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Abstract

Research in Text-to-SQL conversion has been
largely benchmarked against datasets where
each text query corresponds to one correct SQL.
However, natural language queries over real-
life databases frequently involve significant am-
biguity about the intended SQL due to over-
lapping schema names and multiple confusing
relationship paths. To bridge this gap, we de-
velop a novel benchmark called AmbiQT with
over 3000 examples where each text is inter-
pretable as two plausible SQLs due to lexical
and/or structural ambiguity.

When faced with ambiguity, an ideal top-k de-
coder should generate all valid interpretations
for possible disambiguation by the user (El-
gohary et al., 2021; Zhong et al., 2022). We
evaluate several Text-to-SQL systems and de-
coding algorithms, including those employing
state-of-the-art LLLMs, and find them to be far
from this ideal. The primary reason is that the
prevalent beam search algorithm and its vari-
ants, treat SQL queries as a string and produce
unhelpful token-level diversity in the top-k.

We propose LogicalBeam, a new decoding al-
gorithm that navigates the SQL logic space us-
ing a blend of plan-based template generation
and constrained infilling. Counterfactually gen-
erated plans diversify templates while in-filling
with a beam-search, that branches solely on
schema names, provides value diversity. Log-
icalBeam is up to 2.5x more effective than
state-of-the-art models at generating all candi-
date SQLs in the top-k ranked outputs. It also
enhances the top-5 Exact and Execution Match
Accuracies on SPIDER and Kaggle DBQA!.

1 Introduction

Research on Text-to-SQL generation has focused
on scenarios where each natural language ques-
tion is associated with one correct SQL (Zelle and

'We release AmbiQT and LogicalBeam’s implementation
publicly at https://github.com/testzerd/AmbiQT.
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Mooney, 1996; Tang and Mooney, 2000; Scholak
et al., 2021a; Wang et al., 2020; Rubin and Be-
rant, 2021; Xie et al., 2022; Arcadinho et al., 2022;
Zeng et al., 2022; Scholak et al., 2021b; Pourreza
and Rafiei, 2023). Popular benchmarks driving
such research, including WikiSQL (Zhong et al.,
2018), SPIDER (Yu et al., 2018), its robust per-
turbations (Chang et al., 2023), and even “in-the-
wild” benchmarks such as KaggleDBQA (Lee et al.,
2021) and SEDE (Hazoom et al., 2021) all asso-
ciate one correct SQL with text. Meanwhile, am-
biguity is prevalent in real-life databases — par-
ticularly the ones obtained by integrating several
data sources for data analysis, where a natural lan-
guage interface is most in demand. The sources of
ambiguity are several — inherent ambiguity of nat-
ural language, the user’s ignorance of table/column
names, overlapping strings in column names, under-
specified clauses, and confusion about whether ag-
gregates are pre-computed, or if a join is required.
Hazoom et al. (2021) observe that up to 87% of
queries on the stack exchange database are under-
specified, and Wang et al. (2022) mention that 11%
of queries exhibited ambiguity in column names.
Although prior work has brought up ambiguity,
there is no publicly available benchmark with am-
biguous queries, nor a comprehensive evaluation
of systems under ambiguity.

Our first contribution is to bridge this gulf by
developing a benchmark, AmbiQT, that tests per-
formance under ambiguity in the context of current
models. AmbiQT includes over 3000 examples,
each associating a natural question on a database
with fwo valid SQLs. Inspired by our experi-
ence with several real-world datasets, we target
four types of ambiguity spanning both lexical (am-
biguous column and table names) and structural
(whether a join is necessary, and an aggregate is
pre-computed) ambiguity. The benchmark is gen-
erated via a combination of ChatGPT (OpenAl,
2022) based synonym generation and perturbation,
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and standard rule-based perturbation.

When faced with ambiguity, an ideal Text-to-
SQL system should incorporate all valid alterna-
tives in their top-k SQL outputs, for user resolu-
tion. We show that present approaches, ranging
from T5-3B (Raffel et al., 2019) to SOTA mod-
els, fail to generate all ambiguous outputs with
any decoding strategy, including beam search and
diversity-promoting sampling methods such as Nu-
cleus (Holtzman et al., 2020) and Typical sam-
pling (Meister et al., 2023). Most outputs are small
lexical tweaks of the top choice, bringing about
little meaningful diversity in SQL structures or
schema alternatives. Even SOTA LLMs like Chat-
GPT (OpenAl, 2022) suffer from this issue.

To remedy the lack of diversity, we propose a
new decoding algorithm, LogicalBeam, that allo-
cates branching to explore underlying logical vari-
ants of the SQL rather than the string form. We
catalog the errors of T5-3B (Raffel et al., 2019) on
the SPIDER dev split and use our insights to en-
courage targeted types of diversity — the number
of JOINs and selections, and table/column names.

Our main contributions are:

* We develop AmbiQT, the first benchmark that
tests performance under four types of ambiguity
over 3000+ examples.

* We show that SOTA methods, including a fine-
tuned T5-3B, RESDSQL (Li et al., 2023), Ope-
nAl Codex, and ChatGPT, provide a poor repre-
sentation of ambiguity despite their high accu-
racy on conventional benchmarks.

* We present LogicalBeam, a two-step algorithm
that generates plan-based templates with counter-
factually controlled plan diversity and fills them
via a beam search that branches only on schema
names.

* We show that LogicalBeam consistently in-
creases the fraction of time when all gold SQLs
get generated in the Top-5 choices by 1.5 — 2.5 %
over the baselines across the board on AmbiQT.

2 Background and Related Work

A Text-to-SQL model takes as input a question ex-
pressed as a natural language text x, and a database
schema s comprising of table and column names,
and outputs an SQL program y which can be ex-
ecuted against the database to answer the user’s
question. Figure 1 shows an example. The training
data for the task comprises (text, schema, SQL)
triplets spanning multiple distinct databases.

Y e p—— SingerID StadiumID Location Name ...
F—-—mm-

number of concerts that each ' . - - :
stadium has hosted il StadiumID Capacity Location Name ... |
XYZ | ABC

Table 2: stadium ’,"

Text-to-SQL parser

SELECT T2.name, COUNT (*)

FROM concert AS Tl JOIN stadium as T2
ON T1l.StadiumID = T2.StadiumID

GROUP BY T1.StadiumID

Figure 1: A Text-to-SQL system converts a user ques-
tion to an SQL query, conditioned on the database
schema and/or content.

Benchmarks. Popular benchmarks for the Text-
to-SQL task are WikiSQL (Zhong et al., 2018)
and SPIDER (Yu et al., 2018). A few others have
been proposed recently to capture real-world sce-
narios, such as KaggleDBQA (Lee et al., 2021),
SEDE (Hazoom et al., 2021), and EHRSQL (Lee
et al., 2022). They all attach one SQL per text,
though some of them mention the problem of am-
biguity in real-world datasets. Dr. SPIDER (Chang
et al., 2023), designed to test the robustness of ex-
isting models, perturbs either the text or schema of
SPIDER but still assigns one SQL per text.

Ambiguity in SQL Although ambiguity has
been studied in other fields of NLP (Pilault et al.,
2023; Li et al., 2022; Futeral et al., 2022), it has
been unexplored in the context of semantic parsing.
Ambiguity in SQL arising from related column
names is discussed in (Wang et al., 2022), but they
only consider column ambiguity. Their method
of recognizing ambiguous queries depends on la-
beling words of the text and does not generalize to
other kinds of ambiguity. To the best of our discern-
ment, AmbiQT represents the first open benchmark
for testing coverage of ambiguous alternatives.

