
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7035–7052
December 6-10, 2023 ©2023 Association for Computational Linguistics

A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis

Alessandro Stolfo
ETH Zürich

stolfoa@ethz.ch

Yonatan Belinkov
Technion – IIT, Israel

belinkov@technion.ac.il

Mrinmaya Sachan
ETH Zürich

msachan@ethz.ch

Abstract

Mathematical reasoning in large language mod-
els (LMs) has garnered significant attention
in recent work, but there is a limited under-
standing of how these models process and store
information related to arithmetic tasks within
their architecture. In order to improve our un-
derstanding of this aspect of language mod-
els, we present a mechanistic interpretation
of Transformer-based LMs on arithmetic ques-
tions using a causal mediation analysis frame-
work. By intervening on the activations of spe-
cific model components and measuring the re-
sulting changes in predicted probabilities, we
identify the subset of parameters responsible
for specific predictions. This provides insights
into how information related to arithmetic is
processed by LMs. Our experimental results
indicate that LMs process the input by trans-
mitting the information relevant to the query
from mid-sequence early layers to the final to-
ken using the attention mechanism. Then, this
information is processed by a set of MLP mod-
ules, which generate result-related information
that is incorporated into the residual stream. To
assess the specificity of the observed activation
dynamics, we compare the effects of different
model components on arithmetic queries with
other tasks, including number retrieval from
prompts and factual knowledge questions.1

1 Introduction

Mathematical reasoning with Transformer-based
models (Vaswani et al., 2017) is challenging as
it requires an understanding of the quantities and
the mathematical concepts involved. While large
language models (LMs) have recently achieved
impressive performance on a set of math-based
tasks (Wei et al., 2022a; Chowdhery et al., 2022;
OpenAI, 2023), their behavior has been shown
to be inconsistent and context-dependent (Bubeck
et al., 2023). Recent literature shows a multitude

1Our code and data is available at https://github.com/
alestolfo/lm-arithmetic.

What is 15 times 12 ?

180MLP ModuleAttention

A: Operands &
Operator

Processing

B: Information Transfer

C: Result

Generation

Figure 1: Visualization of our findings. We trace
the flow of numerical information within Transformer-
based LMs: given an input query, the model processes
the representations of numbers and operators with early
layers (A). Then, the relevant information is conveyed
by the attention mechanism to the end of the input se-
quence (B). Here, it is processed by late MLP modules,
which output result-related information into the residual
stream (C).

of works proposing methods to improve the perfor-
mance of large LMs on math benchmark datasets
through enhanced pre-training (Spokoyny et al.,
2022; Lewkowycz et al., 2022; Liu and Low, 2023)
or specific prompting techniques (Wei et al., 2022b;
Kojima et al., 2022; Yang et al., 2023, inter alia).
However, there is a limited understanding of the
inner workings of these models and how they store
and process information to correctly perform math-
based tasks. Insights into the mechanics behind
LMs’ reasoning are key to improvements such as
inference-time correction of the model’s behavior
(Li et al., 2023) and safer deployment. Therefore,
research in this direction is critical for the develop-
ment of more faithful and accurate next-generation
LM-based reasoning systems.

In this paper, we present a set of analyses aimed

7035

https://github.com/alestolfo/lm-arithmetic
https://github.com/alestolfo/lm-arithmetic

at mechanistically interpreting LMs on the task of
answering simple arithmetic questions (e.g., “What
is the product of 11 and 17?”). In particular, we
hypothesize that the computations involved in rea-
soning about such arithmetic problems are carried
out by a specific subset of the network. Then, we
test this hypothesis by adopting a causal mediation
analysis framework (Vig et al., 2020; Meng et al.,
2022), where the model is seen as a causal graph
going from inputs to outputs, and the model compo-
nents (e.g., neurons or layers) are seen as mediators
(Pearl, 2001). Within this framework, we assess
the impact of a mediator on the observed output
behavior by conducting controlled interventions on
the activations of specific subsets of the model and
examining the resulting changes in the probabilities
assigned to different numerical predictions.

Through this experimental procedure, we track
the flow of information within the model and iden-
tify the model components that encode information
about the result of arithmetic queries. Our findings
show that the model processes the input by convey-
ing information about the operator and the operands
from mid-sequence early layers to the final token
using attention. At this location, the information is
processed by a set of MLP modules, which output
result-related information into the residual stream
(shown in Figure 1). We verify this finding for bi-
and tri-variate arithmetic queries across four pre-
trained language models with different sizes: 2.8B,
6B, and 7B parameters. Finally, we compare the
effect of different model components on answer-
ing arithmetic questions to two additional tasks:
a synthetic task that involves retrieving a number
from the prompt and answering questions related
to factual knowledge. This comparison validates
the specificity of the activation dynamics observed
on arithmetic queries.

2 Related Work

Mechanistic Interpretability. The objective of
mechanistic interpretability is to reverse engineer
model computation into components, aiming to
discover, comprehend, and validate the algorithms
(called circuits in certain works) implemented by
the model weights (Räuker et al., 2023). Early
work in this area analyzed the activation values of
single neurons when generating text using LSTMs
(Karpathy et al., 2015). A multitude of studies
have later focused on interpreting weights and inter-
mediate representations in neural networks (Olah

et al., 2017, 2018, 2020; Voss et al., 2021; Goh
et al., 2021) and on how information is processed
by Transformer-based (Vaswani et al., 2017) lan-
guage models (Geva et al., 2021, 2022, 2023; Ols-
son et al., 2022; Nanda et al., 2023). Although
not strictly mechanistic, other recent studies have
analyzed the hidden representations and behavior
of inner components of large LMs (Belrose et al.,
2023; Gurnee et al., 2023; Bills et al., 2023).

Causality-based Interpretability. Causal medi-
ation analysis is an important tool that is used to ef-
fectively attribute the causal effect of mediators on
an outcome variable (Pearl, 2001). This paradigm
was applied to investigate LMs by Vig et al. (2020),
who proposed a framework based on causal medi-
ation analysis to investigate gender bias. Variants
of this approach were later applied to mechanis-
tically interpret the inner workings of pre-trained
LMs on other tasks such as subject-verb agreement
(Finlayson et al., 2021), natural language inference
(Geiger et al., 2021), indirect object identification
(Wang et al., 2022), and to study their retention of
factual knowledge (Meng et al., 2022).

Math and Arithmetic Reasoning. A growing
body of work has proposed methods to analyze the
performance and robustness of large LMs on tasks
involving mathematical reasoning (Pal and Baral,
2021; Piękos et al., 2021; Razeghi et al., 2022;
Cobbe et al., 2021; Mishra et al., 2022). In this
area, Stolfo et al. (2023) use a causally-grounded
approach to quantify the robustness of large LMs.
However, the proposed formulation is limited to
behavioral investigation with no insights into the
models’ inner mechanisms. To the best of our
knowledge, our study represents the first attempt
to connect the area of mechanistic interpretability
to the investigation of the mathematical reasoning
abilities in Transformer-based LMs.

