases), but a more complex verbal morphology,
largely without syncretic forms.

For the experiments on morphological features,
we select the target words (nouns and finite verbs)
such that that each combination of lemma and fea-
tures occurs only once, and that there is no overlap
between test and training data. The target word can
only occur once in the sentence, and we restrict sen-
tence length to 50 words. Table 8 in the Appendix
shows the amount of training data per language.

Table 3 provides an overview of the predicted
features and the respective labels. For the feature
Verb Tense, we only look at finite verbs, but do not
consider composed tenses (e.g. machte vs. habe
gemacht (made vs. have made)). For Spanish, the
corpus annotation differentiates between two differ-
ent forms of past tense (Past: preterite tense) and
Imp: imperfect tense). To limit this prediction task
to the more general prediction of past - present - fu-
ture, the two Spanish past tenses were mapped into
one “Past” label. Furthermore, Spanish expresses
future tense morphologically, whereas German and
Icelandic use an auxiliary: (yo) andaré vs. ich
werde gehen (I will go).

The different feature values do not always oc-
2The data sets can be found at https://github.com/

mariondimarco/morphPET_dataset/

DE IS ES
train test train test train test

Tense past 27 380 14 80 29 448
pres 73 446 86 117 47 401
fut – – – – 24 83

Number sing 74 563 64 145 58 608
Nouns plur 26 263 36 52 42 324
Number sing 74 514 60 137 54 615
Verbs plur 26 312 40 60 46 317
Gender masc 36 338 31 71 58 489

fem 40 342 41 64 42 443
neut 24 146 28 62 – –

Case acc 41 254 33 70 – –
dat 25 228 27 57 – –
gen 5 85 14 11 – –
nom 29 259 26 59 – –

Table 2: Label distribution per feature and language.

DE ES IS
Tense past past past

present present present
– future –

Number singular singular singular
plural plural plural

Gender masculine masculine masculine
feminine feminine feminine
neuter – neuter

Case accusative – accusative
dative – dative
genitive – genitive
nominative – nominative

Table 3: Labels for the morphological features.

cur with proportional frequency, leading in some
cases to very unbalanced data sets (see Table 2).
We decided not to balance the data sets, but to use
the frequencies as they occurred on randomly cho-
sen words to preserve the approximate proportions
between the different features.

5 Experiments

For the experiments on morphological features, we
use finite verbs and nouns as words W. While the
nominal features number, gender and case are also
present for adjectives and determiners, we chose
to only look at the phrase head for the sake of
simplicity, assuming that if the feature of the head
is known, it is also known for the rest of the phrase.

In our tables, we give the accuracy of the final
distilled model for bert-base-multilingual-cased,
and xlm-roberta-large (Devlin et al. (2019), Con-
neau et al. (2020)). We report the average over
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two runs with different seeds,3 using the default
parameters of PET.

For each set of experiments in this section, we
use 100 training examples, 1000 (DE/ES) or 500
(IS) examples to be labeled for the final model (cf.
Table 8). Using the same sets of prompts for all
languages, formulated in English, we assume that
the different prompts do not do equally across the
languages. We use the dev set to select the 3 best
out of 5 initially given patterns.

5.1 Morphological Features: Nouns and Verbs

Table 4 gives an overview of the experiments: For
number4 and tense, the predictions are quite high
(with the exception of Icelandic tense), even when
considering that the number of output classes is
not balanced (cf. Table 2). This is contrasted by
the performance for gender and particularly case;
increasing the amount of labeled training examples
only leads to a moderate improvement in German.

Case is complex and context-dependent; it often
corresponds to the syntactic function of a subcat-
egorized noun, and thus requires a general under-
standing of the entire sentence. Gender is a local
feature innate to a noun, with mostly arbitrary val-
ues that do not correspond to real-world properties
and are inconsistent between languages. The fea-
tures tense and number are more tangible in the
sense that the terms used for their description are
meaningful and also prevalent in general language.