Diverse Decoding. Prior work has critiqued the
lack of meaningful diversity in beam-search out-
puts (Finkel et al., 2006; Gimpel et al., 2013; Li
et al., 2016; Li and Jurafsky, 2016). In response,
many fixes have been proposed. Some proposals
attempt to restrict the tokens sampled, using strate-
gies like Nucleus sampling (Holtzman et al., 2020),
Truncated Sampling (Hewitt et al., 2022), and Typ-
ical Sampling (Meister et al., 2023), while some
rely on Template-Based decoding (Wiseman et al.,
2018; Zhang et al., 2022; Fu et al., 2023; Elgohary
et al., 2020; Awasthi et al., 2022). A third approach
is to generate a prefix with high diversity first, then
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Kindof | - |

Example

ambiguity | | Question Text | SQL #1 | SQL #2
Column 1240 List the ids of SELECT roll_number SELECT admission_number
Ambiguity (C) all students. FROM students FROM students
Table 1417 How many singers SELECT COUNT (%) SELECT COUNT(*) FROM
Ambiguity (T) do we have? FROM artist performer
Join What are the makers SELECT maker, model SELECT t2.maker, t1.model FROM
Ambiguity (J) 288 and models? FROM model model AS t1 JOIN model_maker
guty : AS t2 ON t1.model_id = t2.model_id
Precomputed 101 Find the average weight| SELECT AVG(weight), pettype|SELECT avg_weight, pettype
Aggregates (P) for each pet type. FROM pets GROUP BY pettype |[FROM pets_weight

Table 1: The AmbiQT benchmark. For each question, we list two valid SQL queries as per the schema. The schema
is not shown here, but the ambiguity in it can be inferred based on the two SQL queries.

generate the rest of the sentence with lower diver-
sity. Narayan et al. (2022) follow this recipe but
focus on incorporating diverse entity orders in text
summarization.

3 AmbiQT: A Benchmark of Ambiguous
Text-to-SQL Conversion

AmbiQT is constructed so that each text query has
two distinct valid SQL interpretations. Motivated
by our experience working with real-life databases,
we designed AmbiQT to encompass four types of
ambiguity. Each entry is designed so that both
alternatives have a similar relevance to the question,
and a well-calibrated decoding method is expected
to rank them close by in their outputs.

We create AmbiQT by modifying the SPIDER
(Yu et al., 2018) dataset, and use ChatGPT (Ope-
nAl, 2022) to aid with the creation. In each case,
we modify the schema instead of the text as that pro-
vides greater control over the modification process.
We explain the kinds of ambiguity in AmbiQT be-
low and portray examples of each in Table 1.

Column Ambiguity (C). Unlike the SPIDER
benchmark where column names usually appear
verbatim in the question text (like born state for
the column born_state), when users unaware of
the schema pose a natural question, they introduce
column ambiguity (Wang et al., 2022). For exam-
ple, “What is the capacity of O2 Arena?” could be
ambiguous if the schema has separate columns for
standing and seating capacity. Likewise, a query on
the number of under-nourished children is ambigu-
ous if we have different columns for “under-weight
children” and “stunted growth in children”.

To simulate column ambiguity, for each text x,
schema s, and SQL y in SPIDER, we prompt Chat-
GPT to generate two synonyms for each column

name of s in a one-shot manner. Appendix A fur-
nishes more details of the prompt. We then modify
s by replacing ¢ with two columns cy, ca, and we
use y to generate two queries y1, y2 where all men-
tions of ¢ are replaced with c¢; in y; and with ca
in y2. An example appears in the first row of Ta-
ble 1. We do not reuse ¢ because the SPIDER
dataset often contains column names verbatim in
the question, and that would violate our attempt at
keeping the two options at similar relevance levels.
We modify one column at a time and generate up
to 3 examples from each original entry.

Table Ambiguity (T). Table name ambiguity is
common in databases obtained by integrating mul-
tiple data sources, as in web tables (Cafarella et al.,
2008; Pimplikar and Sarawagi, 2012). Here again,
we prompt ChatGPT to generate two alternate
names for each table. We then modify one SQL
y to generate two candidates y1,y2 as shown in
Table 1.

Join Ambiguity (J). In production databases, a
logical table is often vertically partitioned across
several tables for efficient clustered access (Stone-
braker et al., 2019). Column names overlapping
across tables leads to Join Ambiguity. Suppose
we have two tables: (1) person with columns id,
name, email_address, and (2) person_details
with columns id, postal_address, photo.
A question asking for a person’s name and ad-
dress is ambiguous on whether a JOIN with the
person_details is necessary. We expose such
ambiguity by modifying the schema as follows.

Consider a (x,s,y) triplet. Suppose y involves
selecting two or more columns ¢y, 3, . . ., NOt nec-
essarily in the same order, from a table ¢. Suppose
further that c; is not a primary key of £. We create
a table called ¢_c; that includes just the primary
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Question: Show the names of high school students and their corresponding number of friends.

Gold Queries

1. SELECT t2.full_name, count(*) FROM friend AS t1 JOIN highschooler AS t2 on tl.id = t2.id GROUP BY tl.id
2. SELECT t2.given_name, count(*) FROM friend AS t1 JOIN highschooler AS t2 on tl.id = t2.id GROUP BY tl.id

Outputs of T5-3B with Beam Search

APl e

SELECT tl.given_name, count(*) FROM highschooler AS t1 JOIN friend AS t2 on tl.id = t2.id GROUP BY tl.id

SELECT tl.given_name, count(*) FROM highschooler AS t1 JOIN friend AS t2 on tl.id = t2.id GROUP BY tl.highschooler
SELECT tl.given_name, count(*) FROM highschooler AS t1 JOIN friend AS t2 on tl.id = t2.friend_id GROUP BY tl.grade
SELECT tl.name, count(*) FROM highschooler AS t1 JOIN friend AS (2 on tl.id = t2.id GROUP BY tl.id

SELECT tl.giving_name, count(*) FROM highschooler AS t1 JOIN friend AS t2 on tl.id = t2.id GROUP BY tl.id

Figure 2: Beam Search works well when targeting only one output, but leads to superficial diversity, for example
via different grouping and erroneous variants of column names.

key pk; of t, and c;. The first alternative y; is y
and the second alternative y9 uses a join over ¢ and
t_c1, with everything else staying the same as y.

Precomputed Aggregates (P):. This ambiguity is
particularly common in data warehouses such as
Data Commons which pre-aggregate certain vari-
ables. For instance, the “total rice production” of a
state might refer to the column rice_production
of state rather than a sum over it. Text-to-
SQL models have a bias toward introducing a
sum() . ..group-by clause every time total ap-
pears in the text. The non-aggregated alternative is
usually missing in the top-k options. We incorpo-
rate this ambiguity as follows.

For each (x,s,y), where y has at least one ag-
gregate, we construct a new table ¢’. For each
aggregate A over column c in y, we add to ¢’ the
columns A’_c for all A’ € {avg, sum,min, max},
and the columns grouped by in y. For count(*)
we add a column called number. We get two gold
queries, the original y and a second with the group-
by replaced by a direct SELECT on ¢’ as shown in
the example in Table 1. We also support aggregates
across multiple tables but skip the details here.

4 Are Existing Text-to-SQL systems
resilient to ambiguity?

We evaluate several SOTA Text-to-SQL models
and decoding algorithms on their ability to generate
the alternatives of AmbiQT in their top-% outputs.
Descriptions of the systems compared and evalu-
ation metrics appear in Subsection 6.2. Table 3
features the results we obtained.

For all systems, the top-5 outputs contain both
outputs only for a small percentage of the instances.
To investigate the reasons for their poor coverage,
we manually inspected several outputs of T5-3B

and ChatGPT. A few anecdotes for each kind of
ambiguity are shown in Appendix F. The reason
for the failure is that Beam Search tends to produce
outputs that are minor tweaks of the best hypoth-
esis, as also corroborated by prior work (Finkel
et al., 2006; Gimpel et al., 2013; Li et al., 2016;
Li and Jurafsky, 2016). One example from the ‘C’
split of AmbiQT that illustrates this is displayed
in Figure 2. Recent diversity-promoting decod-
ing strategies like Nucleus (Holtzman et al., 2020)
and Typical (Meister et al., 2023) sampling are de-
signed for natural language and are ineffective for
capturing the structural diversity that SQL variants
require. These observations motivated the design
of our inference algorithm, LogicalBeam.

