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Abstract

Recent work has shown how to prompt large
language models with explanations to obtain
strong performance on textual reasoning tasks,
i.e., the chain-of-thought paradigm. However,
subtly different explanations can yield widely
varying downstream task accuracy. Explana-
tions that have not been “tuned” for a task, such
as off-the-shelf explanations written by non-
experts, may lead to mediocre performance.
This paper tackles the problem of how to opti-
mize explanation-infused prompts in a black-
box fashion. We first generate sets of candidate
explanations for each example in the prompt
using a leave-one-out scheme, then find an ef-
fective combination of these explanations with
a two-stage framework. We first evaluate ex-
planations for each in-context example in iso-
lation according to two proxy metrics, log like-
lihood and accuracy on new examples. Then,
we search over combinations of explanations to
find one that yields high performance against
a silver-labeled development set. Across four
textual reasoning tasks spanning question an-
swering, mathematical reasoning, and natural
language inference, results show that our proxy
metrics correlate with ground truth accuracy
and our overall method can effectively improve
prompts over crowdworker annotations and
naive search strategies.'

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022) can be applied in var-
ious ways to do in-context learning (ICL). One line
of work shows including explanations can boost
the prompting performance on a diverse of rea-
soning tasks (Nye et al., 2021; Wei et al., 2022;
Lampinen et al., 2022).2 Despite the utility of such

'Code: https://github.com/xiye17/ExplSelection.

2Qur paper uses the general term explanation to denote
both chain-of-thought demonstrations for multi-step reasoning
tasks as well as rationales for tasks like commonsense question
answering, which do not involve chains of intermediate steps
in the same way.
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Figure 1: Optimizing explanations given a candidate
set. We generate candidate explanations in a leave-
one-out fashion (not shown), prioritize combinations of
explanations using a surrogate score S, then evaluate
them on silver data to optimize accuracy.

explanations, they often require manual engineer-
ing (Wei et al., 2022; Zhou et al., 2022a) to reach
their full potential; past work has demonstrated that
different combinations of explanations can lead to
widely varying model performance (Ye and Dur-
rett, 2022; Wang et al., 2022b). Furthermore, these
explanations are typically written in natural lan-
guage (Madaan and Yazdanbakhsh, 2022; Ye et al.,
2023; Wang et al., 2023) and there are naturally
many variants to explain the answer to a single
question. Explanations in standard datasets written
by crowdworkers may not be optimal, and even ex-
pert “prompt engineers” may not be able to easily
elicit the best behavior.

This paper studies the problem of optimizing ex-
planations for better downstream performance on
textual reasoning tasks. Inspired by recent work
that bootstraps LLMs to improve reasoning (Zelik-
man et al., 2022; Huang et al., 2022), we propose
an approach that can bootstrap a set of seed expla-
nations (e.g., crowdworker annotated explanations)
using an unlabeled development data set. As shown
in Figure 1, we first prompt LLMs to construct
alternative candidate explanations from the seed
explanations. We then search over possible combi-
nations of candidate explanations to find a combi-
nation that has high accuracy on the development
set, which is silver-labeled using seed explanations.

Evaluating one candidate combination of expla-
nations requires inference over the development set

619

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 619—637
December 6-10, 2023 ©2023 Association for Computational Linguistics


https://github.com/xiye17/ExplSelection

to compare against the silver labels. Given the cost
of running LLMs, evaluating a large number of
candidates is impractical. We propose a two-stage
approach to efficiently search over potentially high-
scoring combinations. We first evaluate each candi-
date explanation in isolation based on silver accu-
racy on the development set or the log likelihood on
the few-shot training exemplar set. Scores of these
individual explanations can be combined to com-
pute scores of combinations, which gives a proxy
of that combination’s performance against silver
set. We then can allocate our computation budget to
evaluate better-performing candidate combinations
based on the proxy metrics.

We apply our approach to optimize explanations
on four datasets: GSM, ECQA, E-SNLI, and
STRATEGYQA, covering a spectrum of textual rea-
soning tasks. Across the four datasets, our ap-
proach is able to find explanations that achieve
4% higher accuracy on average compared to initial
seed explanations. We also show our proxy metrics
can effectively approximate the downstream perfor-
mance of combinations, and thus allow prioritizing
search over better-performing explanations.

To summarize, our contributions are: (1) We pro-
pose a framework for optimizing explanations for
in-context learning by optimizing over combina-
tions of explanations. (2) We show that pseudo-
labeling an unlabeled dataset can be used to evalu-
ate such combinations. (3) We propose two proxy
metrics to prioritize exploring better combinations
given a limited computation budget.

2 Problem Formulation

2.1 Problem Statement

Following the standard chain-of-thought setting
(Wei et al., 2022), we assume access to a set of ex-
emplars (input-output pairs) 7' = {(gi, a;) }i—1:x
and seed explanations E = {€i}i=1.x annotated
for each exemplar in T' (one per exemplar). In ad-
dition to T', some of our approaches assume access
to an unlabeled development set V' that only in-
cludes the inputs, i.e., V' = {¢; }i=1.0. Let 6 be
the parameters of an LLM.

Our goal is to find an explanation set £ =
{e;}i=1.x that leads to the best accuracy. Each
e; € X* is a natural language explanation ex-
pressed in the subword vocabulary X of the pre-
trained language model. Past work has optimized
many aspects of the in-context learning process, for
example, the verbalization of prompts (Deng et al.,

2022; Zhang et al., 2022), exemplar selection (Ye
et al., 2023), and exemplar order (Lu et al., 2022),
whereas our work focuses on optimizing the format
of explanations in this particular way.

Because we assume a very small number of
training examples, all of which are going to be
included in the prompt, our notion of optimization
(our “training objective”) cannot rely on maximiz-
ing the likelihood of labeled training data. As we
discuss in future sections, we will explore both
likelihood-based measures as well as accuracy
against pseudo-labeled versions of V. These
objectives are also expensive to evaluate using
LLMs, so we will operate under an additional
constraint of cost in our methods.

Candidate explanations Directly searching over
the combinatorial explanation space of E is in-
tractable. Practically, we constrain the space of
each e; by selecting each from a candidate expla-
nation set E; = {él(-l) o éE'EiD}, where each égj)
denotes a candidate explanation associated with
each exemplar ¢g;. The candidate explanation sets
E1...Eg can be generated by the LLM using a
set of manually annotated seed explanations anno-
tated by human E = {€;}i=1.x. That is, we use
the exemplar set 7" and the seed sets E excluding
(gi, €, a;) to prompt the LLM and draw N (40 in
our implementation) samples for E;:

(e,a) ~ple,ai | {(g5,85,a5)}j=1:knji,q:;0) (1)

Put another way, we use a leave-one-out ap-
proach to sample explanations and answers for
each example using chain-of-thought prompting
with K — 1 examples. We reject any samples that
do not have the correct answer for the example.

A combination C is a set of {¢;} that contains
one explanation e; from the candidate explanation
set EZ’, ie., C = {ei}izl;]{ AVi,e; € Ez Now
we can restate our problem: our goal is to find
an explanation combination C' that maximizes the
accuracy when evaluating on test data.