Particularly for German, the high number of syn-
cretic forms makes the learning task even more
difficult. While there can be context keys, such
as determiners and inflectional suffixes within the
noun phrase, this is, however, limited to certain
contexts and inflectional morphemes are often not
directly accessible due to fusional morphology and
inconsistent subword segmentation.

The results of Icelandic are notably worse than
those of the other languages. One possible factor
might be that the proportion of Icelandic in the
PLM training data is considerably smaller than for
German or Spanish; furthermore, our data set for
Icelandic also comprises less training data.

Another issue is the unbalancedness of some of
the data sets; as a result, we observed that in some

3While most systems showed consistent results for the
two runs, some had large differences (marked with ’D’ for
a difference > 0.2. This concerned to a large part Icelandic
systems, and some of the German system based on xlmr-large.

4Number for German nouns is not lexicalized (unlike Span-
ish). Singular and plural can be the same, cf. Table 9.

finite VERBS DE IS ES

Tense mbert 0.841 0.594 0.932
xlmr-large 0.965 0.594 0.990

Number mbert 0.792 0.790 0.995
xlmr-large 0.725D 0.954 1.00

NOUNS DE IS ES

Number mbert 0.914 0.762D 0.999
xlmr-large 0.942 0.843D 0.998

Gender mbert 0.414 0.325 0.483
xlmr-large 0.765 0.544D 0.993

Case DE-100 DE-250 DE-500 IS
mbert 0.328 0.367 0.444 0.363
xlmr-large 0.313 0.334 0.377 0.307

Table 4: Accuracy for tense, number, gender and case.
D means the two runs differed by > 0.2.

Gender DE-100 DE-250 DE-500 IS
mbert 0.815 0.838 0.851 0.498
xlmr-large 0.412 0.594D 0.412 0.904

Case DE-100 DE-250 DE-500 IS
mbert 0.370 0.470 0.541 0.323
xlmr-large 0.330 0.610D 0.430D 0.289

Table 5: Discriminative context as labels.

systems, the less-represented labels (for example
genitive in German case) are not well represented
in the models, and are thus under-predicted.

Variants We explored using discriminative con-
text words for gender and case to have a more
common-language label vocabulary: By associat-
ing the target word with a context word indicative
of gender/case, we aim at directing the model’s
attention to relevant context in general while not
impeding the prediction with presumably insuffi-
ciently covered terminology. For gender, we used
personal pronouns in nominative case, assuming
they provide useful content, e.g. when referring to
the target noun. For case, we use definite (German)
and indefinite (Icelandic) articles as labels. How-
ever, articles are highly syncretic (cf. Table 10),
and thus not always distinct. In general, we ob-
served some improvements for gender, and even
for case (cf. Table 5), which is nevertheless still far
from good. Interestingly, xlmr-large tends to pro-
duce lower results than mbert for German gender,
in contrast to the results from using English labels.

This result indicates that abstract grammatical
terminology is not necessarily the best and only
way to address linguistic features. However, one
should also bear in mind that the formulation of
prompts has been shown to be finicky (Webson
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and Pavlick, 2022), and that a non-optimal prompt
formulation does not always lead to a bad perfor-
mance: this adds a new layer of difficulty to our
task as it makes a clear interpretation difficult.

5.2 A Broader Variety of Linguistic Tasks
Here, we study linguistic tasks that go beyond
querying for standard morphological features.

Subject-Object This task consists in deciding
whether a word is the subject or direct object of
a verb in a given sentence context. We only use
nouns, no pronouns, as target words. While this
is similar to predicting case, this variant is eas-
ier with only the two labels subject and object,
which have the additional benefit of being more
commonly used than the actual labels for the differ-
ent grammatical cases. In contrast to the previous
experiments, we designed the set to have approxi-
mately balanced classes (see Table 11 for the label
distribution). Furthermore, as many nouns can take
both the subject and the object position, the same
verb-noun pairs can occur several times across the
data sets. The same applies in general for the three
further syntactic tasks, as the realization of the re-
spective features depends on the context.