S Our method: LogicalBeam

LogicalBeam attempts to induce meaningful di-
versity, while steering clear of vacuous forms of
diversity in the formatting of the SQL. We first at-
tempt to understand the type of logical diversity
required by analyzing the errors of the top-1 output
of T5-3B on the SPIDER benchmark.

The mistakes of the top-1 output are cataloged
in Table 2. Apart from the column selection order,
which is arguably not a serious error, the top four
errors are a wrong number of joins, columns, and
incorrect column and table names. A large fraction
of the errors involves the “skeletal structure” of the
SQL, whereas vanilla Beam Search exhibits little
diversity in the SQL structure. Most of its diversity
is around generating alternate forms of string liter-
als, tweaking comparison orders, or swapping the
names of temporary variables (like t1 with t2).
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Contrib-
Error Type ution (%)
Correct Output 70.31
Wrong selection order 7.44
Missing JOIN(s) 6.09
Missing column(s) 3.48
Extra JOIN(s) introduced 2.80
Incorrect column or table names 2.51
WHERE clause missing or incorrect 1.35
Extra column introduced 1.06
ORDER BY clause missing or incorrect 0.48
GROUP BY clause missing or incorrect 0.39
Wrong comparison 0.29
DISTINCT missed or introduced 0.10
Other 3.68

Table 2: A catalog of errors on the SPIDER dev split,
based on Exact Match (EM), corresponding to the top-1
output from a Beam Search with a beam width of 25.
Most errors stem from an incorrect number of JOINs
or SELECTions, with incorrect schema names being a
concern as well.

These observations drove us to design a two-
stage approach. In the first stage, we generate di-
verse SQL skeletons (templates) to capture struc-
tural diversity, and in the second we fill in the tem-
plate with schema-diverse alternatives. We illus-
trate our approach in Figure 3.

5.1 Plan-based Template Generation

A template of an SQL query abstracts away the
names of the tables and columns of the SQL query,
string literals, and constants, so that only the struc-
tural components (SELECTs, GROUP BYs, JOINSs,
comparisons and so on) remain. On the train
split of SPIDER, we convert the gold SQL to a tem-
plate by a simple rule-based replacement of schema
names (details in Appendix E) and use it to train a
Text-to-Template model. However, the top-k tem-
plates found via beam search on this model again
lacked logical diversity. One example is shown by
Figure 6 in Appendix D. We thus explored a more
deliberate mechanism to induce diversity following
these three steps:

First, we preface a template with a plan declar-
ing the structural properties of the SQL where di-
versity is desired. Based on our error analysis in
Table 2, we chose to induce diversity on the num-
ber of JOINs and final SELECTions. Thus, for a
given input question, we output a plan followed by
a template as:

<J> joins | <S> selects | <TEMPLATE>
The left yellow box in Figure 3 shows one such
plan prefixed template.

Second, we counterfactually perturb the counts
in the plan as follows. We generate the top-
choice template ¢ without any constraints (say,
with j joins and s selections). We then gener-
ate four diverse plans by searching in the neigh-
borhood of the most likely predicted structure as
(7—1,s),(7+1,s),(4,s—1),(4,s+1). We skip
invalid combinations (j < 0, 5 > 3, or s < 0).
We also explored sampling j, s based on predicted
probabilities, but these were extremely skewed.

Finally, for each plan (enforced as a prefix), we
use greedy decoding to generate the template. The
decoding algorithm was good at generating tem-
plates as per the specified plan.

Thus, at the end of the template generation phase,
we have at most five templates.

5.2 Template filling with Diverse Schema

Here we fill diverse column names and table names
in the generated templates. We use beam search to
this end but enforce adherence to the template. We
track our position in the template during infilling.
If the next token is expected to not be part of a
table or column name, we disallow the model from
exploring anything apart from the highest-scoring
next token. Otherwise, we allow it to branch in the
next decoding step. However, we restrict its options
to a whitelist of tokens computed beforehand by
enumerating the columns/tables from the schema.
The pseudocode of our Restricted Infilling method
is presented in Algorithm 1.

The next challenge is how to rank the SQLs from
the diverse templates and select the top-5. We ini-
tially attempted to rank based on the product of
probabilities of the template and in-filling steps.
However, the probability distribution of the mod-
els we worked with was extremely skewed - for
example, top-p sampling with p = 0.9 produced
the same template in all infillings over 70% of the
time. Combined with the well-known lack of cal-
ibration of neural sequence models, we found it
better to simply choose the top—2 SQLs from each
template, along with the top—2 from vanilla beam-
search without any templates. After filtering out
duplicates, the top-5 queries in the list are returned.

6 Experiments

We present extensive comparisons of several State-
of-the-Art Text-to-SQL models and decoding
methods on AmbiQT in the following sections. We
then show that LogicalBeam can be helpful even
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Algorithm 1: Pseudocode for one Beam Extension step of the Restricted Fill-In Algorithm

Data: Beam width &, current hypotheses and scores (y1, s1), (y2, $2), -, (Yk, Sk ), template t, set of all column
names C' and table names 1T’

Result: The next set of hypotheses with scores (y1,51), -, (Y%, Sk)

H + 0;

U + getPossibleFirstToks(C) U getPossibleFirstToks(T);

for(:=1;i<k;i=i+1){
if “HypConformsToTemplate(y;, t) then

continue;
end
ncls < getNextTokClass(ys,t);
if ncls € {column, table} then

‘ H; + getExtensionsWithScores(y;, s, U);
else

H; + {getTopExtensionWithScore(y;,s:)};
end
H<+ HUH,

return getTopKHypothesesWithScore(H);

‘ /* If this hypothesis violates the template, don’t extend it. */

/* Check if we expect to start a column/table name next. */

/* Allow branching, but restrict options to whitelist. */

/* Disallow branching by only choosing the top-scoring extension */

in the absence of ambiguity. We also present a
detailed ablation study of LogicalBeam, and a dis-
cussion of its use-cases and shortcomings.

6.1 Implementation Details of LogicalBeam

Both stages of LogicalBeam are fine-tuned ver-
sions of Flan T5-3B (max length = 512), with
an Adafactor (Shazeer and Stern, 2018) optimizer
(learning rate le — 4, and no decay). The models
were trained for roughly 300 epochs each, with
checkpoint selection based on the highest Template
Match and Exact match, respectively (on the vali-
dation set, with greedy decoding). Our datasets for
the models consist of one-to-one maps of each ex-
ample from SPIDER, with, e.g., the SQL query
replaced by the corresponding template for the
Text-to-Template model. We use the Hugging-
Face LogitsProcessor? for the Template-Infilling
model, which allows us to modify logits at each de-
coding step. We set all the disallowed tokens’ logits
to —oo to implement the restricted beam search.

6.2 Methods Compared

We compare with the following models. All use
Beam Search with a beam width of 10 unless oth-
erwise specified. For T5-3B (one of the best-
performing baselines), alternate decoding algo-
rithms are also included in the comparison.

ChatGPT (CGPT):. We prompt ChatGPT for its
top five choices given the question and schema in

2https://huggingface.co/docs/transformers/
internal/generation_utils#logitsprocessor

a one-shot manner using an example outside of
AmbiQT. One-shot prompting was required to get
ChatGPT to adhere to the output format. More
details can be found in Appendix A. We also show
in Appendix B that alternate prompts tried by prior
works (such as (Liu et al., 2023)) are inefficient in
getting ChatGPT to cover all possibilities.

OpenAl Codex (Codex):. We use few-shot
prompting with the code-davinci-002 version of
OpenAl Codex (Chen et al., 2021). This is the most
capable Codex version at the time of writing. More
details are provided in Appendix A.