3 Methodology

3.1 Background and Task

We denote an autoregressive language model as G :
X → P . The model operates over a vocabulary V
and takes a token sequence x = [x1, ..., xT] ∈ X ,
where each xi ∈ V . G generates a probability dis-
tribution P ∈ P : R|V | → [0, 1] that predicts possi-
ble next tokens following the sequence x. In this
work, we study decoder-only Transformer-based
models (Vaswani et al., 2017). Specifically, we
focus on models that represent a slight variation of

7036

the standard GPT paradigm, as they utilize parallel
attention (Wang and Komatsuzaki, 2021) and rotary
positional encodings (Su et al., 2022). The internal
computation of the model’s hidden states h

(l)
t at

position t ∈ {1, . . . , T} of the input sequence is
carried out as follows:

h
(l)
t = h

(l−1)
t + a

(l)
t +m

(l)
t (1)

a
(l)
t = A(l)

(
h
(l−1)
1 , . . . , h

(l−1)
t

)

m
(l)
t = W

(l)
proj σ

(
W

(l)
fc h

(l−1)
t

)

=: MLP(l)(h
(l−1)
t),

where at layer l, σ is the sigmoid nonlinearity,
W

(l)
fc and W

(l)
proj are two matrices that parameter-

ize the multilayer perceptron (MLP) of the Trans-
former block and A(l) is the attention mechanism.2

We consider the task of computing the result
of arithmetic operations. Each arithmetic query
consists of a list of operands N = (n1, n2, . . .) and
a function fO representing the application of a set
of arithmetic operators (+,−,×,÷). We denote
as r = fO(N) the result obtained by applying the
operators to the operands. Each query is rendered
as a natural language question through a prompt
p(N, fO) ∈ X such as “How much is n1 plus n2?”
(in this case, fO(n1, n2) = n1 + n2). The prompt
is then fed to the language model to produce a
probability distribution P over V . Our aim is to
investigate whether certain hidden state variables
are more important than others during the process
of computing the result r.

3.2 Experimental Procedure

We see the model G as a causal graph (Pearl, 2009),
framing internal model components, such as spe-
cific neurons, as mediators positioned along the
causal path connecting model inputs and outputs.
Following a causal mediation analysis procedure,
we then quantify the contribution of particular
model components by intervening on their acti-
vation values and measuring the change in the
model’s output. Previous work has isolated the
effect of every single neuron within a model (Vig
et al., 2020; Finlayson et al., 2021). However, this
approach becomes impractical for models with bil-
lions of parameters. Therefore, for our main exper-
iments, the elements that we consider as variables
along the causal path described by the model are

2For brevity, layer normalization (Ba et al., 2016) is omit-
ted as it is not essential for our analysis.

What is 23 plus 98?p2 =

…

What is 189 plus 42?p1 =

…

Set Value of
Activations

Model Prediction:

231

Clean Run

Prediction: 121

Post-Intervention

Prediction: 231

After Intervention

MLP MLP

MLP

MLP

MLP

MLP

A

A

A

A

A

A

Figure 2: By intervening on the activation values of
specific components within a language model and com-
puting the corresponding effects, we identify the subset
of parameters responsible for specific predictions.

the outputs of the MLP(l) and A(l) functions at
each token t, i.e., m(l)

t and a
(l)
t .

To quantify the importance of modules MLP(l)

and A(l) in mediating the model’s predictions at
position t, we use the following procedure.

1. Given fO, we sample two sets of operands
N , N ′, and we obtain r = fO(N) and r′ =
fO(N

′). Then, two input questions with only
the operands differing, p1 = p(N, fO) and
p2 = p(N ′, fO), are passed through the model.

2. During the forward pass with input p1, we store
the activation values m̄

(l)
t := MLP(l)(h

(l−1)
t),

and ā
(l)
t := A(l)(h

(l−1)
1 , . . . , h

(l−1)
t) .

3. We perform an additional forward pass using
p2, but this time we intervene on components
MLP(l) and A(l) at position t, setting their ac-
tivation values to m̄

(l)
t , and ā

(l)
t , respectively.

This process is illustrated in Figure 2.

4. We measure the causal effect of the intervention
on variables m(l)

t and a
(l)
t on the model’s predic-

tion by computing the change in the probability
values assigned to the results r and r′.

7037

More specifically, we compute the indirect ef-
fect (IE) of a specific mediating component by
quantifying its contribution in skewing P towards
the correct result. Consider a generic activation
variable z ∈ {m(1)

1 , . . . ,m
(L)
t , a

(1)
1 , . . . , a

(L)
t }. We

denote the model’s output probability following an
intervention on z as P∗

z . Then, we compute the IE
as:

IE(z) =
1

2

[
P∗
z(r)− P(r)

P(r)
+

P(r′)− P∗
z(r

′)
P∗
z(r

′)

]
(2)

where the two terms in the sum represent the rela-
tive change in the probability assigned by the model
to r and r′, caused by the intervention performed.
The larger the measured IE, the larger the contri-
bution of component z in shifting probability mass
from the clean-run result r′ to result r correspond-
ing to the alternative input p1.3

We additionally measure the mediation effect
of each component with respect to the operation
fO. We achieve this by fixing the operands and
changing the operator across the two input prompts.
More formally, in step 1, we sample a list of
operands N and two operators fO and f ′

O. Then,
we generate two prompts p1 = p(N, fO) and
p2 = p(N, f ′

O) (e.g., “What is the sum of 11 and 7?”
and “What is the product of 11 and 7?”). Finally,
we carry out the procedure in steps 2–4.

3.3 Experimental Setup
We present the results of our analyses in the main
paper for GPT-J (Wang and Komatsuzaki, 2021),
a 6B-parameter pre-trained LM (Gao et al., 2020).
Additionally, we validate our findings on Pythia
2.8B (Biderman et al., 2023), LLaMA 7B (Touvron
et al., 2023), and Goat, a version of LLaMA fine-
tuned on arithmetic tasks (Liu and Low, 2023).
We report the detailed results for these models in
Appendix J.

In our experiments, we focus on two- and three-
operand arithmetic problems. Similar to previous
work (Razeghi et al., 2022; Karpas et al., 2022),
for single-operator two-operand queries, we use
a set of six diverse templates representing a ques-
tion involving each of the four arithmetic operators.
For the three-operand queries, we use one template
for each of the 29 possible two-operator combina-
tions. Details about the templates are reported in

3As an alternative metric to quantify the IE, we experiment
using the difference in log probabilities (Appendix I). The
results obtained with the two metrics show consistency and
lead to the same conclusions.