Particles German verb particles can occur sepa-
rately from the verb, for example ausschneiden ↔
schneidet ... aus (to cut out). There can be a large
distance between particle and verb, making this
task not trivial. As contrastive examples, we used
sentences where a preposition (restricted to those
that share the same form as frequent particles) is
attached to a verb. The queries are formulated as
variants of “Is P a particle of V?”.

There are many verbs that can occur with and
without a particle, as shown in the example below:

... er spielte noch in drei Tonfilmen mit ... YES

... he played in three sound movies particle ...

... spielte die Band Konzerte mit Bands wie ... NO

... played the band concerts with bands as ...

PP-attachment For this task, we select sentences
with (at least) two verbs, and ask whether a prepo-
sitional phrase PP is attached to verb V, which is
either the verb the PP is attached to, or a randomly
selected, other verb. Due to German sentence order,
there can be a long distance between the verb and
an attached PP, making this task very challenging.
The prompts are formulated as variants of “Is P at-
tached to V?”. We show an example below, where
the PP auf Niveau is attached to the verb spielen
(to play):

Subj/Obj DE100 DE250 DE500 IS ES
mbert 0.635 0.736 0.817 0.752 0.692
xlmr-l 0.785 0.880 0.709D 0.832 0.739

Table 6: Distinction of subject and direct object.

German verb particles pp-attachm. passive
mbert 0.80 0.522 0.674
xlmr-large 0.89 0.501 0.692

Table 7: Further linguistic tasks for German.

... wurde den Spitzenclubs ... die Möglichkeit geboten, auf
höherem Niveau als ... gegen die besten Clubs ... zu spielen.

... were the top clubs ... the opportunity offered at
a higher level than ... against the best clubs ... to play.

verb=geboten, pp=auf Niveau NO
verb=spielen, pp=auf Niveau YES

Passive Voice The verb werden can occur in sev-
eral functions, for example as an auxiliary for pas-
sive voice or future tense, see the examples below:

Der Reaktor muß für eine Woche abgestellt werden YES
The reactor must be turned off for a week

... wird es in künftigen Fällen nicht mehr ausreichen NO

... will not be enough in future cases

daß er ... Mitglied der Republikaner geworden ist NO
that ... he became a member of the Republicans

To identify passive structures, the queries are for-
mulated as ‘Is “werden” a passive auxiliary?’.

Table 6 shows a reasonable performance for the
task of subject-object identification task across lan-
guages; as before, we observe that increasing the
number of training examples leads to improvement
at least for mbert. The other three tasks are carried
out only for German; the results are showed in Ta-
ble 7. We observe a mixed performance, indicating
that PET can be applied to some linguistic tasks.

6 Conclusion

We presented a study on using prompting to ac-
cess linguistic information in pre-trained LMs for
German, Icelandic and Spanish. We evaluated pre-
dicting a set of morphological features, as well as
a broader variety of linguistic tasks. Our results
indicate that some features are indeed accessible,
whereas the approach fails for features such as the
complex and abstract grammatical case.

Using natural language to obtain linguistic in-
formation is potentially useful in many scenarios;
querying for a variety of non-standard linguistic
tasks might be an especially interesting use case,
in particular for low-resource languages.
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Limitations

The work reported in this paper, a study on ac-
cessing linguistic information in pre-trained lan-
guage models through natural language instruc-
tions, presents an initial but targeted study on Ger-
man, Icelandic and Spanish data.

An obvious limitation lies in basing the exper-
iments on three European languages that are not
representative of many different language families.
We chose German as our main target language be-
cause it has a complex enough morphology to pro-
vide a set of challenging tasks, but at the same
time has excellent linguistic tools available to be
used in the analysis. We furthermore chose Ice-
landic as a related, but lower-resourced language
and Spanish with its comparatively simple nominal
morphology as a contrasting language. Similarly,
we tried to model features from different linguistic
levels (both morphological and syntactic features)
in order to provide a reasonably comprehensive
overview. Exploring more language families and
their respective grammatical features, as well as ap-
plying the methodology to low-resource languages
makes for an interesting project that is, however,
beyond the scope of this work.