2.2 Performance Varies Across Explanations

To illustrate the potential of our approach, we
briefly analyze how using different explanations,
for the same set of exemplars, can impact the down-
stream performance. As mentioned earlier, we gen-
erate candidate explanation sets according to Eq (1).
Concretely, we use temperature scaling of 0.7 and
sample 40 completions for each g;, only retaining
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Min Avg Max Seed
GSM 577 61.8 660 619
ECQA 727 76.1 786 749
E-SNLI 603 723 80.1 718
STRATEGYQA 698 738 765 740

Table 1: Statistics of the performance of 16 different ran-
dom combinations of explanations on 4 datasets and the
performance of the seed explanations from crowdwork-
ers. All tasks show substantial variation in performance.

an e if it is paired with a correct answer a = a;.
Note that for different ¢;, we may find varying num-
ber of valid e (ranging from 0 to 40). We keep at
most 8 for each ¢; to save the search cost. We
also include the seed explanations in the candidate
explanation sets.

For each dataset, we randomly sample 16 combi-
nations using the augmented candidate explanation
sets, and report the statistics of the performance
in Table 1. We see substantial variance in perfor-
mance with different C': the average gap between
the maximum performance and minimum perfor-
mance exceeds 5% and is as large as 20% (on E-
SNLI). In addition, the performance of seed ex-
planations annotated by crowdworkers (SEED in
Table 1) largely lags the best possible explanations,
indicating substantial headroom for improvement.

3 Method Overview

Having candidate explanations for each question,
we have reduced the search space from exponential
in the vocabulary size to merely N. We then
search over possible combinations of explanations.
We describe our method for scoring combinations
and the constraints under which our search takes
place.

Pseudo-labeling development set We do not as-
sume access to labeled examples beyond the K
few-shot examples provided. However, we can
take advantage of unlabeled data in V. We use a
pseudo-labeling approach to derive labels for V'
following past work (Wang et al., 2022c). This
approach is depicted in Figure 2; given ¢ € V, we
sample random combinations of explanations to
get predictions and use the majority-voted answer
as the pseudo label a:

G = arg max Z 1la =
¢ o={end

argmax p(a | {(gi, €i, ai) }i=1:x,¢;0)]  (2)

Combination C1  Test ex —m True
Combination C;  Test ex —m—» - a = True
Combination C;  Test ex —m—b True

sampled combinations model prediction

Figure 2: Silver labeling of unlabeled test example given
several sampled combinations. This example is for a
binary task with True or False labels (e.g., StrategyQA).

We now use the accuracy against the silver label
as a surrogate objective O, searching for C' that
maximizes accuracy with respect to the a:

O(C) = argmax Z 1la; =

O={eiti=1ix g, cv

argmaxp(a | {(gi, €i, ai) bi=1:x, ¢5;0)].  (3)

Searching over combinations One further com-
plicating factor is that evaluating a combination C
using O is expensive, as it requires running infer-
ence over the development set. We measure the
computation budget B by the number of combina-
tions needed to be scored using O.

A naive approach is to randomly select B combi-
nations to search, but this is inefficient. We propose
additional surrogate metrics S to serve as a proxy
for O for scoring combinations. We design S so
that it can cost-efficiently score all combinations,
with high S(C') indicating a combination C likely
to obtain high O(C') score. In this way, S can be
used to propose promising candidate combinations,
only a few of which are scored using the actual
objective O to save search budget.

4 Proxy Metrics for Finding Promising
Combinations

Owning to the high cost, we only evaluate a small
number (tens of combinations) of combinations
against development set using O (Eq (3)). We first
extract a set of promising combinations according
to two proxy metrics, then evaluate those using our
silver data.

4.1 One-shot Silver Accuracy

To optimize the silver accuracy of a combina-
tion of explanations (our objective ), we hy-
pothesize that the prediction of a combination
can be approximated with the prediction of each
explanation used one-shot. That is, we expect
pla | {(q,ei,a;i)}i=1.x,q;0) to be higher when
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Y ic1.x Pla | (g, €i,a4),q;0) is higher. We draw
this hypothesis based on recent work on example
selection for ICL, which shows that combining ex-
amples that individually perform well will yield
better performance from the combination (Ye et al.,
2023; Rubin et al., 2022).

We define the average one-shot silver accuracy as
a proxy metric Sosace:

Sosace(C = {ei}i=1:x) = Z Z 1[a; =

i=1:K q; €V

argmaxp(a | (¢, ei, ai), ¢;;0)]  (4)

By computing the one-shot silver performance for
Vég-l) e EO for Vi = 1 : K, we can efficiently
compute the proxy metric Sogacc for any combi-
nation C.?

4.2 One-shot Log Likelihood

Besides using silver accuracy, another principle
is to optimize the held-out log likelihood of the
exemplar set:

> logp(as | {(gir i, @) Yimrircniz, 453 60)-

J=1:K

We apply a similar hypothesis and use the
one-shot  performance >, ;i P(aj, |
(gisei a;),q5;60) as  the  surrogate  of
plaj | {(q e, ai) bim1:xniz5, 453 0).  We can
then score a candidate combination by:

> Y log) plaj.el (g e ai), 5 0).

J=1:K i=1:KAi#j e

Since summing over explanations is intractable, we
approximate this sum using the single sample of e
to estimate the one-shot performance, leading to:

SosLL = Z Z

J=1:K i=1: K Aij

logp(ej7aj | (qi7ei7a’i)7qj;9)~

(5

We can compute Spgsr 1, for any C' by only com-

puting all the pairwise probabilities, p(e;,a; |

(qi,ei,ai),qj;H), for Ve; € Ei,ej S EjVi =1:

K,j=1:K ANi# j, which is computationally

feasible. Note that this metric does not require a
development set.

3While this involves N K evaluations on the silver set,
note that these evaluations are one-shot and significantly less
computationally expensive than using higher numbers of shots.

4.3 Ensemble of Sogacc and Sosijr,

We have described the two proxy metrics using ei-
ther the unlabeled set V' or the labeled few-show
exemplars 7'. Our further analysis (which we will
describe later in Section 4) shows the choice of the
most effective metric is task-specific. We addition-
ally propose a strategy, ENSEMBLE of the Spgr1,
and Spgace. Specifically, we first construct two
sets of combinations that are preferred by these
two proxy metrics individually, and then select the
best one, from the union of these two sets, accord-
ing to O.

S Experimental Setup

5.1 Language Models

We primarily use code-davinci-@02 (Chen et al.,
2021), a state-of-the-art LLM API, throughout our
experiments, given its strong performance on vari-
ous reasoning tasks (Li et al., 2022b). In addition,
we use text-davinci-003 to verify the effectiveness
of the proxy metrics. code-davinci-002 is a base
model, and text-davinci-003 is an Instruct-series
model fine-tuned to align with human preferences
(Ouyang et al., 2022).

Inference We follow past work to employ greedy
decoding (greedily selecting the most probable to-
ken autoregressively) (Wei et al., 2022; Ye and Dur-
rett, 2022) or self-consistency decoding (sampling
tens of outputs from LLMs via temperature scal-
ing and using popularity voting to assign a label)
(Wang et al., 2022c).

Cost  Querying LLMs is computationally inten-
sive. We aim to search for better explanations
within a reasonable budget. Our evaluation of
cost is based on the number of tokens processed by
LLMs, including both tokens in the prompts and
the tokens generated by LLMs. We further bucket
the measurement of cost by the number of com-
binations C' that are scored by O, which involves
processing M (K + 1) examples.