Appendix A. In the bi-variate case, for each of the
four operators fO ∈ {+,−,×,÷} and for each of
the templates, we generate 50 pairs of prompts by
sampling two pairs of operands (n1, n2) ∈ S2 and
(n′

1, n
′
2) ∈ S2, where S ⊂ V ∩N. For the operand-

related experiment, we sample (n1, n2) and a sec-
ond operation f ′

O. In both cases, we ensure that the
result r falls within S.4 In the three-operand case,
we generate 15 pairs of prompts for each of the 29
templates, following the same procedure. In order
to ensure that the model achieves a meaningful task
performance, we use a two-shot prompt in which
we include two exemplars of question-answer for
the same operation that is being queried. We report
the accuracy results in Appendix B.

4 Causal Effects on Arithmetic Queries

Our analyses address the following question:

Q1 What are the components of the model that
mediate predictions involving arithmetic com-
putations?

We address this question by first studying the flow
of information throughout the model by measur-
ing the effect of each component (MLP and atten-
tion block) at each point of the input sequence for
two-operand queries (§4.1). Then, we distinguish
between model components that carry information
about the result and about the operands of the arith-
metic computations (§4.2 and §4.3). Finally, we
consider queries involving three operands (§4.4)
and present a measure to quantify the changes in
information flow (§4.5).

4.1 Tracing the Information Flow

We measure the indirect effect of each MLP and
attention block at different positions along the in-
put sequence. The output of these modules can be
seen as new information being incorporated into
the residual stream. This new information can be
produced at any point of the sequence and then con-
veyed to the end of the sequence for the prediction
of the next token. By studying the IE at different
locations within the model, we can identify the
modules that generate new information relevant to
the model’s prediction. The results are reported in
Figures 3a and 3b for MLP and attention, respec-
tively.

4Unless otherwise specified, we use S = {1, 2, . . . , 300},
as larger integers get split into multiple tokens by the tokenizer.

7038

(e)

(f)

(g)

(h)

(a) (b)

(c) (d)

Figure 3: Indirect effect (IE) measured within GPT-J. Figures (a) and (b) illustrate the flow of information related to
both the operands and the result of the queries, while the effect displayed in Figures (c) and (d) is related to the
operands only (the result is kept unchanged). Figures (e–h) show a re-scaled visualization of the effects at the last
token for each of the four heatmaps (a–d). The difference in the effect registered for the MLPs at layers 15–25
between figures (a) and (c) illustrates the role of these components in producing result-related information.

Our analysis reveals four primary activation sites:
the MLP module situated at the first layer corre-
sponding to the tokens of the two operands; the
intermediate attention blocks at the last token of
the sequence; and the MLP modules in the middle-
to-late layers, also located at the last token of the
sequence. It is expected to observe a high effect
for the first MLPs associated with the tokens that
vary (i.e., the operands), as such modules are likely
to affect the representation of the tokens, which
is subsequently used for the next token prediction.
On the other hand, of particular interest is the high
effect detected at the attention modules in layers
11–18 and in the MLPs around layer 20.

As for the flow of information tied to the opera-
tor, the activations display a parallel pattern: high
effect is registered at early MLPs associated with
the operator tokens and at the same last-token MLP
and attention locations. We report the visualization
of the operator-related results in Appendix C.

A possible explanation of the model’s behavior
on this task is that the attention mechanism facil-
itates the propagation of operand- and operator-
related information from the first layers early in
the sequence to the last token. Here, this infor-
mation is processed by the MLP modules, which
incorporate the information about the result of the
computation in the residual stream. This hypoth-
esis aligns with the existing theory that attributes
the responsibility of moving and extracting infor-

mation within Transformer-based models to the
attention mechanism (Elhage et al., 2021; Geva
et al., 2023), while the feed-forward layers are as-
sociated with performing computations, retrieving
facts and information (Geva et al., 2022; Din et al.,
2023; Meng et al., 2022). We test the validity of
this hypothesis in the following section.

4.2 Operand- and Result-related Effects

Our objective is to verify whether the contribu-
tion to the model’s prediction of each component
measured in Figures 3a and 3b is due to (1) the
component representing information related to the
operands, or (2) the component encoding informa-
tion about the result of the computation. To this
end, we formulate a variant of our previous experi-
mental procedure. In particular, we condition the
sampling of the second pair of operands (n′

1, n
′
2)

on the constraint r = r′. That is, we generate the
two input questions p1 and p2, such that their re-
sult is the same (e.g., “What is the sum of 25 and
7?” and “What is the sum of 14 and 18?”). In
case number (1), we would expect a component to
have high IE both in the result-varying setting and
when r = r′, as the operands are modified in both
scenarios. In case (2), we expect a subset of the
model to have a large effect when the operands are
sampled without constraints but a low effect for the
fixed-result setting.

We report the results in Figure 3c and 3d. By

7039

comparing Figures 3a and 3c, two notable obser-
vations emerge. First, the high effect in the early
layers corresponding to the operand tokens is ob-
served in both the result-preserving and the result-
varying scenarios. Second, the last-token mid-late
MLPs that lead to a high effect on the model’s
prediction following a result change, dramatically
decrease their effect on the model’s output in the
result-preserving setting, as described in scenario
(2). These observations point to the conclusion that
the MLP blocks around layer 20 incorporate result-
relevant information. As for the contribution of the
attention mechanism (Figures 3b and 3d), we do
not observe a substantial difference in the layers
with the highest IE between the two settings, which
aligns this scenario to the description of case (1).
These results are consistent with our hypothesis
that operand-related information is transferred by
the attention mechanism to the end of the sequence
and then processed by the MLPs to obtain the result
of the computation.

4.3 Zooming in on the Last Token
In Figures 3e–3h, we show a re-scaled version of
the IE measurements for the layers at the end of
the input sequence. While the large difference in
magnitude was already evident in the previously
considered visualizations, in Figures 3e and 3f we
notice that the MLPs with the highest effect in
the two settings differ: the main contribution to
the model’s output when the results are not fixed
is given by layers 19 and 20, while in the result-
preserving setting the effect is largest at layers 14-
18. For the attention (Figures 3g and 3h), we do
not observe a significant change in the shape of
the curve describing the IE across different layers,
with layer 13 producing the largest contribution.
We interpret this as additional evidence indicating
that the last-token MLPs at layers 19-20 encode
information about r, while the attention modules
carry information related to the operands.