RESDSQL (RSQL):. Among approaches that
do not use ChatGPT/GPT-4, RESDSQL (Li et al.,
2023) is the best-performing method on SPIDER
at the time of writing. We use its 3B variant (the
most potent one) for comparison but turn off the
NatSQL (Gan et al., 2021) representation, as it is
orthogonal to our approach and can be used with it.

T5-3B (T5-3B):. We use the T5-3B checkpoint
from the PICARD (Scholak et al., 2021b) reposi-
tory that fine-tunes T5-3B on SPIDER. By default,
we use Beam Search for T5-3B.

T5-3B with Top-k sampling (T5-3B-k):. At each
step of decoding, we sample from the top-50 to-
kens, i.e. using top-k sampling with & = 50.
T5-3B with Nucleus/Top-p Sampling (T5-3B-p):.
At each step of decoding, we sample from the top-p
tokens that account for 90% of the probability mass
as proposed in (Holtzman et al., 2020).

T5-3B with Typical Sampling (T5-3B-T):. Typ-
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What is average age of hea

are over 40 ?

ds from each state that

Top choice

v

0 joins | 2 selects | SELECT
column, AVG(column) FROM

Template Generation
defines the structure

Prefix forcing defines
template attributes

l

table WHERE column > number

v

SELECT born_state, AVG(age) FROM head
WHERE age > 40

generation (+1 join)

Non-existing column/table names are pruned out, adherence to the templ
is enforced, and branching is disallowed at non-column/table positions.

Counterfactual template

1 joins | 2 selects | SELECT column,
AVG(column) FROM table as tl JOIN
table as t2 ON column = column WHERE

column > number GROUP BY column
a%

Template Infilling
determines the
content

SELECT t1.born_state » SELECT t1.born_stat

Tl
SELECT —>» SELECT birthplace % )SELECT t1.born_stat

N

7S\ SELECT birih_state SELECT birthplace, AVG(age) FROM head WHERE

SELECT
e,...>40 tl.born_state, AVG(t2.age)
™ FROM head AS tl JOIN
e,..>45

employee AS t2

ON tl.emp_id = t2.emp_id WHERE
t2.age > 40 GROUP BY
tl.born_state

Figure 3: Our approach in its entirety. A counterfactual template generation step provides template diversity
via Prefix Enforcement. Constrained infilling generates content diversity by restricting branching and enforcing

template adherence.

ical Sampling (Meister et al., 2023) is another re-
cent diverse decoding algorithm for enforcing nat-
ural diversity. This algorithm uses a parameter,
typical_p, similar to the top_p of Nucleus Sam-
pling. Following (Meister et al., 2023), we set
typical_pto 0.9.

Flan T5-XL (F-T5-3B):. This is the FLAN vari-
ant of the T5-3B model, fine-tuned with the same
PICARD code as the T5-3B model above.

LogicalBeam. For both stages we fine-tuned sepa-
rate Flan T5-3B (Chung et al., 2022) models. We
use a learning rate of 1-10~% and an effective batch
size of 810 via gradient accumulation in both cases.

Evaluation Metrics. We present two types of accu-
racies (i) EitherInTopK - that checks if either of the
gold queries feature in the top-5 outputs (ii) Both-
InTopK - that checks if both gold queries feature
in the top-5. We only report the Execution Match
(EXM) accuracies for each. The numbers of Exact
Set Match are given in Appendix C.

6.3 Opverall comparison on AmbiQT

We present the results of the system comparison in

Table 3. We make the following observations:

¢ State-of-the-art Text-to-SQL models cannot
handle ambiguity: Existing approaches, includ-
ing T5-3B, ChatGPT, and RESDSQL among oth-
ers, fail to cover both alternatives in Top-5 even
when they perform reasonably under the EitherIn-
TopK heading. Surprisingly, despite being SOTA

Beam Width Number of Outputs

36.1

30

15.9 16.8|

12.9 11.9 12.9 16.4

10 4:7\1'1\0, 10 1- 143 i
\ | 1041 11 | |

10 15 20 5 10 15

|+ C—T-=J]—+P]

Figure 4: The coverage only increases slightly with
more outputs, and decreases with increasing beam
width. The x-axis varies the controlled hyperparam-
eter, while the y-axis reports coverage.

on the SPIDER dataset, RESDSQL sees its cover-
age plummet under ambiguity. We observed that
it often produced outputs that corresponded to
neither of the alternatives. This behavior was also
exhibited by T5-3B, by using aggregates such as
max (avg_age). Though outputs produced this
way are syntactically correct, they do not corre-
spond to any meaningful question.

Beam-search gives unhelpful token-level di-
versity Although it may seem like increasing the
beam width allows greater exploration and thus
greater diversity, this is not the case. As Figure 4
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AK"‘.d of | CGPT | Codex | RSQL | F-T5-3B | T5-3B | T5-3B-k | TS-3B-p | T5-3B-T | LogicalBeam
mbiguity
EitherInTopK (%)
C 527 | 556 | 51O | 607 | 590 | 520 517 48.1 66.6
T 557 | 598 | 338 | 597 | 579 | 491 48.7 43.6 67.3
J 778 | 837 | 688 | 86.1 868 | 806 79.9 76.7 87.2
P 574 | 772 | 426 | 495 | 584 | 554 535 515 64.4
BothInTopK (Coverage) (%)
C 227 | 104 | 108 8.7 11.7 33 2.5 0.0 28.0
T 373 | 143 | 64 151 | 219 8.0 7.1 1.1 42.6
J 156 | 438 | 00 226 | 278 2.8 1.7 0.0 59.4
P 89 | 247 | 89 2.9 15.8 40 3.0 0.0 248

Table 3: The results of all compared systems on AmbiQT as portrayed by Execution Match (EXM) accuracy in the
Top-5 outputs. LogicalBeam usually performs the best under the EitherInTopK heading, except for Precomputed
Aggregates. More importantly, LogicalBeam consistently outperforms all other systems under the BothInTopK
heading. This shows the capacity of LogicalBeam to capture greater meaningful diversity in its outputs.

Kind of Single | Two | +Template +Schema
Ambig- lt £ tW Di rpit Diversity
uity stage | stages versity (LogicalBeam)
EitherInTopK (%)

C 64.0 | 65.9 65.9 66.6

T 60.7 | 66.2 65.0 67.3

J 86.8 | 88.5 87.1 87.2

P 584 | 624 63.4 64.4

BothInTopK (Coverage) (%)

C 232 16.0 16.1 28.0

T 253 | 284 28.2 42.6

J 545 | 545 62.2 59.4

P 9.9 27.7 30.7 24.8

Table 4: The Execution Match (EXM) accuracies of the
ablations on AmbiQT. Template Diversity helps with
Join Ambiguity and Precomputed Aggregates, while
Schema Diversity aids with Column/Table ambiguity.

shows, increasing beam width generally reduces
coverage since the model is naturally biased to-
wards one of the two alternatives, and a greater
beam width only serves to let the model discover
more vacuous variants of it. Using a larger num-
ber of outputs does not help much, as attested to
by Figure 4. Even a 3x increase in the number
of outputs leads only to marginal improvements,
except for Table Ambiguity.

* Recent diversity-promoting decoding algo-
rithms fail due to skewed token distribution
SOTA diversity-promoting alternatives to Beam
Search such as Nucleus and Typical sampling
perform worse than beam search. Although these
have demonstrated strong performance for tasks
such as text summarization (Meister et al., 2023),
they cannot promote meaningful diversity in se-

mantic parsing under ambiguity since the model
produces skewed token probabilities. This causes
the sampled hypotheses to be often identical as
seen in the anecdotes in Figure 5 in the supple-
mentary material.