We primarily focused on accessing information
through natural-language instructions, but without
actual knowledge whether the queried information
is really encoded in the model. To extract linguis-
tic information, one needs to address two ques-
tions, namely, “Is the information there at all?” and,
“How can we access it?” In this study, we skip the
first question but just assume that the information
is available. While this is generally a reasonable
assumption, as previous work has shown that there
is knowledge about grammar and linguistic struc-
ture in LLMs, we do not know for sure whether
information about the feature we are interested in
is encoded in a way that corresponds to the query
and the pre-defined label vocabulary.

With view to the comparatively good results of
some linguistic features, we might say that informa-
tion about those feature is there and can be obtained
through natural-language prompts. For other fea-
tures, we cannot really draw a conclusion. For
example, consider grammatical case, where the
prediction model clearly failed, but we saw evi-
dence of awareness for related features in the task
of distinguishing between subject and object. We
thus cannot say for sure whether there is no knowl-
edge about case in terms of the labels we used, or

whether it is just not accessible by means of our
current method. We plan to work on separating
these distinctions in the future.
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A Data Information and Test Set Creation

We used the UD Treebank corpora de_gsd-ud-
(dev/test/train) (McDonald et al., 2013) for German,
es_ancora-ud-(dev/test/train) (Taulé et al., 2008)
for Spanish and is_modern-ud-(dev/test/train) for
Icelandic. Table 8 gives the amount of training data
for all three languages.

German Spanish Icelandic
selected from 385/186/1941 932/696/3118 197/114/606(test/dev/train)
final test 826∗ 932 197
final dev 184 696 114
final train 100/250/500 100 100
unlabeled data 1000 1000 500

Table 8: Overview of the training data: number of sen-
tences. (∗: Some of the unused training data was added
to the test data.)

B Background: German Grammar

Tables 9 and 10 provide examples for syncretism
in definite articles and nouns.

case singular plural
nominative der Elefant die Elefanten
accusative den Elefanten die Elefanten
dative dem Elefanten den Elefanten
genitive des Elefanten der Elefanten

Table 9: Inflected forms of Elefant (elephant): there
is only one distinct singular form (nominative case),
whereas all other forms are identical with the plural
form.
(cf. www.duden.de/deklination/substantive/Elefant)

MASC FEM NEUT MASC FEM NEUT
NOM der die das die die die
ACC den die das die die die
DAT dem der dem den den den
GEN des der des der der der

SINGULAR PLURAL

Table 10: Definite articles: bold-faced are used as labels
for the prediction of case (der, den, dem, des).

C Further Linguistic Tasks: Data Details

Table 11 shows the label distribution for the subject-
object distinction task. Table 12 shows the label dis-
tribution for the three syntactically inspired tasks.

D Alternative Approach: Probing

As an ablation, we trained linear classifier prob-
ing models for each morphological feature. The

DE IS ES
train object: 49 object: 52 object: 45

subject: 51 subject: 48 subject: 55
test object: 505 object: 408 object: 500

subject: 495 subject: 402 subject: 500

Table 11: Overview of the label distribution of the
subject-object experiment.

Particles PP attachm. Passive
train part-yes: 54 attach-yes: 40 pass-yes: 50

part-no: 46 attach-no: 60 pass-no: 50
test part-yes: 160 attach-yes: 504 pass-yes: 224

part-no: 140 attach-no: 496 pass-no: 217

Table 12: Overview of the label distribution of the Ger-
man syntactic tasks.

training conditions between PET and the probing
models are not comparable in a straightforward
way. The probing models are based on 100 training
sentences (PET training data) and the additional
1000 sentences used in the distillation step (1100
sentences total). We observe that for most fea-
tures, at least one variant of PET is better than
the respective probing result, with the exception of
case, for which PET is always worse. This shows
that prompting is generally well-suited to accessing
linguistic information, and is in some cases even
superior to prompting, but also that some features
are out-of-reach with this method. See Tables 13
and 14 for detailed results.