5.2 Datasets

We experiment with four datasets covering four
distinct tasks, including:

* GSM (Cobbe et al., 2021) consists of grade
school math questions. Each is paired with a
human-written explanation for the answer.
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GSM ECQA ESNLI STRATEGYQA
METRICS MAX@8 MAX@16 MAX@8 MAX@16 MAX@8 MAX@16 MAXx@8 MAX@I16
NAIVE 65.1 66.0 78.6 78.6 79.5 80.1 76.2 76.5
SoSAce 66.4 67.0 79.7 80.5 80.4 81.2 74.3 74.9
SosLL 65.7 65.9 80.2 80.6 75.8 76.5 77.1 77.4

Table 2: Oracle maximum accuracies achievable with 8 or 16 candidate combinations using different selection
strategies. Using log likelihood-based or silver accuracy-based proxy metrics can find more promising candidate

combinations than random candidates.

* ECQA (Aggarwal et al., 2021; Talmor et al.,
2019) contains multiple-choice questions
which test models’ commonsense knowledge.

¢ E-SNLI (Camburu et al., 2018) studies the
task of natural language inference which is to
classify the relation between a premise and a
hypothesis.

* STRATEGYQA (Geva et al., 2021) asks Yes-
No questions requiring steps. The dataset does
not have explanation annotations, but it pro-
vides facts (Geva et al., 2021) which are sup-
porting evidence (albeit noisy ones) for the
answers, so we use them as explanations.

For each of the datasets, we choose prompt for-
mats commonly used in past work (Wei et al., 2022;
Wang et al., 2022b). We show one example in the
corresponding prompt format in Appendix A. We
use 8 exemplars in prompts for GSM, ECQA,
and STRATEGYQA, and 9 exemplars (3 for each
class) for E-SNLI, as sing more exemplars would
not lead to further performance gains.

6 Effectiveness of Proxy Metrics

Before showing the results of the complete system,
we first present experiments for verifying the ef-
fectiveness of the two proxy metrics. We evaluate
them on the basis of the best oracle accuracy on a
small (gold) labeled test set that we can reach us-
ing the top-X candidates, referred to as MAX@ X,
ranked by Sosace or Sosrr- This gives an oracle
upper bound for the performance that silver rerank-
ing via O can yield.

Setup We compare our metrics against a baseline
which randomly scores combinations (NAIVE). We
mainly use code-davinci-002 for this experiment;
please refer to Appendix B for additional results
on text-davinci-003. For Sogacc, we silver-labeled
256 randomly drawn development with 48 samples
of combinations. For each dataset, we experiment

with four different exemplar sets 7" to control for
randomness and report the average number.

Results Table 2 shows the maximum reachable
performance within 8§ (Max@8) and 16 (Max@16)
candidate combinations. For each dataset, using
one of our metrics can find more promising can-
didate combinations than randomly proposed can-
didates. Among the top 16 combinations, com-
binations preferred by Spogacc can achieve better
performance than randomly selected combinations
by 1.0%, 0.9%, and 1.4% on GSM, ECQA, and
E-SNLI, respectively. Spsr1, is the most effective
strategy on ECQA, and STRATEGYQA, surpass-
ing NAIVE by 2.0% and 0.9% on the basis of 16
candidate combinations. We do not find one metric
that consistently gives the best performance.

Proxy metrics vs downstream accuracy In Fig-
ure 3, we show a series of graphs for intuitive
understanding of how the proxy metrics relate to
the downstream accuracy. Each group of graphs
shows the downstream accuracy vs. the surrogate
proxy scores of combinations preferred by differ-
ent metrics. For each dataset, we show two groups
of graphs for two different exemplar sets out of
four. Each group contains three graphs with dif-
ferent values on the x-axis. The first graph of a
triple shows Spgacc on the x-axis and the second
one shows one-shot likelihood on the exemplar set
(positively correlates with Spgrr,). In addition to
the two proxy metrics, we show the completion
likelihood on the third graph (probability of the
predictions on the development set).

We show that the two surrogate scores we define
mostly positively correlate with the downstream ac-
curacy. Sosace (left) works uniformly well except
on STRATEGYQA. Spsr1, works well except for
Figure 3a from GSM and Figure 3f from E-SNLIL.
In particular, on ECQA, both of them highly
positively correlate with the downstream accuracy.
Furthermore, we show the candidate combinations
preferred by our proxy metrics lead to, in most
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Figure 3: Gold test set accuracy (y-axis) vs. various surrogate proxy scores for explanation sets. Points of three
different colors denote combinations selected using three metrics. There is a positive correlation between Sogacc
and performance on these datasets except for STRATEGYQA (Pearson above 0.3 is highlighted in purple). Sosi,L,
also shows positives correlation on ECQA and STRATEGYQA and occasionally fails on the others.

cases, better likelihood on the development set
(third graph in each triple), which indicates these
combinations are more “optimized” for a specific
task; past work suggests that better likelihood
generally correlates with better downstream
performance (Gonen et al., 2022).

7 Effectiveness of Framework

7.1 Main Results

We now test the effectiveness of the full framework.
We mainly compare the performance of the expla-
nations optimized via our approach against (1) the
ZERO-COT approach (Kojima et al., 2022) (not
using any human provided explanations) and (2)
using seed explanations. In addition, we derive two

baselines from past work on constructing effective
explanations for ICL, which also select potentially
better explanations from candidate explanations.
Recall that E; = {égl) e él(-‘E"D} is the candidate
explanation set for g;, our baselines include (1)
BESTLEN that chooses the longest explanations
(i.e., max;_j |€]), as Fu et al. (2022) suggest using
more complex CoTs leads to better performance
for arithmetic reasoning, and (2) BESTPPL that
chooses the explanation with the best perplexity
(i.e., max,_ z Perplexity(a;, €, g;)), as Gonen et al.
(2022) suggest lower perplexity of prompts corre-
late with better performance. We note that these
two baselines are not invented for optimizing ex-
planations of given exemplars and are adapted to fit
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GSM ECQA E-SNLI STRQA Num ExpL GSM ECQA E-SNLI STQA
ZERO-COT 30.9 61.2 49.7 55.1 5 SEED 70.4 79.8 80.0 72.9
SEED 62.6 770 7519 713 OopTiM  73.5 81.5 85.1 71.9
BESTLEN 618 746 749 683 o S TS a1 e
BESTPPL 63.4 79.4 76.5 69.0 ) ’ ’ )
P SEED 79.1 81.2 83.7 74.4
OPTIMIZED  66.0 83.0 82.8 71.6 20 OPTIM 805 825 863 740
. e : SEED 80.1 81.5 84.6 75.0
Table 3: The performance of optimized explanations 40 OpTIM 812 8 5 872 754

against seed explanations and baselines derived from
past work. Optimized explanations substantially outper-
form other approaches on GSM, ECQA, and E-SNLI.

our setting. We refer to our optimization approach
(based on the ENSEMBLE strategy) as OPTIMIZED.