¢ LogicalBeam yields substantial accuracy in
covering both ambiguous outputs. Its Bothln-
TopK accuracy is almost 2.5x better in the case
of Column Ambiguity than T5-3B, and 2X in
the case of Table ambiguity. It outperforms other
systems by a huge margin. The accuracy under
Join Ambiguity increases by 1.4x over Codex
(the next-best method) and is over 2 x better than
any other method. For Precomputed Aggregates,
LogicalBeam is once again the best system, and
surpasses everything apart from Codex by over
1.5x. We also convincingly beat ChatGPT and
OpenAl Codex across the board on coverage.

6.4 Performance on Unambiguous Queries

Although our main focus is coverage under am-
biguity, we also evaluate our proposal against the
baseline T5-3B model on the dev split of SPIDER.
We find that LogicalBeam doesn’t just help the
AmbiQT benchmark but also provides gains on
conventional Text-to-SQL benchmarks like SPI-
DER where ambiguity is limited. Table 5 shows
that LogicalBeam improves the top-5 Exact-Set
and Execution Match accuracies on SPIDER by
2.3% and 3.1% over the baseline, respectively. As
another example, we evaluate our method on the
dev split of the challenging Kaggle DBQA (Lee
et al., 2021) benchmark. We observe a drastic in-
crease in the top-5 Exact-Set and Execution Match
accuracies, from 27.1% and 26.5% to 35.4% and
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Top-5 Exact Set | Top-5 Execution
Method Match Accuracy
SPIDER (dev split, %)

T5-3B 76.1 78.2

LogicalBeam 78.4 81.3
Kaggle DBQA (dev split, %)

T5-3B 27.1 26.5

LogicalBeam 354 354

Table 5: The Exact-Set and Execution Match accuracies
of LogicalBeam on two popolar Text-to-SQL datsets,
SPIDER and Kaggle DBQA. Despite the datasets not
exhibiting ambiguity, LogicalBeam delivers significant
improvements over the T5-3B baseline.

35.4%, respectively. We conclude that Logical-
Beam is useful across a wide range of Semantic
Parsing tasks. Unlike earlier grammar-based gen-
erators like SmBoP (Rubin and Berant, 2021) that
require special decoder models, our approach can
work within existing LM-based models.

6.5 Ablation study

LogicalBeam has three design decisions: (1) Use of
a two-step approach, (2) Counterfactual structural
directives via plans, (3) Template-guided schema
diversity. We present an ablation study where we
incrementally add these changes in Table 4. The
first column (“Single Stage”) generates an SQL
directly with a prefix for structural diversity, dif-
fering from LogicalBeam only in using a single
stage. It still uses plan enforcement and branch-
ing control. We find that its coverage lags behind
LogicalBeam, and by a large margin for T and P.
The primary reason could be that template-guided
decoding allows us to discard erroneous extensions
at each decoding step. The second column (“Two
Stages”) shows a simple two-stage method where
we generate a template without any counterfactual
control, and use Beam Search to fill it in. This
method decouples template and schema diversity,
but cannot encourage either by itself. Forcing coun-
terfactual diversity (“+Template Diversity”) boosts
the coverage under Join Ambiguity and Precom-
puted Aggregates. Finally, encouraging Schema
Diversity via our Restricted Fill-In Algorithm (Log-
icalBeam, the last column) significantly improves
coverage for Column and Table Ambiguity.

6.6 Discussion

LogicalBeam is general and need not be confined
to the world of Semantic Parsing. For instance, the

plan (prefix) could be replaced with any aspect of a
code snippet that we wish to control. More gener-
ally, since the underlying mechanism only involves
the model being faithful to the prefix and has no
manual components, we could do the same with al-
most any Sequence-to-Sequence task (for example,
political alignment in news summarization).

LogicalBeam consistently improves perfor-
mance both under ambiguity and in the absence
of it, often by drastic margins. However, we would
also like to highlight one failure mode we observed,
that was also exhibited by other approaches. Con-
sider a query “... tablel as t1 JOIN table2
as t2”. On rare occasions, we observed that an
identical query with t2 replaced by t3 (and t2
skipped) was also present in the choices. We be-
lieve this indicates a strong bias of the underlying
model towards a particular template — so much so
that it prefers this weird (t1, t3) combination
to introducing template diversity. The problem
of debiasing the model makes for exciting future
work. It is not unique to Semantic Parsing, and, we
believe, deserves attention in its own right.

7 Conclusion

In this work, we highlighted the lack of evaluation
of Text-to-SQL models under ambiguity in con-
temporary literature. To address this, we developed
AmbiQT, a novel benchmark with 3000+ challeng-
ing examples that evaluates Text-to-SQL models on
four kinds of ambiguity. We demonstrated that cur-
rent methods fall short of acceptable performance
under ambiguity. Motivated by analyzing the er-
rors of a T5-3B model on the SPIDER dataset, we
developed a two-step approach of generating and
then filling in a template. To this end, we trained
a model to predict the number of JOINs and selec-
tions as a plan before the template, and controlled
template diversity by enforcing appropriate plans.
Beam Search was modified to enforce template ad-
herence during in-filling. Our method aligns well
with intuition and greatly improves a model’s cov-
erage under ambiguity, as measured on AmbiQT. It
also delivers improvements in the absence of ambi-
guity, on the SPIDER and Kaggle DBQA datasets.
We hope our efforts inspire future work to study
generation under ambiguity in more detail, both in
the domain of Text-to-SQL conversion and beyond.
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Limitations

In this work, we curated a benchmark of ambiguous
queries by perturbing SPIDER, an existing dataset.
While we believe that our benchmark is a good
measure of performance under ambiguity, real-life
databases may exhibit more numerous as well as
varied forms of ambiguity. In addition, AmbiQT
only consists of examples with questions in English.
Ambiguity may manifest differently based on the
choice of natural language, and a corresponding
study should make for interesting future work.

Due to the two-step approach, LogicalBeam in-
curs a higher number of decoding steps as com-
pared to an end-to-end model. However, due to us-
ing a lightweight Greedy Search for the first stage,
the number of decoding steps of LogicalBeam falls
not much beyond the baseline. Nevertheless, find-
ing an optimal trade-off between decoding steps
and coverage remains an intriguing challenge.

At the time of writing, ChatGPT and OpenAl
Codex represent the most powerful publicly avail-
able LLMs suitable for Text-to-SQL conversion
and are unable to exhibit sufficient diversity under
ambiguity. Future versions or models may over-
come this barrier.
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As we generate AmbiQT by perturbing SPIDER
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A Computational Resources and
Prompting Details

We highlight in this section the prompts we used
for prompting ChatGPT, both for the synonyms of
table/column names and for the Text-to-SQL con-
version on AmbiQT. We also provide the prompts
we used with OpenAl Codex, and furnish details of
the computational resources we used. All details
provided below are specified as of June 20, 2023.

A.1 Computational Resources

All of our experiments were run on a single
NVIDIA A100 GPU with 80GB of memory. We
estimate the total GPU usage to have been roughly
500 GPU hours across training and inference. We
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You are a helpful assistant that assists the user in deciding alternate names for

— their tables in an SQL database.

Listing 1: The directive we use for asking ChatGPT to produce table synonym:s.

The database with database ID "[DB_ID]" currently has tables with the names [
< TABLES_STRING]. Give me two alternate names for the table "[TABLE_NAME]".
— Print your output as a python list. Do not print any additional information,

— formatting, explanation, or notes.

Listing 2: The prompt we use for asking ChatGPT to produce table synonyms.

further estimate the cost of utilizing ChatGPT and
OpenAl Codex to be under 100$ in total.

A.2 Synonyms (ChatGPT)

For column and table synonyms, we use one-shot
prompting to indicate to ChatGPT the kind of trans-
formation we desire.

For column synonyms, the overall directive and
prompt are shown in Listings 1 and 2 respectively.
The demonstrated example also follows the format
of the prompt. [DB_ID] is the database ID of the
database having the column, and [TABLE_NAME]
is the name of the table containing it. A comma-
separated list of all database table names in quotes
is filled into [TABLES_STRING].