4.4 Three-operand Queries & Fine-tuning
We extend our analyses by including three-operand
arithmetic queries such as “What is the difference
between n1 and the ratio between n2 and n3?”. An-
swering correctly this type of questions represents
a challenging task for pre-trained language models,
and we observe poor accuracy (below 10%) with
GPT-J. Thus, we opt for fine-tuning the model on
a small set of three-operand queries. The model
that we consider for this analysis is Pythia 2.8B,

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE of the MLPs in Pythia 2.8B

10 1

102

105

108

1011

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE of the MLPs in Pythia 2.8B (FT)

10 1

102

105

108

1011

Figure 4: Indirect effect (IE) on three-operand queries
for different MLP modules in Pythia 2.8B before and
after fine-tuning. The effect produced by the last-token
mid-late MLP activation site emerges with fine-tuning.
Results for the attention are reported in Appendix J.

as its smaller size allows for less computationally
demanding training than the 6B-parameter GPT-J.
After fine-tuning, the model attains an accuracy of
∼40%. We provide the details about the training
procedure in Appendix F.

We carry out the experimental procedure as in
Section 4.1. In particular, we compare the informa-
tion flow in the MLPs of the model before and after
fine-tuning (Figure 4). In the non-fine-tuned ver-
sion of the model, the only relevant activation site,
besides the early layers at the operand tokens, is the
very last layer at the last token. In the fine-tuned
model, on the other hand, we notice the emergence
of the mid-late MLP activation site that was previ-
ously observed in the two-operand setting.

4.5 Quantifying the Change of the
Information Flow

Denote the set of MLPs in the model by M. We
define the relative importance (RI) of a specific
subset M∗ ⊆ M of MLP modules as

RI(M∗) =

∑
m∈M∗ log(IE(m) + 1)∑
m∈M log(IE(m) + 1)

. (3)

In order to quantitatively show the difference in the
activation sites observed in Figure 3, we compute
the RI measure for the set

Mlate
−1 = {m(⌊L/2⌋)

−1 ,m
(⌊L/2⌋+1)
−1 , . . . ,m

(L)
−1 },

7040

|N | Model RI(Mlate
−1)

RI(Mlate
−1)

Result Fixed

2

GPT-J 40.2% 4.4%
Pythia 2.8B 43.2% 5.8%
LLaMA 7B 36.1% 7.5%
Goat 33.5% 7.4%
GPT-J (Words) 27.8% 4.5%

3 Pythia 2.8B 13.5% 6.7%
Pythia 2.8B (FT) 24.7% 13.6%

Table 1: Relative importance (RI) measurements for
the last-token late MLP activation site. The decrease
in the RI observed when fixing the result of the two
pairs of operands used for the interventions quantita-
tively confirms the role of this subset of the model in
incorporating result-related information.

where the subscript −1 indicates the last token of
the input sequence and L is the number of layers
in the model. This quantity represents the rela-
tive contribution of the mid-late last-token MLPs
compared to all the MLP blocks in the model.

For the two-operand setting, we carry out the
experimental procedure described in Section 3 for
three additional models: Pythia 2.8B, LLaMA 7B,
and Goat.5 Furthermore, we repeat the analyses
on GPT-J using a different number representation:
instead of Arabic numbers (e.g., the token 2), we
represent quantities using numeral words (e.g., the
token two). For the three-operand setting, we re-
port the results for Pythia 2.8B before and after
fine-tuning. We measure the effects using both
randomly sampled and result-preserving operand
pairs, comparing the RI measure in the two settings.
The results (Table 1) exhibit consistency across all
these four additional experiments. These quantita-
tive measurements further highlight the influence
of last-token late MLP modules on the prediction
of r. We provide in Appendix J the heatmap illus-
trations of the effects for these additional studies.

5 Causal Effects on Different Tasks

In order to understand whether the patterns in the
effect of the model components that we observed
so far are specific to arithmetic queries, we com-
pare our observations on arithmetic queries to two
different tasks: the retrieval of a number from the
prompt (§5.1), and the prediction of factual knowl-

5The LLaMA tokenizer considers each digit as an inde-
pendent token in the vocabulary. This makes it problematic
to compare the probability value assigned by the model to
multi-digit numbers. Therefore, we restrict the set of possible
results to the set of single-digit numbers.

0 5 10 15 20 25
Layer

Early
eq 1st Tok

eq Mid Toks
eq Last Tok

Late
Last

IE of the MLP Modules (Number Retrieval)

10 1

100

101

Figure 5: Indirect effect measured on the MLPs of GPT-
J for predictions on the number retrieval task.

edge (§5.2). With this additional set of experiments,
we aim to answer the question:

Q2 Are the activation patterns observed so far spe-
cific to the arithmetic setting?

5.1 Information Flow on Number Retrieval

We consider a simple synthetic task involving nu-
merical predictions. We construct a set of templates
of the form “Paul has n1 e1 and n2 e2. How many
eq does Paul have?”, where n1, n2 are two ran-
domly sampled numbers, e1 and e2 are two entity
names sampled at random,6 and eq ∈ {e1, e2}. In
this case, the two input prompts p1 and p2 differ
solely in the value of eq. To provide the correct
answer to a query, the model has simply to retrieve
the correct number from the prompt. With this task,
we aim to analyze the model’s behavior in a setting
involving numerical predictions but not requiring
any kind of arithmetic computation.

We report the indirect effect measured for the
MLPs modules of GPT-J in Figure 5. In this setting,
we observe an unsurprising high-effect activation
site corresponding to the tokens of the entity eq
and a lower-effect site at the end of the input in
layers 14–20. The latter site appears in the set of
the model components that were shown to be ac-
tive on arithmetic queries. However, computing
the relative importance of the late MLPs on this
task shows that this second activation site is respon-
sible for only RI(Mlate

−1) = 8.7% of the overall
log IE. The low RI, compared to the higher values
measured on arithmetic queries, suggests that the
function of the last-token late MLPs is not dictated
by the numerical type of prediction, but rather by
their involvement in processing the input informa-
tion. This finding is aligned with our theory that

6We sample entities from a list containing names of ani-
mals, fruits, office tools, and other everyday items and objects.

7041

0 5 10 15 20 25
Layer

Early
Subj First Tok

Other Subj Toks
Subj Last Tok

Late
Last

IE of the MLP Modules (Factual Q.)

10 1

101

103

105

Figure 6: Indirect effect measured on the MLPs of GPT-
J for predictions to factual queries.

sees Mlate
−1 as the location where information about

r is included in the residual stream.

5.2 Information Flow on Factual Predictions

We carry out our experimental procedure using
data from the LAMA benchmark (Petroni et al.,
2019), which consists of natural language tem-
plates representing knowledge-base relations, such
as “[subject] is the capital of [object]”. By in-
stantiating a template with a specific subject (e.g.,

“Paris”), we prompt the model to predict the cor-
rect object (“France”). Similar to our approach
with arithmetic questions, we create pairs of factual
queries that differ solely in the subject. In partic-
ular, we sample pairs of entities from the set of
entities compatible for a given relation (e.g., cities
for the relation “is the capital of”). Details about
the data used for this procedure are provided in
Appendix H. We then measure the indirect effect
following the formulation in Equation 2, where the
correct object corresponds to the correct numerical
outcome in the arithmetic scenario.