Setup For all dataset sets, we experiment with
4 different exemplar sets as well as different unla-
beled sets V' of 256 randomly selected examples.
We sample 48 combinations to silver label V. We
constrain the computation budget B to be 50; this
was the highest point feasible given limitations and
was also where we found the silver accuracy (O)
to be nearly saturated. We note this budget has
included the overhead for computing the proxy
metrics as well as the computation for scoring com-
binations using O (see Appendix C for details).

Results We show the performance of different ap-
proaches in Table 3. Overall, using our framework
can find substantially better explanations measured
by prompting performance compared to seed ex-
planations. Without using any manually annotated
explanations, the performance of ZERO-COT is far
behind few-shot prompting using the seed expla-
nations (SEED). Meanwhile, the explanations opti-
mized using our framework outperforms the orig-
inal seed explanations by 3.3%, 4.3%, and 7.1%,
on GSM, ECQA, and E-SNLI, respectively.
Choosing explanations with the lowest perplexity
(BESTPPL) is able to marginally improve the per-
formance on GSM, ECQA, and E-SNLI, com-
pared to the seed set, but is consistently worse than
our approach, and even leads to performance degra-
dation on STRATEGYQA. As we are using 4 dif-
ferent random exemplar sets, we perform 4 groups
of significance tests for different random trials. We
note the gain of our approach over the seed set is
typically significant, please refer to Appendix F for
details.

Table 4: Performance of seed explanations and opti-
mized (Optim) explanations using self-consistency de-
coding with varying number of samples.

GSM ECQA E-SNLI STRQA
SEED 58.2 74.3 81.0 67.6
OpTIMIZED 61.3"  76.9" 82.87 69.47

Table 5: The performance of optimized explanations
against seed explanations on text-davinci-003 ({} and
1 denote significant improvements with p < 0.05 and
p < 0.1, respectively). Our optimization approach is
effective across LLMs.

7.2 Analysis

Self-consistency performance In addition to
greedy decoding used in Table 3, we evaluate the
performance of our optimized explanations un-
der self-consistency decoding and compare against
seed explanations. We vary the number of samples
from 5 to 40, and show the results in Table 4. We
note that the results are on a basis of one random
exemplar set for each of the datasets, owing to the
high computational cost of drawing tens of samples.
As shown in Table 4, the optimized explanations
consistently outperform the seed explanations un-
der different numbers of samples. The gap is espe-
cially significant with smaller number of samples.

Results on other LLMs We mainly uses
code-davinci-002 in our experiments given its state-
of-the-art ICL abilities. We also verify the effective-
ness of our approach on text-davinci-003, an LLM
finetuned to align with human feedback (Ouyang
et al., 2022). We note that experiment with a
smaller scale given the high cost (see Appendix B
for details) and evaluate on one random set of exem-
plars instead of four. As shown in Table 5, applying
our approach can also find better-performing expla-
nations for all the datasets on text-003. Analysis on
the effectiveness of our proxy metrics on text-003
is also included in Appendix B.
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SvAMP SINEQ SINOP ADDSUB MULARI
SEED 73.0 92.8 91.5 86.7 95.0
OPTIM-GSM 76.9 93.4 922 89.6 95.6

Table 6: Explanations optimized on the GSM dataset
(OPTIM-GSM) achieve better performance on SVAMP
and different settings of MAWPS compared to the seed
explanations. The performance improvements of op-
timized explanations on one dataset can generalize to
other out-of-domain datasets.

GSM ECQA E-SNLI STRQA
SEED 62.6 77.0 75.2 71.3
OPTIMIZED 64.5 81.2 81.5 71.0

Table 7: Results of searching with a reduced budget. Op-
timized explanations can still improve the performance
upon the seed explanations.

Generalizability of optimized explanations We
investigate whether the performance improvements
of our optimized explanations in a particular do-
main can generalize to other datasets with differ-
ent distributions. Table 6 shows the performance
of seed explanations and the optimized explana-
tions from the GSM dataset (OPTIM-GSM) on
the other arithmetic reasoning datasets, including
SVAMP (Patel et al., 2021) and MAWPS (Koncel-
Kedziorski et al., 2016). As suggested by the re-
sults, the optimized explanations achieve better
performance compared to seed explanations on the
out-of-domain datasets, which indicates that the
performance improvements can generalize.

Results with reduced computation budget
We expect search with our proxy metrics can
still work well without high computation budget
since they already extract potentially high-scoring
combinations. We test a setting that uses a reduced
computation budget. We set the budget to be 20
(as opposed to 50 in the main experiments; see
Appendix C for more details). As seen in Table 7,
with reduced budget, our framework can still
improve the downstream performance compared
to seed explanations by around 2.0%, 4.0%, and
6.0%, on GSM, ECQA, and E-SNLI, while
maintaining performance on STRATEGYQA.

Failure analysis of proxy metrics In Section 6,
we see that the Sogr1, and Spgace do not always
positively correlate with the performance on certain
datasets. While we show such uncertainty can be
handled by using an ensemble and scoring based on

O we briefly analyze the failure of the two metrics
for a better understanding of them.

In Table 2, Sosacc performs poorly on STRAT-
EGYQA, yielding lower performance than the
NAIVE strategy. The silver accuracy on this dataset
is very poor: almost all one-shot accuracy is below
50% (see Figure 3g), worse than random guess-
ing. One reason is that the binary nature of the
task causes a single demonstration to be less suit-
able and representative than a single demonstration
on more complex tasks like GSM. Under such cir-
cumstances, the averaged one-shot accuracy is no
longer indicative of the full-prompt silver accuracy.
On the other datasets, one-shot accuracy is mean-
ingful (better than random guess), and the Sogacc
correlates well with the full-prompt accuracy.

Furthermore, combinations scored highly by
Sosrr in Figure 3f are not better than random com-
binations in terms of downstream accuracy. Such
combinations also lead to a mediocre completion
likelihood, which is unusual as optimizing Sosr1,
typically leads to the highest completion likelihood
in other cases in Figure 3. We hypothesize this can
be attributed to the distribution gap between the ex-
emplar set and the test set. Since Spgr1, optimizes
the log likelihood only based on the exemplar set,
it might not generalize well to the test set under
severe distribution shift, which is indicated by the
suboptimal completion likelihood.

Analysis on proxy metrics In Section 6, we
investigate the effectiveness of our proxy metrics
with the oracle accuracy on a small test set. We
provide additional analysis on proxy metrics in
Appendix D, which shows applying our approach
in a naive way (without using proxy metrics)
can already lead to accuracy improvements
compared to the seed set, using proxy metrics to
prioritize search strategy can further improve the
performance of the searched explanations.

Output examples We include examples of the
original explanations and the search outputs in Ap-
pendix G. We note that not all optimized explana-
tions necessarily look much better or more plau-
sible as perceived by humans. The optimization
objective here is designed to induce better test pre-
dictions in the final model. Part of the effects of
this optimization may also be in the combination
of the different explanations, so explanations may
also be selected because they are more “compatible”
with others in the final O ranking function.

626



8 Related Work

We study prompting LLMs with chain-of-thought
(Nye et al., 2021; Wei et al., 2022; Shi et al., 2022)
or textual explanations more generally (Maraso-
vi¢ et al., 2022; Ye and Durrett, 2022). Much of
the past work focuses on exemplar selection in the
presence of explanations (Fu et al., 2022; Ye et al.,
2023) or developing prompting methods for various
reasoning tasks (Jung et al., 2022; Gao et al., 2022),
which typically require manually engineered expla-
nations. We focus instead on searching for better-
performing explanations.