Similarly, for table synonyms, the directive and
prompt are shown in Listings 3 and 4 respec-
tively. In particular, [DB_ID] and [TABLE_NAME]
are replaced with the database ID and table name.
[COLUMN_NAMES] is a comma-separated list of
columns of the specified table. The demonstrated
example also follows this format.

We found that asking ChatGPT to structure its
output as a JSON snippet saved us the trouble of
sanitizing its outputs and separating it from any
decoration (comments or explanation) it produced.
It also made it easier to detect invalid outputs and
retry.

A3 Text-to-SQL (ChatGPT)

We prompted ChatGPT in a one-shot manner for
evaluation on our benchmark. This was necessary
as our benchmark is built by modifying SPIDER
(Yu et al., 2018). The queries are expected to be in
a specific format in the spider dataset. In particular,
the table aliases are always t1, t2, .. .. Fur-
ther, columns are never aliased, and only unquali-
fied JOIN is used and INNER JOINs, OUTER JOINSs
not used. Therefore, rather than do some ad-hoc
post-correction, we showed ChatGPT one example
from the original SPIDER dev set. In addition, we

asked ChatGPT to structure its output as a JSON
snippet, a departure from the conventional prompt
as in (Liu et al., 2023). This was motivated by
our observation that ChatGPT would occasionally
sneak comments or notes into its queries despite
our best efforts. By asking it to produce the output
in a structured (JSON) format, it was much easier
to detect errors and retry.

We use the directive and prompt shown in List-
ings 5 and 6 respectively. The database ID and
its schema go into [DB_ID] and [SCHEMA], respec-
tively. The question is passed at the end in the
placeholder [QUESTION]. Our demonstration for
ChatGPT consists of using the question “Show the
stadium name and the number of concerts in each
stadium”, and the output used for demonstration is
shown in Listing 7.

A4 Text-to-SQL (OpenAl Codex)

We found that asking Codex to produce multiple
SQLs in the same output did not have the desired
effect, as it did not usually conform to the number
of outputs or the format. Therefore, we instead
prompt Codex multiple times with a temperature
of 0.6 (as recommended by OpenAl to elicit cre-
ativity) and a top-p of 0.7 to get its outputs. To this
end, we found both zero and one-shot prompting
ineffective in conveying to Codex the specific for-
mat of the output (unlike ChatGPT). In contrast, we
found that few (specifically, two) shot prompting
to work much better, and therefore proceeded with
that alternative. Our two demonstrations as well
as the query prompt follow the format of Listing 8.
The output formatting is simply the SQL query
string inside curly braces. The two demonstrated
examples are replicated in Listing 9.

B Alternate Prompts with ChatGPT

Before settling on our choice, we also experi-
mented with existing prompts used by prior work
(zero-shot, as opposed to our one-shot method). In
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You are a helpful assistant that assists the user in deciding alternate names for
<~ their tables' columns in an SQL database.

Listing 3: The directive we use for asking ChatGPT to produce column synonyms.

The database with database ID "[DB_ID]" has a table called "[TABLE_NAME]". This
— table has columns with the following names:

[COLUMN_NAMES]

Give me two alternate names for each column. Format your output as a json snippet
— with keys corresponding to column names. Do not print any additional
— information, formatting, explanation, or notes.

Listing 4: The prompt we use for asking ChatGPT to produce column synonyms.

You are a helpful assistant that converts provided English questions to SQL queries
— with respect to a provided schema.

Listing 5: The directive we use while prompting ChatGPT on our benchmark.

The schema for a database with Database ID [DB_ID] is:

[SCHEMA]

Convert the following English question to the five most plausible SQL queries
— compatible with the above schema.

Use simply the column name for selections in simple queries. For queries with joins
—» , use t1, t2, and so on as aliases for the tables, and use t1.column, t2.
< column, and so on for the column selections.

Structure your output as a JSON snippet with a single key "queries"”, mapping to a
— list of alternatives. Do not print any additional information, explanation,
— formatting, or notes.

Question: [QUESTION]

Listing 6: The prompt we use while prompting ChatGPT on our benchmark.

{
"queries": [
"select t2.name, count(*) from concert as t1 join stadium as t2 on t1.
— stadium_id = t2.stadium_id group by t1.stadium_id",
"select t3.name, count(*) from concert as t1 join stadium as t2 on t1.
— stadium_id = t2.stadium_id join singer as t3 on tl1.singer_id = t3.
< singer_id group by t1.stadium_id",
"select t3.name, count(x) from concert as t1 join stadium as t2 on t1.
— stadium_id = t2.stadium_id join singer_in_concert as t3 on t1.
< concert_id = t3.singer_id group by t1.stadium_id",
"select t3.name, count(*) from concert as t1 join stadium as t2 on t1.
— stadium_id = t2.stadium_id join singer_in_concert as t3 on t1.
— concert_id = t3.singer_id group by t1.stadium_id",
"select t1.name, count(*) from stadium as t1 join concert as t2 on t1.
— stadium_id = t2.stadium_id group by t1.stadium_id"
]
}

Listing 7: The demonstrated outputs for the one-shot example with the query “Show the stadium name and the
number of concerts in each stadium”.
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# Use the schema links to generate the SQL query for the question

[SCHEMA]

Convert the following English question to SQL queries compatible with the above
— schema.

Use simply the column name for selections in simple queries. For queries with joins
— , use t1, t2 and so on as aliases for the tables, and use t1.column, t2.
< column and so on for the column selections.

Question: [QUESTION]

Listing 8: The format of both the demonstrated and query examples

Question 1: List the official name and status of the city with the largest
— population.
Query 1: SELECT official_name, status FROM city ORDER BY population DESC LIMIT 1
Question 2: Show the stadium name and the number of concerts in each stadium.
Query 2: SELECT t1.name, count(*) FROM stadium AS t1 JOIN concert AS t2 ON t1.
— stadium_id = t2.stadium_id GROUP BY t1.stadium_id

Listing 9: The examples used as demonstrations for OpenAl Codex. The “Question” and “Query” indicators are
just for clarity, and the formatting is as per Listing 8.

### Generate 5 possible sqlite SQL queries ending with ';' for the question given
< in triple backticks, with no explanation.
### Sglite SQL tables, with their properties:

#

[DB_SCHEMA]

#

### -7 [QUESTION] ~°°

Listing 10: An alternate prompt used by prior work that we tried.
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Kind of

.. CGPT | Codex | RSQL | F-T5-3B | T5-3B | T5-3B-k | T5-3B-p | T5-3B-T | LogicalBeam
Ambiguity
EitherInTopK (%)
C 43.4 51.5 49.4 58.6 57.6 52.3 51.9 48.2 65.8
T 41.1 54.3 30.2 58.9 56.5 47.6 47.3 41.9 66.8
J 67.4 82.6 68.1 87.5 85.4 82.3 82.3 79.5 89.2
P 51.5 80.2 574 65.4 78.2 72.3 74.3 69.3 81.2
BothInTopK (Coverage) (%)
C 19.8 94 10.5 8.8 12.2 3.2 2.6 0.0 27.7
T 28.9 11.6 4.7 14.3 20.6 6.5 5.7 0.0 399
J 15.3 41.0 0.0 22.6 24.3 2.8 1.7 0.0 573
P 79 23.8 79 3.0 16.8 4.0 2.0 0.0 22.8
Table 6: The Exact Set Match (EM) Accuracy of the compared systems.
Question

What are the names, countries, and ages for every singer in descending order of age?