From the results (Figure 6), we notice that a main
activation site emerges in early layers at the tokens
corresponding to the subject of the query. These
findings are consistent with previous works (Meng
et al., 2022; Geva et al., 2023), which hypothe-
size that language models store and retrieve factual
associations in early MLPs located at the subject
tokens. We compute the RI metric for the late MLP
modules, which quantitatively validates the contri-
bution of the early MLP activation site by attaining
a low value of RI(Mlate

−1) = 4.2%. The large IE
observed at mid-sequence early MLPs represents
a difference in the information flow with respect
to the arithmetic scenario, where the modules with
the highest influence on the model’s prediction are
located at the end of the sequence. This differ-
ence serves as additional evidence highlighting the

Ar W NR F

Ar
W

NR
F

100% 50% 23% 10%

50% 100% 22% 9%

23% 22% 100% 9%

10% 9% 9% 100%

25%

50%

75%

100%

Figure 7: Overlap ratio in the top 400 neurons with the
largest effect on predicting answers to factual queries
involving Arabic Numerals (Ar) and numeral words
(W), number retrieval (NR), and factual knowledge (F).
The results are obtained with GPT-J.

specificity of the model’s activation patterns when
answering arithmetic queries.

5.3 Neuron-level Interventions
The experimental results in Sections 5.1 and 5.2
showed a quantitative difference in the contribu-
tions of last-token mid-late MLPs between arith-
metic queries and two tasks that do not involve
arithmetic computation. Now, we investigate
whether the components active within Mlate

−1 on
the different types of tasks are different. We carry
out a finer-grained analysis in which we consider
independently each neuron in an MLP module (i.e.,
each dimension in the output vector of the func-
tion MLP(l)) at a specific layer l. In particular,
following the same procedure as for layer-level ex-
periments, we intervene on each neuron by setting
its activation to the value it would take if the input
query contained different operands (or a different
entity). We then compute the corresponding indi-
rect effect as in Eq. 2. We carry out this procedure
for arithmetic queries using Arabic numerals (Ar)
and numeral words (W), for the number retrieval
task (NR), and for factual knowledge queries (F).7

We rank the neurons according to the average effect
measured for each of these four settings and com-
pute the overlap in the top 400 neurons (roughly
10%, as GPT-J has a hidden dimension of 4096).

We carry out this procedure for layer l = 19, as it
exhibits the largest IE within Mlate

−1 on all the tasks
considered. The heatmap in Figure 7 illustrates
the results. We observe a consistent overlap (50%)
between the top neurons active for the arithmetic
queries using Arabic and word-based representa-

7To have the same result space for all the arithmetic queries
(Ar and NW) and for the number retrieval task, we restrict the
set S to {1, . . . , 20} (or the corresponding numeral words).

7042

tions. Interestingly, the size of the neuron overlap
between arithmetic queries and number retrieval is
considerably lower (22% and 23%), even though
both tasks involve the prediction of numerical quan-
tities. Finally, the overlaps between the top neurons
for the arithmetic operations and the factual pre-
dictions (between 9% and 10%) are not larger than
for random rankings: the expected overlap ratio
between the top 400 indices in two random rank-
ings of size 4096 is 9.8% (Antverg and Belinkov,
2022). These results support the hypothesis that
the model’s circuits responsible for different kinds
of prediction, though possibly relying on similar
subsets of layers, are distinct. However, it is im-
portant to note that this measurement does not take
into account the magnitude of the effect.

6 Conclusion

We proposed the use of causal mediation analy-
sis to mechanistically investigate how LMs pro-
cess information related to arithmetic. Through
controlled interventions on specific subsets of the
model, we assessed the impact of these mediators
on the model’s predictions.

We posited that models produce predictions to
arithmetic queries by conveying the math-relevant
information from the mid-sequence early layers
to the last token, where this information is then
processed by late MLP modules. We carried out a
causality-grounded experimental procedure on four
different Transformer-based LMs, and we provided
empirical evidence supporting our hypothesis. Fur-
thermore, we showed that the information flow we
observed in our experiments is specific to arith-
metic queries, compared to two other tasks that do
not involve arithmetic computation.

Our findings suggest potential avenues for re-
search into model pruning and more targeted
training/fine-tuning by concentrating on specific
model components associated with certain queries
or computations. Moreover, our results offer in-
sights that may guide further studies into using
LMs’ hidden representations to correct the model’s
behavior on math-based tasks at inference time (Li
et al., 2023) and to estimate the probability of the
model’s predictions to be true (Burns et al., 2023).

Limitations

The scope of our work is investigating arithmetic
reasoning and we experiment with the four funda-
mental arithmetic operators. Addition, subtraction,

multiplication, and division form the cornerstone
of arithmetic calculations and serve as the basis
for a wide range of mathematical computations.
Thus, exploring their mechanisms in language mod-
els provides a starting point to explore more com-
plex forms of mathematical processing. Studying
a broader set of mathematical operators represents
an interesting avenue for further investigation.

Our work focuses on synthetically-generated
queries that are derived from natural language de-
scriptions of the four basic arithmetic operators. To
broaden the scope, future research can expand the
analysis of model activations to encompass math-
based queries described in real-life settings, such
as math word problems.

Finally, a limitation of our work concerns the
analysis of different attention heads. In our ex-
periments, we consider the output of an attention
module as a whole. Future research could focus
on identifying the specific heads that are responsi-
ble for forwarding particular types of information
in order to offer a more detailed understanding of
their individual contributions.

Acknowledgments

AS is supported by armasuisse Science and Tech-
nology through a CYD Doctoral Fellowship. YB
is supported by an AI Alignment grant from Open
Philanthropy, the Israel Science Foundation (grant
No. 448/20), and an Azrieli Foundation Early Ca-
reer Faculty Fellowship. MS acknowledges sup-
port from the Swiss National Science Foundation
(Project No. 197155), a Responsible AI grant by
the Haslerstiftung, and an ETH Grant (ETH-19
21-1). We are grateful to Vilém Zouhar and Neel
Nanda for the insightful discussions.

References

Omer Antverg and Yonatan Belinkov. 2022. On the
pitfalls of analyzing individual neurons in language
models. In International Conference on Learning
Representations.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

7043

https://openreview.net/forum?id=8uz0EWPQIMu
https://openreview.net/forum?id=8uz0EWPQIMu
https://openreview.net/forum?id=8uz0EWPQIMu
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2303.08112

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373.