Our approach leverages data without explanation
annotations. Similarly, prior work also explores the
means of using few-show explanations together
with data points without explanations annotations
for improving downstream performance (Zelikman
etal.,2022; Lietal., 2022b; Ye et al., 2023; Liet al.,
2022a; Wang et al., 2022a; Huang et al., 2022).
Many of these techniques need a large amount of
fully labeled data to train models used for generat-
ing explanations (Zelikman et al., 2022) or smaller
models used as verifiers (Li et al., 2022b,a; Wang
et al., 2022a), whereas our work only uses a small
unlabeled set. There is also work on automatically
constructing CoTs (Zhang et al., 2023) starting
ZoTs (Kojima et al., 2022), which also requires
a fully labeled dataset. In particular, Huang et al.
(2022) also use LLMs to silver labeled data points
for finetuning the LLMs; our work instead treats
LLMs as black-boxes and searches for better expla-
nations instead of tuning the parameters.

Our work also closely relates to prompt optimiza-
tion. While experts can potentially engineer better
prompts (Reynolds and McDonell, 2021; Mishra
et al., 2022), such a process requires heavy manual
effort. This has attracted growing interest on au-
tomated prompt engineering. One line of work re-
quires interacting with gradients (Shin et al., 2020;
Hu et al., 2021) or continuous embeddings (Sun
et al., 2022a,b; Diao et al., 2022; Sun et al., 2023).
Another line uses LMs as black-boxes (Prasad et al.,
2022; Deng et al., 2022; Zhang et al., 2022; Zhou
et al., 2022b). However, this past work either op-
timizes over discrete templates (not applicable for
the explanation optimization setting) or optimizes
over string verbalizations (a search space too large
for our setting).

9 Conclusion

We have presented an approach that can search
for better-performing explanations for ICL starting
from a set of seed explanations. Our approach first
proposes promising candidate combinations of al-
ternative explanations generated using LL.Ms, then
finds explanation combinations using proxy met-
rics before using a silver-labeled validation set to
select the best candidate. Our results highlight the
substantial variance in the performance of different
sets of explanations, paving the way for future work
to further optimize explanations in this paradigm.

Limitations

Our approach highly relies on the capabilities of
the LLMs. We use LLMs to generate candidate
explanations, to silver-label development set, as
well as to score combinations. To that end, we
hypothesize less capable LMs might see limited
benefits from our approach, and it is more suitable
in a setting that involves finetuning using a large
number of labeled set (Zelikman et al., 2022).

Our approach requires overhead cost to optimize
the explanations, including pseudo-labeling the de-
velopment and scoring combinations using silver
accuracy. However, at inference time, the cost is the
same as standard few-shot prompting with explana-
tions. We believe it is reasonable to pay a moderate
“training” cost; if optimizing an LLM prompt that
is to be deployed as a service, the cost at the train-
ing stage (equivalent to running self-consistency
inference on 500 test examples) is acceptable com-
pared to the long-term costs of running the model
on examples.

Our approach optimizes the silver accuracy via
searching over combinations preferred by proposed
proxy metrics. This does not guarantee finding the
combination with optimal silver accuracy, espe-
cially as we are limiting our computation budget
and operating in the black-box setting. While there
exist approaches that use gradient-based optimiza-
tion for more exhaustively searching over a smaller
set of options, (e.g., RLPrompt (Deng et al., 2022)
searches over prompts that are just a few tokens
long), we are not aware of any method that can
search over the space of prompts for black-box
LLMs and find a provably optimal prompt. Our
trade-off reflects the practical constraints of this
complex setting.

Our approach optimizes the downstream per-
formance by optimizing explanations, leaving out
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other factors such as verbalization and exemplar
order. In particular, we find varying explanations
grants more substantial headroom than varying or-
der (see Appendix E for detailed discussion).

Lastly, this work only considers a certain range
of reasoning datasets written in English. It is un-
known how well our approach can handle other
languages, or other reasoning tasks such as pure
symbolic reasoning.
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A Datasets & Prompt Examples

We show an example and corresponding prompt format for each of the datasets we use in Figure 4.

| GSM

Q: In a basketball game, Tobee scored 4 points. Jay scored 6 more than Tobee and Sean scored 2 less than the points of Tobee
and Jay together. If Tobee, Jay, and Sean are on the same team, how many points did they score for their team?

A: Jay scored 4 + 6 = 10 points. Together, Tobee and Jay scores 4 + 10 = 14 points. So, Sean scored 14 - 2 = 12 points. Thus,
Tobee, Jay, and Sean scored a total of 4 + 10 + 12 = 26 points for their team. The answer is 26.

| ECQA |

Q: The child was spiteful of his parents, what did he do?

Answer Choices:

(a) become adult

(b) succeeded

(c) grow up

(d) ask questions

(e) acting out

A: Children act out. Acting out is a type of behaviour. Spiteful people act out. So the answer is (e).

| E-SNLI

Premise:

“A man at a flea market browsing.”

Based on this premise, can we conclude the hypothesis “A man is sleeping at a flea market.” is true?
OPTIONS:

- yes

- no

- not possible to tell

A: One cannot be sleeping and browsing at the same time. The answer is no.

| STRATEGYQA |

Q: Did Archduke Franz Ferdinand of Austria participate in the Pacific War?
A: Archduke Franz Ferdinand of Austria was assassinated in 1914. The Pacific War took place between 1941 and 1945. So
the answer is no.

Figure 4: Examples of prompts for GSM, ECQA, E-SNLI, and STRATEGYQA.

B Experiments of the Effectiveness of Proxy Metrics on text-davinci-003

In addition to code-davinci-002, which we mainly use throughout the paper, we also verify the effectiveness
of our proxy metrics on text-davinci-003. Unlike code-002, which is a based model, text-003 is an
instructional finetuned model (that learns to maximize a reward model trained from comparisons by
humans).

GSM ECQA E-SNLI  STRATEGYQA
METRICS MAX@8 MAX@8 MAX@8 MAX@8

NAIVE 57.0 74.1 81.2 71.9
SoSAce 61.7 75.4 81.3 71.1
SosLL 56.3 75.8 80.9 72.5

Table 8: Oracle maximum accuracies achievable with 8 candidate combinations on text-davinci-003. The trend is
similar to the results of code-davinci-002.

Setup As in Section 6, we evaluate the maximum reachable performance within 8 (Max @8) candidate
combinations. Given the cost for querying the API, we conduct experiments with a smaller scale: we only
use 12 samples to silver-label development set, and evaluate on only one set of exemplars for each dataset.

Results As shown in Table 8, we observe a similar trend to code-davinci-002 which is used in Section 6:
SosAce 1s particularly effective on GSM and ECQA, whereas Spgr, is effective on ECQA and
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STRATEGYQA. We see somewhat larger gains on GSM (over weaker baseline performance) and less
change in E-SNLI (over a stronger baseline model).