Gold Queries

1. SELECT name, nationality, age FROM singer ORDER BY age DESC
2. SELECT name, citizenship, age FROM singer ORDER BY age DESC

Outputs of T5-3B with Nucleus Sampling

Nk

SELECT name, nationality, age FROM singer ORDER BY age DESC
SELECT name, nationality, age FROM singer ORDER BY age DESC
SELECT name, nationality, age FROM singer ORDER BY age DESC
SELECT name, nationality, age FROM singer ORDER BY age DESC
SELECT name, nationality, age FROM singer ORDER BY age DESC

Figure 5: Nucleus Sampling shows virtually no diversity in top-5 outputs due to a highly skewed probability
distribution leading to the same tokens being sampled each time.

Kind of Single | Two | +Template +Schema
Ambig- stage stages Diveriit Diversity
uity & & y (LogicalBeam)
EitherInTopK (%)
C 64.3 64.2 63.6 65.8
T 60.0 | 64.6 63.2 66.8
J 88.9 | 90.3 89.2 89.2
P 782 | 80.2 78.2 81.2
BothInTopK (Coverage) (%)
C 23.5 16.0 16.0 27.7
T 20.7 26.8 26.6 39.9
J 53.1 56.6 64.6 57.3
P 7.9 27.7 29.7 22.8

Table 7: The Exact Match (EM) accuracies of the com-
pared ablations on AmbiQT.

particular, we tried the prompt used by (Liu et al.,
2023) to evaluate ChatGPT on our benchmark
with minor modifications (asking for five outputs
instead of one). We showcase it in Listing 10.

However, as shown in Table 8, the results with
this prompting method always lag behind those
obtained with our main choice.

Kind of ChatGPT (%) ChatGPT (%)
Ambiguity | (Our Prompt) | (Liu et al., 2023)
C 22.7 11.2
T 37.3 15.5
J 15.6 0.0
P 8.9 6.9

Table 8: The results of ChatGPT with the prompt of
(Liu et al., 2023) lags behind those obtained with our
prompt. The better numbers are bolded.

Therefore, we decided to stick with our choice
for the comparison in Subsection 6.3.
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Example Template Outputs with Beam Search

Nk W=

SELECT column, AVG(column) FROM table GROUP BY column ORDER BY column
SELECT column, AVG(column) FROM table GROUP BY column ORDER BY column ASC
SELECT column, AVG(column) FROM table GROUP BY column ORDER BY column DESC
SELECT AVG(column), column FROM table GROUP BY column ORDER BY column
SELECT column, AVG(column) FROM table ORDER BY column

Figure 6: Vanilla Beam Search is inadequate to elicit meaningful template diversity. In particular, diversity in the

number of JOINs or selections is lacking.

C Exact Set Match Accuracies for the
System Comparison and Ablation
Study

Here we report the Exact Match (EM) accuracies
of our System Comparison and Ablation Study for
both the EitherInTopK and BothInTopK modes of
evaluation.

The System Comparison on AmbiQT in terms of
EM, and of the various decoding algorithms, when
applied to T5-3B, are shown in Table 6. We observe
that Exact Set Match (EM) follows the same trend
as Execution Match (EXM) under both headings,
once again demonstrating the superior coverage of
LogicalBeam.

The results of our Ablation Study, in turn, are
shown in Table 7. The trend of EM also matches
that of EXM here.

D Inadequacy of Conventional Decoding
Algorithms

In this section, we give some anecdotes to highlight
the shortcomings of conventional decoding algo-
rithms for our purposes. The example for the case
of Beam Search when used with a Text-to-SQL
model was given in the main material as Figure 2.
We also give here an anecdote of Nucleus Sam-
pling in Figure 5. Strikingly, all the outputs of
Nucleus Sampling are the same. This was the case
for many of the examples we manually appraised.
Upon further investigation, we discovered that the
model produced extremely skewed probability dis-
tributions for its tokens — it was not uncommon
for certain tokens to be assigned greater than 0.99
probability. This renders conventional decoding
algorithms, including sampling-based methods, in-
effective. Similarly, we found Beam Search (as
well as sampling approaches) to be suboptimal for
the case of Text-to-Template conversion, as Fig-
ure 6 exemplifies.

E Examples of Templates

A template is generated by abstracting away col-
umn names, table names, integer constants, and
string literals from an SQL query. While these
are only a small fraction of the various features
of the SQL query, they represent a disproportion-
ately large percentage of viable alternatives - for
instance, a column name may be replaced by any
of the numerous other ones to generate an (oth-
erwise useless) alternative. By abstracting away
these details, we avoid generating spurious alterna-
tives by swapping these features with other ones
at the template generation stage. In addition, by
generating, e.g., column instead of t1.column for
t1.name, we avoid trivial alias swaps. Some exam-
ples of templates for a few SQL queries are shown
in Table 9, and the replacements carried out for
each kind of abstraction are outlined in Table 10.

SQL Query | Template

SELECT column FROM

SELECT name FROM singer table

SELECT t1.born_state,
AVG(t2.age) FROM head
AS t1 JOIN employee
AS t2 ON t1.emp_id

= t2.emp_id

SELECT column, AVG(
column) FROM table AS
t1 JOIN table AS t2
ON column = column

SELECT column FROM
table WHERE column >
number AND column =
string

SELECT last_name FROM
head WHERE age > 56
AND first_name = “John”

Table 9: Examples of templates.

Token type | Example | Abstraction
Column name | t1.name, age | column
Table name singer table
Number 2,3.5 number
String “California” string

Table 10: The abstractions in a template.

7069



F Example Outputs From the Systems

We showcase example outputs from three chosen
systems - our method, ChatGPT, and T5-3B on
the various kinds of ambiguities of AmbiQTin Fig-
ures 7 through 10. Note that the first two outputs
of our approach are from T5-3B. We observe that
our approach is more consistent than the other two
in incorporating all the possible queries.
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(C)olumn Synonyms

Question

What are the names of documents that use templates with the code BK?

Gold Queries

1. SELECT t2.file_name FROM templates AS t1 JOIN documents AS t2 ON tl.template_id = t2.template_id
WHERE tl.template_type_code = “BK”

2. SELECT t2.record_name FROM templates AS t1 JOIN documents AS t2 ON tl.template_id = t2.template_id
WHERE tl.template_type_code = “BK”

LogicalBeam

1. SELECT tl.file_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK”

2. SELECT tl.file_name, tl.document_description FROM documents AS t1 JOIN templates AS t2 ON
tl.template_id = t2.template_id WHERE t2.template_type_code = “BK”

3. SELECT tl.record_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK”

4. SELECT tl.file_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK” UNION SELECT tl.file_name FROM documents AS t1 JOIN templates
AS 2 ON tl.template_id = t2.template_id WHERE t2.template_type_code = “BK”

5. SELECT tl.file_name FROM documents AS t1 JOIN documents AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK”

ChatGPT

1. SELECT tl.record_name FROM templates AS t1 JOIN ref_template_types AS t2 ON tl.template_type_code
= t2.template_type_code JOIN documents AS t3 ON tl.template_id = t3.template_id WHERE
t2.template_type_code = ‘BK’

2. SELECT t3.record_name FROM documents AS t3 JOIN templates AS t2 ON t3.template_id =
t2.template_id JOIN ref_template_types AS t1 ON tl.template_type_code = t2.template_type_code WHERE
tl.template_type_code = ‘BK’

3. SELECT tl.record_name FROM templates AS t1 JOIN documents AS t2 ON tl.template_id =
t2.template_id JOIN ref_template_types AS t3 ON tl.template_type_code = t3.template_type_code WHERE
t3.template_type_code = ‘BK’

4. SELECT t3.record_name FROM documents AS t3 JOIN templates AS t2 ON t3.template_id = t2.template_id
WHERE t2.template_type_code = ‘BK’

5. SELECT tl.record_name FROM templates AS t1 JOIN documents AS t2 ON tl.template_id = t2.template_id
WHERE tl.template_type_code = ‘BK’

T5-3B

1. SELECT tl.file_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK”

2. SELECT tl.file_name, tl.document_description FROM documents AS t1 JOIN templates AS t2 ON
tl.template_id = t2.template_id WHERE t2.template_type_code = “BK”

3. SELECT file_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id WHERE
t2.template_type_code = “BK”

4. SELECT tl.file_name, tl.record_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id =
t2.template_id WHERE t2.template_type_code = “BK”

5. SELECT tl.document_name FROM documents AS t1 JOIN templates AS t2 ON tl.template_id = t2.template_id
WHERE t2.template_type_code = “BK”

Figure 7: Example outputs from our system, ChatGPT and T5-3B on the C portion of AmbiQT

7071



(T)able Synonyms

Question

Show the name and the release year of the song by the youngest singer.