Steven Bills, Nick Cammarata, Dan Moss-
ing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and
William Saunders. 2023. Language mod-
els can explain neurons in language models.
https://openaipublic.blob.core.windows.
net/neuron-explainer/paper/index.html.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2023. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
Cutting transformers with linear transformations.
arXiv preprint arXiv:2303.09435.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long
Papers), pages 1828–1843, Online. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. Advances in Neural Information Processing
Systems, 34:9574–9586.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. arXiv
preprint arXiv:2304.14767.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30–45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan
Carter, Michael Petrov, Ludwig Schubert, Alec Rad-
ford, and Chris Olah. 2021. Multimodal neurons in
artificial neural networks. Distill, 6(3):e30.

Wes Gurnee, Neel Nanda, Matthew Pauly, Kather-
ine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. 2023. Finding neurons in a haystack:
Case studies with sparse probing. arXiv preprint
arXiv:2305.01610.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak
Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit
Bata, Yoav Levine, Kevin Leyton-Brown, et al. 2022.
MRKL systems: A modular, neuro-symbolic archi-
tecture that combines large language models, exter-
nal knowledge sources and discrete reasoning. arXiv
preprint arXiv:2205.00445.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

7044

https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://openai.com/research/language-models-can-explain-neurons-in-language-models
https://openai.com/research/language-models-can-explain-neurons-in-language-models
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://openreview.net/forum?id=ETKGuby0hcs
https://openreview.net/forum?id=ETKGuby0hcs
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2303.09435
https://arxiv.org/abs/2303.09435
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2304.14767
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://distill.pub/2021/multimodal-neurons/?utm_campaign=Dynamically%20Typed&utm_medium=email&utm_source=Revue%20newsletter
https://distill.pub/2021/multimodal-neurons/?utm_campaign=Dynamically%20Typed&utm_medium=email&utm_source=Revue%20newsletter
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2205.00445
https://arxiv.org/abs/2205.00445
https://arxiv.org/abs/2205.00445
https://arxiv.org/abs/1506.02078
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quantita-
tive reasoning problems with language models.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023. Inference-time
intervention: Eliciting truthful answers from a lan-
guage model.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned LLaMA outperforms GPT-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35:17359–17372.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. NumGLUE: A suite of funda-
mental yet challenging mathematical reasoning tasks.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3505–3523, Dublin, Ireland.
Association for Computational Linguistics.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith,
and Jacob Steinhardt. 2023. Progress measures for
grokking via mechanistic interpretability. arXiv
preprint arXiv:2301.05217.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020.
Zoom in: An introduction to circuits. Distill.
Https://distill.pub/2020/circuits/zoom-in.

Chris Olah, Alexander Mordvintsev, and Ludwig Schu-
bert. 2017. Feature visualization. Distill, 2(11):e7.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexan-
der Mordvintsev. 2018. The building blocks of inter-
pretability. Distill, 3(3):e10.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. 2022. In-context
learning and induction heads. Transformer Circuits
Thread.

OpenAI. 2023. GPT-4 technical report.

Kuntal Kumar Pal and Chitta Baral. 2021. Investigating
numeracy learning ability of a text-to-text transfer
model. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 3095–3101,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Judea Pearl. 2001. Direct and indirect effects. In UAI
’01: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, University of Wash-
ington, Seattle, Washington, USA, August 2-5, 2001,
pages 411–420. Morgan Kaufmann.

Judea Pearl. 2009. Causality. Cambridge University
Press.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Piotr Piękos, Mateusz Malinowski, and Henryk
Michalewski. 2021. Measuring and improving
BERT’s mathematical abilities by predicting the or-
der of reasoning. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 383–394, Online. Association
for Computational Linguistics.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 840–854, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent AI: A
survey on interpreting the inner structures of deep
neural networks.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Daniel Spokoyny, Ivan Lee, Zhao Jin, and Taylor Berg-
Kirkpatrick. 2022. Masked measurement prediction:
Learning to jointly predict quantities and units from
textual context. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 17–
29, Seattle, United States. Association for Computa-
tional Linguistics.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schoelkopf, and Mrinmaya Sachan. 2023. A
causal framework to quantify the robustness of mathe-
matical reasoning with language models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 545–561, Toronto, Canada. Association
for Computational Linguistics.

7045

http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.acl-long.246
https://doi.org/10.18653/v1/2022.acl-long.246
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://doi.org/10.23915/distill.00024.001
https://distill.pub/2017/feature-visualization/?ref=hackernoon.com
https://distill.pub/2018/building-blocks/?translate=1&translate=1&translate=1&translate=1&student&student&student&student
https://distill.pub/2018/building-blocks/?translate=1&translate=1&translate=1&translate=1&student&student&student&student
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.findings-emnlp.265
https://doi.org/10.18653/v1/2021.findings-emnlp.265
https://doi.org/10.18653/v1/2021.findings-emnlp.265
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1\&smnu=2\&article_id=126\&proceeding_id=17
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.acl-short.49
https://doi.org/10.18653/v1/2021.acl-short.49
https://doi.org/10.18653/v1/2021.acl-short.49
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://doi.org/10.18653/v1/2022.findings-emnlp.59
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
http://arxiv.org/abs/2207.13243
https://proceedings.mlr.press/v80/shazeer18a.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v80/shazeer18a.html?ref=https://githubhelp.com
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2022.findings-naacl.2
https://doi.org/10.18653/v1/2023.acl-long.32
https://doi.org/10.18653/v1/2023.acl-long.32
https://doi.org/10.18653/v1/2023.acl-long.32

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2022. Roformer: En-
hanced transformer with rotary position embedding.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances in
Neural Information Processing Systems, 33:12388–
12401.

Chelsea Voss, Nick Cammarata, Gabriel Goh, Michael
Petrov, Ludwig Schubert, Ben Egan, Swee Kiat Lim,
and Chris Olah. 2021. Visualizing weights. Distill,
6(2):e00024–007.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 billion parameter autoregressive lan-
guage model. https://github.com/kingoflolz/
mesh-transformer-jax.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter-
pretability in the wild: A circuit for indirect object
identification in GPT-2 small. In NeurIPS ML Safety
Workshop.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

7046

http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://distill.pub/2020/circuits/visualizing-weights/?utm_campaign=Dynamically%20Typed&utm_medium=email&utm_source=Revue%20newsletter
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=rvi3Wa768B-
https://openreview.net/forum?id=rvi3Wa768B-
https://openreview.net/forum?id=rvi3Wa768B-
https://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2309.03409

0 5 10 15 20 25
Layer

Early

Operator

Operands

Late

Last

IE of the MLP Modules (Operator Information)

10 1

100

101

102

103

104

0 5 10 15 20 25
Layer

Early

Operator

Operands

Late

Last

IE of the Attention (Operator Information)

10 1

100

101

102

103

104

Figure 8: Indirect effect (IE) measured in GPT-J when
varying the word describing the operator involved in the
input query. Similar to the operands case, we observe
a high contribution produced by middle-to-late MLP
modules at the end of the input sequence.