C Details of Computation Overhead and Computation Budget

Details of computation overhead for proxy metrics We detail the computation overhead needed for
Sosace and Spsrr.- Recall that we bucket the measurement of cost by the number of combinations C' that
are scored by O. Scoring one combination involves processing M (K + 1) examples (ruining inference
M data points with K examples in prompts and 1 example in output), which we use as a unit, called one
PASS. In our experimental setting, the number of exemplars K = 8 for all datasets other than E-SNLI
where K = 9, the size of development set M = 256, the typical number of candidate explanations in E;,
marked as | E|, for each question is 8. We will use K = 8, | E| = 8 for estimating the overhead. Scoring
one combination with O requires processing M (K + 1) = 2304 number of examples.

To compute Spsr 1, for all combinations, we need to score all pairs of e; and e; where e; € EZ Nej €
Ej Ni # jbyp(as, i, qi | aj,ej,q;;0). Intotal, the overhead involves processing 2|E|2K(K—1) = 7168
number of examples. The computation cost is equivalent to scoring 3.1 combinations against silver set.

The overhead for Spgacc requires performing one-shot inference for all explanation candidates, which
process 2|E]K M = 32768 examples. The overhead is equivalent to scoring 14.2 combinations.

Note that this computation just needs to be performed once for each task. If we are deploying a system
in practice, we ideally want to find one strong prompt that can work well for the task. These expenses are
analogous to the training phase for fine-tuned models, and are small compared to the overall cost to do
inference on a high number of examples in a real system.

Details of computation budget We now detail how the budget B is allocated to computing the proxy
metrics and scoring combinations using 0. Consider computation budget of 50 as used in the main
experiments (Section 7.1). As discussed before, the overhead for computing Spgr 1, for all combinations
is roughly equivalent to 3 PASSES; the overhead for Spgacc is roughly 14 PASSES. Therefore, we allow
ENSEMBLE to rank 32 combinations in total (16 from Sogy,, and 16 from Sggacc). For the reduced
budget setting that sets B to be 20, we only allow ENSEMBLE to rank 2 combinations, one from Sogr1,
and one from SpgAce.

D Additional Analysis on Proxy Metrics

GSM ECQA E-SNLI STRQA

NAIVE 64.6 79.8 82.1 70.7
SosLL 64.7 82.7 80.6 71.8
SosAce 65.7 81.9 83.3 70.7
ENSEMBLE 66.0 82.5 83.0 71.6

Table 9: Comparing the performance of different proxy metrics. Sosr1, and Spsacc are more effective than NAIVE.
ENSEMBLE is the best overall.

Setup To give further evidence on the effectiveness of using our proxy metrics, we evaluate the
performance of explanations obtained using different proxy metrics, and compare against NAIVE that
chooses random combinations. We show the results in Table 9. Note that all approaches use the same
amount of computation budget (50) to ensure fair comparison. Specifically, we allow NAIVE to rank 50
combinations, Sosp 1, to rank 48 combinations, Sogacc to rank 32 combinations, and ENSEMBLE to rank
32 combinations (16 of each); this roughly equalizes the overall computation needed for each approach.

Results As shown in Table 9, applying our approach in a NAIVE way can already lead to accuracy
improvements compared to the seed set. Under the same computation budget, using proxy metrics to
prioritize search strategy can further improve the performance of the searched explanations, compared
to NAIVE. SosrL is especially effective on ECQA, whereas Sosacc achieves the best performance
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on E-SNLI. Using an ensemble of the two strategies leads to the best overall performance, improving
performance compared to NAIVE across all datasets.

E Varying Explanations versus Varying Order

Min Avg Max

GSM 580 615 64.6
ECQA 71.8 739 762
E-SNLI 68.7 737 76.2

STRATEGYQA 70.5 742 76.8

Table 10: Statistics of the performance of 16 different random order on four datasets. Varying order has less impact
compared to varying explanations (Table 1).

Given a set of exemplars, our approach optimizes the downstream performance by optimizing expla-
nations. Past work has suggested different order of exemplars can also lead to variance in downstream
performance (Lu et al., 2022).

We find that varying explanations has a larger impact than varying order. We compare the potential
headroom that could be achieved by optimizing explanations against optimizing order. As in Table 10,
we show the statistics of the performance of 16 different random orders of the seed explanations, with
a similar setup as Table 1 in the main paper. We can conclude that on GSM, ECQA, E-SNLI, the
best prompts (MAX) that we can find by varying order are less effective than varying explanations (see
Table 1).

F Significance Test on the Main Results

GSM ECQA E-SNLI STRQA

SEED 62.6 77.0 75.2 71.3
OPTIMIZED 66.0 83.0 82.8 71.6
Significance SNIR EINIRIN) AN ——{—

Table 11: Significance test on the comparison between OPTIMIZED explanations and SEED explanations. The gain
is typically significant.

Recall that we experiment with 4 random trials, varying different sets of exemplars 7" and development
sets V' in our main experiments (Section 7.1). Therefore, for comparison on each dataset, we perform
4 paired tests, checking whether the improvements of OPTIMIZED over SEED are significant in each
setting. We use one 1} and one 1 to denote OPTIMIZED is significantly better than SEED with a p-value <
0.05 and 0.1, respectively. We use | and |} to denote the OPTIMIZED is significantly worse, and use —
to denote there are no significant differences. As shown in Table 11, our optimization approach almost
never downgrades the performance (except for one trial on STRATEGYQA). And on GSM, ECQA, and
E-SNLI, the gain is typically significant with a p-value < 0.05.

G Output Examples

We show an example of optimized explanations we get using ENSEMBLE and computation budget
B =500n GSM, ECQA, E-SNLI, and STRATEGYQA in Figure 5, Figure 6, Figure 7, and Figure 8,
respectively. In addition, we manually check the 32 (4 trials * 8 examples) optimized explanations for
GSM, and 96.9% of them are valid. Our approach typically generates sound explanations for the task of
arithmetic reasoning.
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Example outputs on GSM

Q: Bob has planted corn in his garden, and it has just started to sprout. A week after planting it, it had grown 2 inches. The
next week, its height increased by twice as much as it had the first week. In the third week, it grew 4 times as much as it did
the week before. How tall are the corn plants now?

Seed: The second week it grew twice as much as the first week, so 2 * 2 inches = 4 inches. The third week it grew 4 times as
much as in the second week, so 4 * 4 inches = 16 inches. In total, it grew 2 inches + 4 inches + 16 inches = 22 inches. The
answer is 22.

Searched: After growing 2 inches in the first week, the corn is 2 inches tall. After growing 2 x 2 = 4 inches in the second
week, the corn is 2 + 4 = 6 inches tall. After growing 4 x 4 = 16 inches in the third week, the corn is 6 + 16 = 22 inches tall.
The answer is 22.

Q: Benjamin is tracking how many miles he walks in a week. He walks to work and home five days a week, walks his dog
twice a day every day, walks to his best friend’s house once a week, and walks to the convenience store twice a week. Work
is six miles away, dog walks are two miles, his best friend’s house is one mile, and the convenience store is three miles. How
many miles does Benjamin walk in a week?

Seed: Benjamin walks 6 miles to work and 6 miles home, so he walks 6 * 2 = 12 miles to work and home. He walks to work
5 days a week, so he walks 12 * 5 = 60 miles to work and home a week. He walks his dog 2 times a day for 2 miles, so he
walks 2 * 2 = 4 miles a day for his dog. He walks his dog 7 days a week, so he walks 4 * 7 = 28 miles for his dog. He walks
3 miles to the store 2 times a week, so he walks 2 * 3 = 6 miles to the store each week. Adding his weekly 1 mile to his
friend’s house, Benjamin walks 60 + 28 + 6 + 1 = 95 miles in a week. The answer is 95.