Gold Queries

1.
2.

SELECT song_name, song_release_year FROM artist ORDER BY age LIMIT 1
SELECT song_name, song_release_year FROM performer ORDER BY age LIMIT 1

LogicalBeam

1.

SELECT song_name, song_release_year FROM artist ORDER BY age LIMIT 1

2. SELECT t2.song_name, t2.song_release_year FROM artist AS t1 JOIN song_name AS t2 ON tl.song_name =

ok w

t2.song_name ORDER BY tl.age LIMIT 1

SELECT song_name, song_release_year FROM performer ORDER BY age LIMIT 1
SELECT song_name, song_release_year FROM performer ORDER BY age asc LIMIT 1
SELECT song_name, song_release_year FROM concert ORDER BY age LIMIT 1

ChatGPT

w

. SELECT name, song_release_year FROM performer WHERE age = (SELECT MIN(age) FROM performer)

LIMIT 1

SELECT name, song_release_year FROM artist WHERE age = (SELECT MIN(age) FROM artist) LIMIT 1
SELECT tl.name, tl.song_release_year FROM performer AS t1 JOIN singer_in_concert AS t2 ON tl.singer_id
= t2.singer_id WHERE tl.age = (SELECT MIN(age) FROM performer) LIMIT 1

SELECT tl.name, tl.song_release_year FROM artist AS t1 JOIN singer_in_concert AS t2 ON tl.singer_id =
t2.singer_id WHERE tl.age = (SELECT MIN(age) FROM artist) LIMIT 1

. SELECT tl.name, tl.song_release_year FROM performer AS t1 JOIN singer_in_concert AS t2 ON tl.singer_id

= t2.singer_id WHERE tl.age = (SELECT MIN(age) FROM (SELECT * FROM performer UNION SELECT *
FROM artist)) LIMIT 1

T5-3B

—_

SELECT song_name, song_release_year FROM artist ORDER BY age LIMIT 1

2. SELECT t2.song_name, t2.song_release_year FROM artist AS t1 JOIN song_name AS t2 ON tl.song_name =

ook

t2.song_name ORDER BY tl.age LIMIT 1

. SELECT t2.song_name, t2.song_release_year FROM artist AS t1 JOIN song_name AS t2 ON tl.song_name =

t2.song_name WHERE tl.age = (SELECT MIN(age) FROM artist)

SELECT song_name, song_release_year FROM artist ORDER BY age asc LIMIT 1

SELECT t2.song_name, t2.song_release_year FROM artist AS t1 JOIN performer AS t2 ON tl.singer_id =
t2.singer_id ORDER BY tl.age LIMIT 1

Figure 8: Example outputs from our system, ChatGPT and T5-3B on the T portion of AmbiQT
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(J)oin Ambiguity

Question

Return the name, location, and district of all shops in descending order of number of products.

Gold Queries

1.
2.

SELECT name, location, district FROM shop ORDER BY number_products DESC
SELECT tl.name, t1.location, t2.district FROM shop AS t1 JOIN shop_district AS t2 ON tl.shop_id = t2.shop_id
ORDER BY tl.number_products DESC

LogicalBeam

Nk w -

SELECT name, location, district FROM shop ORDER BY number_products DESC

SELECT name, location and district FROM shop ORDER BY number_products DESC

SELECT name, district, location FROM shop ORDER BY number_products DESC

SELECT name, district FROM shop ORDER BY number_products DESC

SELECT tl.name, tl.location, t2.district FROM shop AS t1 JOIN shop_district AS t2 ON tl.shop_id = t2.shop_id
ORDER BY tl.number_products DESC

ChatGPT

. SELECT name, location, district FROM shop JOIN shop_district ON shop.shop_id = shop_district.shop_id

ORDER BY number_products DESC

SELECT name, location, district FROM shop_district JOIN shop ON shop.shop_id = shop_district.shop_id
ORDER BY number_products DESC

SELECT s.name, s.location, sd.district FROM shop AS s JOIN shop_district AS sd ON s.shop_id = sd.shop_id
JOIN shop AS s2 ON s2.shop_id = sd.shop_id GROUP BY s.name, sd.district, s.location ORDER BY
sum(s2.number_products) DESC

SELECT s.name, s.location, sd.district FROM shop_district AS sd JOIN shop AS s ON s.shop_id = sd.shop_id
JOIN shop AS s2 ON s2.shop_id = sd.shop_id GROUP BY s.name, sd.district, s.location ORDER BY
sum(s2.number_products) DESC

SELECT name, location, district FROM shop_district JOIN shop ON shop.shop_id = shop_district.shop_id
ORDER BY (SELECT count(*) FROM employee WHERE employee.city = shop.location) DESC

TS-3B

Nk W=

SELECT name, location, district FROM shop ORDER BY number_products DESC
SELECT name, location and district FROM shop ORDER BY number_products DESC
SELECT name, location, district FROM shop ORDER BY number_products DESC
SELECT name, location, district form shop ORDER BY number_products DESC
SELECT name, location, district of shop ORDER BY number_products DESC

Figure 9: Example outputs from our system, ChatGPT and T5-3B on the J portion of AmbiQT
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(P)re-Computed Aggregates

Question

What is the average and the maximum capacity of all stadiums?

Gold Queries

1.
2.

SELECT AVG(capacity), MAX(capacity) FROM stadium
SELECT avg_capacity, max_capacity FROM stadium_capacity

LogicalBeam

1.
2.

SELECT avg_capacity, max_capacity FROM stadium_capacity
SELECT avg_capacity (SELECT AVG(capacity) FROM stadium_capacity) and max_capacity (SELECT
MAX(capacity) FROM stadium)

3. SELECT AVG(capacity), MAX(capacity) FROM stadium
4.
5. SELECT AVG(capacity), MAX(capacity), stadium_id FROM stadium_capacity

SELECT AVG(capacity), MAX(max_capacity) FROM stadium_capacity

ChatGPT

L=

SELECT AVG(capacity), MAX(capacity) FROM stadium

SELECT AVG(tl.capacity), MAX(tl.capacity) FROM stadium AS tl1

SELECT AVG(tl.capacity), t1.max_capacity FROM stadium_capacity AS t1

SELECT AVG(tl.capacity), MAX(t2.capacity) FROM stadium AS t1 JOIN stadium AS t2 on tl.capacity <=
t2.capacity group by tl.capacity

SELECT AVG(t2.capacity), MAX(t2.capacity) FROM concert AS t1 JOIN stadium AS t2 on tl.stadium_id =
t2.stadium_id

T5-3B

—_

SELECT avg_capacity, max_capacity FROM stadium_capacity

SELECT avg_capacity (SELECT AVG(capacity) FROM stadium_capacity) and max_capacity (SELECT
MAX(capacity) FROM stadium)

SELECT avg_capacity (SELECT AVG(capacity) FROM stadium_capacity) and max_capacity (SELECT
max_capacity FROM stadium_capacity) FROM stadium

SELECT AVG(capacity), MAX(capacity) FROM stadium_capacity

SELECT avg_capacity (SELECT AVG(capacity) FROM stadium_capacity) and max_capacity (SELECT
MAX(capacity) FROM stadium_capacity)

Figure 10: Example outputs from our system, ChatGPT and T5-3B on the P portion of AmbiQT
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