A Prompt Templates

In Tables 2 and 3, we report the question tem-
plates from Karpas et al. (2022), which we used as
prompts for the model for two- and three-operand
queries, respectively. For three-operand queries,
we use one query template for each of the 29 possi-
ble two-operation combinations.

B Performance of the Models

In Table 4, we report the accuracy of the models
on the arithmetic queries that we use for our analy-
ses. The higher accuracy obtained using numeral
words is likely given by the smaller set of possi-
ble solutions considered (we used S = {“one”,

“two”, . . . , “twenty”}, as the numeral words corre-
sponding to larger numbers get split into multiple
tokens by the tokenizer). The accuracy of GPT-J
on the factual queries from the LAMA benchmark
is 65.0% (we constrain the vocabulary to the set of
all possible objects for all the relations considered).
On the synthetic number retrieval task, GPT-J’s
accuracy is 86.7%.

C Flow of Operator-related Information

The measurements of the indirect effect for each
model component when fixing the operand and
varying the operator in the two input prompts p1
and p2 reveal how the model processes the informa-
tion related to the operator. We report in Figure 8

0

200

400

600

IE

Addition

0

1000

2000

3000

IE

Subtraction

0 10 20
Layer

0

100

200

300

IE

Multiplication

0 10 20
Layer

0

2

4

6

IE

Division

Figure 9: Indirect effect of the MLPs at the last token
in each layer in GPT-J, for each of the four arithmetic
operators. We observe a peak in the effect at layer 19
for all four types of operation.

the heatmap visualizations of these results for two-
operand queries. Similar to the operand-related
information, we observe a high effect in three acti-
vation locations: early MLP blocks corresponding
to the operand tokens; middle-to-early attention
modules at the last token; and middle-to-late MLP
modules at the last token. These results align with
our hypothesis that arithmetic-related information
is transferred to the end of the sequence by the
attention mechanism, where it is then processed
by late MLP layers. In this setting, we measure
RI(Mlate

−1) =31.4%.

D Effects for Each Operator

For each of the four operators, we report the indi-
rect effect measured for the last-token MLP mod-
ules in GPT-J in Figure 9. The results for each of
the four operators show a common spike in the ef-
fect at layers 19-20. This indicates the presence of a
specific part of the model relevant to the numerical
predictions of the bi-variate arithmetic questions,
irrespective of the operator involved. We also no-
tice a difference in the magnitude of the effects,
which is linked to the capability of the model to
correctly answer the query.

E Changes in the Model’s Prediction

We measured the influence of the model compo-
nents in terms of probability changes. Now, we
study the dynamics of the actual model predictions.
In particular, considering the scenario in which
r = r′, we verify whether the intervention leads
to a change in the model’s prediction. That is, we

7047

Type addition subtraction

1 Q: How much is n1 plus n2? A: Q: How much is n1 minus n2? A:
2 Q: What is n1 plus n2? A: Q: What is n1 minus n2? A:
3 Q: What is the result of n1 plus n2? A: Q: What is the result of n1 minus n2?
3 Q: What is the sum of n1 and n2? A: Q: What is the difference between A: n1 and n2? A:
5 The sum of n1 and n2 is The difference between n1 and n2 is
6 n1 + n2 = n1 - n2 =

multiplication division

1 Q: How much is n1 times n2? A: Q: How much is n1 over n2? A:
2 Q: What is n1 times n2? A: Q: What is n1 over n2? A:
3 Q: What is the result of n1 times n2? A: Q: What is the result of n1 over n2? A:
4 Q: What is the product of n1 and n2? A: Q: What is the ratio between n1 and n2? A:
5 The product of n1 and n2 is The ratio of n1 and n2 is
6 n1 * n2 = n1 / n2 =

Table 2: Question templates for two-operand arithmetic queries.

Formula Template

(n1+n2)*n3 Sum n1 and n2 and multiply by n3

n1+n2*n3 What is the sum of n1 and the product of n2 and n3?
(n1-n2)*n3 What is the product of n1 minus n2 and n3?
n1/(n2/n3) How much is n1 divided by the ratio between n2 and n3?
n1-n2*n3 What is the difference between n1 and the product of n2 and n3?
n1*(n2-n3) How much is n1 times the difference between n2 and n3?

Table 3: Examples of templates of three-operand queries. For the full list, we refer to Karpas et al. (2022).

Model Operation Accuracy (%)

GPT-J

+ 69.3
− 78.0
× 82.8
÷ 40.8

Overall 67.8

GPT-J (Numeral Words)

+ 95.5
− 86.7
× 83.3
÷ 59.7

Overall 81.3

Pythia 2.8B

+ 57.4
− 77.5
× 64.7
÷ 40.2

Overall 59.9

LLaMA

+ 100.0
− 99.8
× 100.0
÷ 88.7

Overall 97.2

Goat

+ 100.0
− 100.0
× 91.4
÷ 54.0

Overall 85.6

Pythia 2.8B (3 Operands) Overall 0.9

Pythia 2.8B Fine-tuned Overall 39.7(3 Operands)

Table 4: Accuracy of the models analyzed in the paper
on various types of arithmetic queries.

compute

1{argmax
x∈S

P∗
z(x) ̸= argmax

x∈S
P(x)}, (4)

distinguishing between desired
(argmaxx∈S P∗(x) = r) and undesired
(argmaxx∈S P(x) = r) changes. The re-
sults reported in Figure 10 show an increase in
the desired change in prediction at layers 19-20,
while the undesired change in prediction is higher
for layers 14-17. This means that interventions on
the MLPs at layers 19-20 are more likely to lead
to a correct adjustment of the prediction, while
the opposite is true for earlier layers (14-15 in
particular). This finding is consistent with our
previous observations and we see this as additional
evidence highlighting the influence of the MLPs at
layers 19-20 on the prediction of r.

F Fine-tuning Details

We fine-tune Pythia 2.8B on three-operand queries.
We train the model for 2 epochs on a set of queries
obtained by sampling 1000 triples of operands
for each of the 29 templates. We use Adafactor
(Shazeer and Stern, 2018) a learning rate of 10−5,
linearly decaying, and a batch size of 8. We make
sure that there is no overlap between the set of

7048

0 5 10 15 20 25
Layer

0.000

0.025

0.050

0.075
%

 o
f P

re
di

ct
io

n
Ch

an
ge Desired Change in Prediction

0 5 10 15 20 25
Layer

0.00

0.05

0.10

%
 o

f P
re

di
ct

io
n

Ch
an

ge Undesired Change in Prediction

Figure 10: Desired (wrong to correct) and undesired
(correct to wrong) change in the prediction induced by
the intervention on the MLPs in GPT-J. The layers at
which the two types of prediction change peak corre-
spond to the layers with the largest corresponding IE.