Searched: Benjamin walks to work and back two times a day, five days a week. That is 2 x 5 x 6 = 60 miles. He also walks
his dog twice a day every day. That is 2 x 2 x 7 = 28 miles. He walks to his best friend’s house once a week, whichis 1 x 1 =
1 mile. Finally, he walks to the convenience store twice a week, which is 2 x 3 = 6 miles. Therefore, Benjamin walks a total
of 60 + 28 + 1 + 6 = 95 miles in a week. The answer is 95.

Q: In a basketball game, Tobee scored 4 points. Jay scored 6 more than Tobee and Sean scored 2 less than the points of Tobee
and Jay together. If Tobee, Jay, and Sean are on the same team, how many points did they score for their team?

Seed: Jay scored 4 + 6 = 10 points. Together, Tobee and Jay scores 4 + 10 = 14 points. So, Sean scored 14 - 2 = 12 points.
Thus, Tobee, Jay, and Sean scored a total of 4 + 10 + 12 = 26 points for their team. The answer is 26.

Searched: Tobee scored 4 points. Jay scored 4 + 6 = 10 points. Tobee and Jay scored 4 + 10 = 14 points. Sean scored 2 less
than Tobee and Jay, so he scored 14 - 2 = 12 points. Tobee, Jay, and Sean scored a total of 4 + 10 + 12 = 26 points. The
answer is 26.

Q: Bobby made a big batch of soup weighing 80 kg. Each day the batch gets reduced by half. How many kg will it reach on
the fourth day after he made the soup?

Seed: On the first day, the soup reduces down to 80 /2 = 40 kg. On the second day, it reduces down to 40 / 2 = 20 kg. On the
third day, it is reduced to 20 / 2 = 10 kg. And on the fourth day, it is finally down to 10/ 2 = 5 kg. The answer is 5.
Searched: On the first day, there are 80 - 80/2 = 80 - 40 = 40 kg of soup. On the second day, there are 40 - 40/2 =40 - 20 =
20 kg of soup. On the third day, there are 20 - 20/2 =20 - 10 = 10 kg of soup. On the fourth day, there are 10 - 10/2=10-5
=5 kg of soup. The answer is 5.

Q: Rob and Mark plan to meet at the national park. It takes 1 hour for Rob to get to the national park and it takes three times
as much time for Mark to get to the national park. If Rob leaves his home at 11 a.m., at what time should Mark leave his
home so that they both arrive at the same time?

Seed: It takes 1 hour * 3 = 3 hours for Mark to get to the national park. The extra time it takes Mark to get to the national
park is 3 hours - 1 hour = 2 hours. Mark should leave his home at 11 a.m. - 2 hours =9 a.m. The answer is 9.

Searched: It takes 1 hour for Rob to get to the park. It takes 3 hours for Mark to get to the park. So, Rob gets to the park at
12 noon (11 a.m. + 1 hour). If Mark wants to get to the park at the same time as Rob, he would have to leave his home at 9
a.m. (12 noon - 3 hours). The answer is 9 a.m.

Q: Yanna baked twenty butter cookies and forty biscuits in the morning. In the afternoon, she baked ten butter cookies and
twenty biscuits. How many more biscuits did she bake than butter cookies?

Seed: There were 20 + 10 = 30 butter cookies. And, there were 40 + 20 = 60 biscuits. Therefore, she baked 60 - 30 = 30
more biscuits than butter cookies. The answer is 30.

Searched: In the morning, Yanna baked 20 butter cookies and 40 biscuits. In the afternoon, she baked 10 butter cookies and
20 biscuits. She baked a total of 20 + 10 = 30 butter cookies, and 40 + 20 = 60 biscuits. She baked 60 - 30 = 30 more biscuits
than butter cookies. The answer is 30.

Q: After Bella’s ballet performance, she received 2 dozen roses from her parents, and 2 roses from each of her 10 dancer
friends. How many roses did Bella receive?

Seed: Bella receives 2 x 12 = 24 roses from her parents. She receives 2 x 10 = 20 roses from her friends. She receives a total
of 24 + 20 = 44 roses. The answer is 44.

Searched: Bella receives 2 x 12 = 24 roses from her parents. She receives 2 x 10 = 20 roses from her friends. She receives a
total of 24 + 20 = 44 roses. The answer is 44.

Q: Honey earned $80 a day. Every day, she spent part of her pay and saved the rest. After 20 days of work, she spent $1360.
How much did Honey save in 20 days?

Seed: Honey earned 20 x $80 = $1600 for 20 days of work. Therefore, Honey saved $1600 - $1360 = $240 in 20 days. The
answer is 240.

Searched: Honey spent $1360 in 20 days, so she spent $1360 / 20 = $68 a day. She saved $80 - $68 = $12 a day. She saved
$12 x 20 = $240. The answer is $240.

Figure 5: Examples of seed explanations and search outputs for GSM.
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Example outputs on ECQA

Q: Sally brought the ball when she visited Scott so that they could do what with it?

Answer Choices: (a) bounces (b) play with (c) toy (d) charming (e) earball

Seed: Ball is spherical toy. Toys can be played with. So the answer is (b).

Searched: Sally brought the ball when she visited Scott so that they could play with it. So the answer is (b).

Q: What are most people trying to do when going on vacation? Answer Choices: (a) panic (b) debate (c) having fun (d) debt
(e) peace

Seed: Vacation is a holiday during which people relax and enjoy away from home. Relax and enjoy means having fun. So
the answer is (c).

Searched: Most people go on vacation to have fun. So the answer is (c).

Q: The birds were looking around in August, what were they looking to do?

Answer Choices: (a) breathe (b) sky (c) build a nest (d) pick berries (e) reproduce

Seed: Birds generally moult in august. Birds want to collect food before they start moulting. Picking berries is the action of
collecting food. So the answer is (d).

Searched: Birds generally moult in august. Birds want to collect food before they start moulting. Picking berries is the
action of collecting food. So the answer is (d).

Q: Where could you find a monkey, elephant, or zebra enjoying a drink?

Answer Choices: (a) african continent(b) bar (c) amazon basin (d) research laboratory (e) friend’s house

Seed: Amazon basin is a big wiuld areas where many animals can be found. Amazon basin has lots of water hence all
monkey, elephant, or zebra can be found enjoying it. So the answer is (c).

Searched: Amazon basin is a jungle in South America where monkey, elephant and zebra can be found. So the answer is (c).

Q: Many in the flock often forget the most basic tenants, a big one being that on god can what?

Answer Choices: (a) anything (b) everywhere (c) judge men (d) give peace (e) help people

Seed: Bible says that only god can judge men. Bible is where the most basic tenants are listed. So the answer is (c).
Searched: Many in the flock often forget the most basic tenants, a big one being that on god can judge men. So the answer is

(c).

Q: Food on what kind of transport is normally freeze dried or dehydrated?