To investigate how PET fine-tuning changes the
models, we also probed the resulting PET models.
Overall, the PET models tend to perform worse on
the probing task, except for those that obtain very
high results in the morphological prediction task.
It seems that PET training does not add (much)
information relevant for probing, and that less well-
performing PET models impair the original model
with regard to the probing task. See Table 15 for
detailed results.

For each morphological feature, we trained a
separate probing model based on a linear classifier,
running over 25 epochs. In order to be comparable
to the training conditions of PET, the training data
consists of the labels of the respective feature for
nouns (number, gender or case) and verbs (number,
tense), whereas all other words in the sentence are
labelled NA.

As the comparison between the training condi-
tions of PET (100 labeled training examples in ad-
dition to 1000 unlabeled examples to train the final
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DE IS ES
verb mbert 0.814P 0.766 0.864P

tense xlmr-large 0.831P 0.761 0.838P

verb mbert 0.895 0.797 0.902P

number xlmr-large 0.823 0.766P 0.866P

noun mbert 0.834P 0.792P 0.856P

number xlmr-large 0.752P 0.761 0.791P

noun mbert 0.677P 0.584 0.829
gender xlmr-large 0.551P 0.65P 0.714P

noun mbert 0.429 0.731 –
case xlmr-large 0.368 0.635 –

Table 13: Probing experiment with n=100 sentences
training data (corresponding to the n=100 labeled exam-
ples in the PET experiment). P: the respective PET-100
model (EN labels or discriminative context), in Tables 4
or 5, is better.

DE IS ES
verb mbert 0.891 0.812 0.912P

tense xlmr-large 0.89P 0.792 0.938P

verb mbert 0.92 0.817 0.954P

number xlmr-large 0.915 0.832P 0.959P

noun mbert 0.87P 0.817 0.916P

number xlmr-large 0.861P 0.868 0.87P

noun mbert 0.723P 0.629 0.879
gender xlmr-large 0.755P 0.746P 0.813P

noun mbert 0.643 0.766 –
case xlmr-large 0.682 0.802 –

Table 14: Probing experiment with n=1100 sentences
training data (n=600 for IS), corresponding to the 100
sentences for PET training and the additional sentences
used for the distillation step. P: the respective PET-100
model (EN labels or discriminative context), in Tables 4
or 5, is better.

classifier) and the probing models is not straightfor-
ward, the probing models are based on 100 training
sentences (PET training data), as well as on 1100
training sentences (PET training data + 1000 extra
sentences), with the respective feature labels given
on nouns and finite verbs. This provides more train-
ing data to the probing models, as PET only sees
the label for one noun or verb per sentence in the
training data, and also does not know the labels of
the data for the distillation step.

We evaluate the probing models on the same
target words as we do PET, counting prediction
accuracy on those words while ignoring predictions
for other words in the sentence.

DE IS ES
verb PET mbert 0.860 0.736 *0.926
tense PET xlmr-large 0.874 0.777 *0.954
verb PET mbert 0.866 0.812 0.947
number PET xlmr-large 0.910 *0.853 0.951
noun PET mbert 0.852 0.726 0.912
number PET xlmr-large 0.849 0.838 *0.872
noun PET mbert *0.729 0.624 0.821
gender PET xlmr-large *0.780 0.746 *0.865
noun PET mbert 0.609 0.665 –
case PET xlmr-large 0.630 *0.807 –

Table 15: Probing experiment with n=1100 sentences
(600 for IS) training data applied to the respective best
PET-100 model (EN labels or discriminative context). *:
PET model is better than the respective original model
in Table 14.

E Computational Resources

We use the implementation of PET available from
https://github.com/timoschick/pet.

We ran the PET experiments on CPU with up
to 20 threads (Intel(R) Xeon(R) CPU E5-2630 v4).
The time used per experiment depends on the par-
ticular setting (mainly number of patterns) and the
model size. For example, training the model for
German noun number with n=100 training sen-
tences on three patterns took approximately 2 hours
for mbert and 6.5 hours for xlmr-large.
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