0 5 10 15 20 25
Layer

Early
eq 1st Tok

eq Mid Toks
eq Last Tok

Late
Last

IE of the Attention (Number Retrieval)

10 1

100

101

Figure 11: Indirect effect (IE) measured for the attention
modules in GPT-J on the task of number retrieval.

queries used for training and the set used for the
computation of the indirect effect.

G Computing Infrastructure

The experiments for all models are carried out us-
ing a single Nvidia A100 GPU with 80GB of mem-
ory. The computation of the indirect effect across
the whole model for a single type of component
(attention or MLP) took ∼15 hours for GPT-J and
∼6 hours for Pythia (using 50 examples for each
two-operand template) and ∼7 hours for LLaMA
and Goat (using 20 examples for each two-operand
template). For the fine-tuning of Pythia 2.8B, we
used a single Nvidia A100 GPU with 80GB of
memory. The training procedure took ∼1 hour. Ex-
periment tracking was carried out using Weights &
Biases.8

8http://wandb.ai

0 5 10 15 20 25
Layer

Early
Subj First Tok

Other Subj Toks
Subj Last Tok

Late
Last

IE of the Attention (Factual Q.)

10 1

101

103

105

Figure 12: Indirect effect (IE) measured for the attention
modules in GPT-J on factual knowledge queries.

H Factual Knowledge Data

For the experiments involving the prediction of fac-
tual knowledge, we use the following six relations
from the T-REx subset of the LAMA benchmark
(Petroni et al., 2019):

1. “[subject] is the capital of [object]”

2. “[subject] was born in [object]”

3. “[subject] died in [object]”

4. “The native language of [subject] is [object]”

5. “[subject] is a subclass of [object]”

6. “The capital of [subject] is [object]”.

We sample pairs of subject entities from the set
of entities compatible for a given relation (e.g.,
cities for the relation “is the capital of”). For each
relation, we sample 100 pairs of subject entities.

I Log Probability to Quantify the IE

In order to validate whether the measurements of
the indirect effect are specific to the metric that we
describe in Equation 2, we quantify the IE using
the absolute difference in the log of the probability
values assigned by the model to the results r and
r′. More formally, we compute

IEalt(z) =

{
∆′ +∆ if r ̸= r′

|∆| otherwise
, (5)

where

∆′ = logP∗
z(r)− logP(r) (6)

∆ = logP(r′)− logP∗
z(r

′). (7)

The results are reported in Figure 13. The activa-
tion sites that we observe are the same as reported
in Section 4.1: first-layer MLP at the operand to-
kens and last-token MLP and attention modules.

7049

http://wandb.ai

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IEalt of the MLP Modules

0

2

4

6

8

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IEalt of the Attention

0

2

4

6

8

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IEalt of the MLP Modules (Result Fixed)

0

2

4

6

8

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IEalt of the Attention (Result Fixed)

0

2

4

6

8

Figure 13: Indirect effect measured using the difference in the log probability as described in Equation 5 (IEalt).
The results are obtained with GPT-J on two-operand arithmetic queries.

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE (MLPs) in Pythia (FT) (Res. Fixed)

10 1

102

105

108

1011

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE (Attn.) in Pythia (FT) (Res. Fixed)

10 1

102

105

108

1011

Figure 14: Indirect effect (IE) measured for the attention modules in the fine-tuned version of Pythia 2.8B on
three-operand arithmetic queries, when r = r′.

J Additional Information Flow
Visualizations

We include the IE measurements for the attention
modules of GPT-J on the number retrieval task
(Figure 11) and on the factual knowledge queries
(Figure 12), and for Pythia 2.8B on three-operand
arithmetic queries before and after fine-tuning (Fig-
ure 15). Additionally, we report the heatmap visu-
alizations of the indirect effect measured for the fol-
lowing models: Pythia 2.8B (Figure 16), LLaMA
7B (Figure 17), Goat (Figure 18), and GPT-J using
word numerals (Figure 19). Finally, we visualize
in Figure 14 the IE of MLPs and attention modules
for the fine-tuned Pythia 2.8B in the fixed-result
case.

7050

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE of the Att. in Pythia 2.8B

10 1

101

103

105

0 5 10 15 20 25 30
Layer

Early
1st Operand

Between Operands 1
2nd Operand

Between Operands 2
3rd Operand

Late
Last

IE of the Att. in Pythia 2.8B (FT)

10 1

101

103

105

Figure 15: Indirect effect (IE) measured for the attention modules in Pythia 2.8B on three-operand arithmetic
queries, before and after fine-tuning.

0 5 10 15 20 25 30
Layer

Early

1st Operand

Middle

2nd Operand

Late

Last

IE of the MLPs

10 1

100

101

102

103

104

105

106

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention

10 1

101

103

105

0 5 10 15 20 25 30
Layer

Early

1st Operand

Middle

2nd Operand

Late

Last

IE of the MLPs (Result Fixed)

10 1

100

101

102

103

104

105

106

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention (Result Fixed)

10 1

101

103

105

Figure 16: Indirect effect (IE) measured in the MLP and attention modules of Pythia 2.8B on two-operand arithmetic
queries.

0 5 10 15 20 25 30
Layer

Early

1st Operand

Middle

2nd Operand

Late

Last

IE of the MLPs

10 1

100

101

102

103

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention

10 1

100

101

102

103

0 5 10 15 20 25 30
Layer

Early

1st Operand

Middle

2nd Operand

Late

Last

IE of the MLPs (Result Fixed)

10 1

100

101

102

103

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention (Result Fixed)

10 1

100

101

102

103

Figure 17: Indirect effect (IE) measured in the MLP and attention modules of LLaMA 7B on two-operand arithmetic
queries.

7051

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the MLPs

10 1

101

103

105

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention

10 1

101

103

105

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the MLPs (Result Fixed)

10 1

101

103

105

0 5 10 15 20 25 30
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention (Result Fixed)

10 1

101

103

105

Figure 18: Indirect effect (IE) measured in the MLP and attention modules of Goat on two-operand arithmetic
queries.

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the MLP Modules

10 1

100

101

102

103

104

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention

10 1

100

101

102

103

104

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the MLP Modules (Result Fixed)

10 1

100

101

102

103

104

0 5 10 15 20 25
Layer

Early
1st Operand

Middle
2nd Operand

Late
Last

IE of the Attention (Result Fixed)

10 1

100

101

102

103

104

Figure 19: Indirect effect (IE) measured in the MLP and attention modules of GPT-J on two-operand arithmetic
queries, using numeral words to represent quantities.

7052