Answer Choices: (a) friend’s house (b) bicycle (c) space shuttle (d) kitchen (e) disneyland

Seed: Space shuttle is type of transportation that astronaut uses. Generally food are freeze dried or dehydrated before taking
on space shuttle. So the answer is (c).

Searched: Food on space shuttle is normally freeze dried or dehydrated. So the answer is (c).

Q: As everybody at the table began to twirl noodles she mentioned that wine was he secret ingredient in the what?

Answer Choices: (a) liquor store (b) church (c) museum (d) spaghetti sauce (e) art show

Seed: Spaghetti sauce contains wine as a secret ingredient. As everybody at the table began to twirl noodles she mentioned
that wine was her secret ingredient in the spaghetti sauce. So the answer is (d).

Searched: Spaghetti sauce contains wine as a secret ingredient. As everybody at the table began to twirl noodles she
mentioned that wine was her secret ingredient in the spaghetti sauce. So the answer is (d).

Q: The person gave a good hands on what to show how to do the work?

Answer Choices: (a) demonstration (b) garage (c) building (d) barn (e) synagogue
Seed: To show how to do something means to give a demostration. So the answer is (a).
Searched: Demonstration is a way of showing how to do the work. So the answer is (a).

Figure 6: Examples of seed explanations and search outputs for ECQA.
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Example outputs on E-SNLI

Premise:

"A young man hitting a ball with a bat."

Based on this premise, can we conclude the hypothesis "Three girls are playing basketball." is true?
Seed: There are either three girls or one young man. The answer is no.

Searched: The answer is no.

Premise:

"A woman is tacking up a sign on the sigh post."

Based on this premise, can we conclude the hypothesis "The woman is eating a cake." is true?
Seed: Someone cannot tack a sign and eat cake at the same time. The answer is no.
Searched: One cannot be eating cake while tacking up a sign. The answer is no.

Premise:

"A mother and her child are out for a walk."

Based on this premise, can we conclude the hypothesis "A mother and her child are bonding together." is true?
Seed: going on a walk doesn’t imply bonding together. The answer is not possible to tell.

Searched: We don’t know if they are bonding together. The answer is not possible to tell.

Premise:

"Two children in soccer uniforms."

Based on this premise, can we conclude the hypothesis "The two children wear soccer uniforms pafter the game." is true?
Seed: You can not infer there is a game. The answer is not possible to tell.

Searched: We don’t know if the children wear soccer uniforms after the game. The answer is not possible to tell.

Premise:

"A man in a red, black and white uniform is pursuing a soccer ball on a grassy field."

Based on this premise, can we conclude the hypothesis "A man is playing soccer." is true?
Seed: if your pursuing a soccer ball your also playing soccer. The answer is yes.

Searched: If a man is chasing a soccer ball in a field, he is playing soccer. The answer is yes.

Premise:

"Two children lying in the snow making snow angels."

Based on this premise, can we conclude the hypothesis "The two children are having fun." is true?
Seed: we don’t know they are having fun. The answer is not possible to tell.

Searched: You can not infer what the children are feeling. The answer is not possible to tell.

Premise:

"A man is walking down a pavement path."

Based on this premise, can we conclude the hypothesis "the man is in the shower." is true?

Seed: One cannot be walking and in the shower at the same time. The answer is no.

Searched: The man can not be in the shower and walk down a path at the same time. The answer is no.

Premise:

"Two bicyclists in a race with helmets."

Based on this premise, can we conclude the hypothesis "two guys on bikes." is true?
Seed: Bicyclists can be considered as guys on bikes. The answer is yes.

Searched: The answer is yes.

Premise:

"A group of children is entering an inflatable bounce house."

Based on this premise, can we conclude the hypothesis "bounce house is filled with children." is true?
Seed: Children entering a bounce house implies that the house is filled with children. The answer is yes.
Searched: We know there are children in the house. The answer is yes.

Figure 7: Examples of seed explanations and search outputs for E-SNLI.
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Example outputs on STRATEGYQA

Q: Did Archduke Franz Ferdinand of Austria participate in the Pacific War?

Seed: Archduke Franz Ferdinand of Austria was assassinated in 1914. The Pacific War took place between 1941 and 1945.
So the answer is no.

Searched: Archduke Franz Ferdinand of Austria was assassinated in 1914. The Pacific War took place between 1941 and
1945. So the answer is no.

Q: Does Mercury make for good Slip N Slide material?

Seed: The Slip N Slide was an outdoor water slide toy. Mercury is a thick liquid at room temperature. Mercury is poisonous
and used to kill hatters that lined their hats with the substance. So the answer is no.

Searched: Mercury has a melting point of -38.83 °C and a boiling point of 356.73 °C. The temperature range in which a Slip
N Slide may be used is between 10 and 30 °C. So the answer is no.

Q: Can the Toyota Hilux tip the scales against Mr. Ed?

Seed: The current generation of Toyota Hilux weighs at least 4,310 Ibs Mr. Ed was portrayed by an adult horse The average
adult horse weighs up to 2,000 Ibs So the answer is yes.

Searched: The Toyota Hilux weighs about 2,500 kg. Mr. Ed weighs about 500 kg. So the answer is yes.

Q: Could Lil Wayne’s children ride in a Chevrolet Corvette ZR1 together?
Seed: Lil Wayne has four children. A Chevrolet Corvette ZR1 has 2 seats. So the answer is no.
Searched: Lil Wayne has four children. The Chevrolet Corvette ZR1 has two seats. So the answer is no.

Q: Did Woodrow Wilson consider Blacks to be equal members of society?
Seed: Woodrow Wilson supported the Ku Klux Klan. The Ku Klux Klan consider Blacks to be inferior. So the answer is no.
Searched: Wilson was a proponent of segregation and a supporter of the Ku Klux Klan. He wrote, "The white men were
roused by a mere instinct of self-preservation... until at last there had sprung into existence a great Ku Klux Klan, a veritable
empire of the South, to protect the Southern country." So the answer is no.

Q: Paleography hypothetically helps to understand Cthulhu?

Seed: Palacography involves the study of ancient writings. Paleography has helped decode Anatolian hieroglyphics from all
the way back as the first millenia BC. Author H.P. Lovecraft’s Cthulhu is an ancient mystical being from eons ago. So the
answer is yes.

Searched: Paleography is the study of ancient writing. The book, The Call of Cthulhu, was written by H. P. Lovecraft in
1928. So the answer is yes.

Q: Could someone listen to the entire U2 debut studio album during an episode of Peppa Pig?

Seed: U2’s debut studio album was titled Boy. The album, Boy, is 42 minutes and 52 seconds long. An episode of Peppa Pig
has a running time of approximately 5 minutes. So the answer is no.

Searched: The U2 debut studio album Boy is 38 minutes long. Each episode of Peppa Pig is 5 minutes long. So the answer
is no.

Q: Are more watermelons grown in Brazil than Antarctica?

Seed: Watermelons are plants grown in climates from tropical to temperate, needing temperatures higher than about 25 C
(77 F) to thrive. The climate of Antarctica is the coldest on Earth. The climate of Brazil comprises a wide range of weather
conditions across a large area and varied topography, but most of the country is tropical. So the answer is yes.

Searched: Watermelons are grown in Brazil. There are no watermelons grown in Antarctica. So the answer is yes.

Figure 8: Examples of seed explanations and search outputs for STRATEGYQA.
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