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Abstract

We introduce an encoding for syntactic pars-
ing as sequence labeling that can represent any
projective dependency tree as a sequence of
4-bit labels, one per word. The bits in each
word’s label represent (1) whether it is a right
or left dependent, (2) whether it is the outer-
most (left/right) dependent of its parent, (3)
whether it has any left children and (4) whether
it has any right children. We show that this pro-
vides an injective mapping from trees to labels
that can be encoded and decoded in linear time.
We then define a 7-bit extension that represents
an extra plane of arcs, extending the coverage
to almost full non-projectivity (over 99.9% em-
pirical arc coverage). Results on a set of diverse
treebanks show that our 7-bit encoding obtains
substantial accuracy gains over the previously
best-performing sequence labeling encodings.

1 Introduction

Approaches that cast parsing as sequence labeling
have gathered interest as they are simple, fast (An-
derson and Gémez-Rodriguez, 2021), highly paral-
lelizable (Amini and Cotterell, 2022) and produce
outputs that are easy to feed to other tasks (Wang
et al., 2019). Their main ingredient are the en-
codings that map trees into sequences of one dis-
crete label per word. Thus, various such encodings
have been proposed both for constituency (Gémez-
Rodriguez and Vilares, 2018; Amini and Cotterell,
2022) and dependency parsing (Strzyz et al., 2019;
Lacroix, 2019; Gémez-Rodriguez et al., 2020).
Most such encodings have an unbounded label
set, whose cardinality grows with sentence length.
An exception for constituent parsing is tetratag-
ging (Kitaev and Klein, 2020). For dependency
parsing, to our knowledge, no bounded encodings
were known. Simultaneously to this work, Amini
et al. (2023) have just proposed one: hexatagging,
where projective dependency trees are represented
by tagging each word with one of a set of 8 tags.!

'The “hexa” in the name comes from a set of six atoms

0 1 2 3 4 5 6 7

-ROOT- It should continue to be defanged
<x < \>%/ <k < \> >x
0100 0000 11 0100 0000 1010 1100

Figure 1: A dependency tree and its 4-bit encoding.

Contribution We present a bounded sequence-
labeling encoding that represents any projective
dependency tree with 4 bits (i.e., 16 distinct labels)
per word. While this requires one more bit than
hexatagging, it is arguably more straightforward,
as the bits directly reflect properties of each node
in the dependency tree without an intermediate con-
stituent structure, as hexatagging requires. Also, it
has a clear relation to existing bracketing encod-
ings, and has a straightforward non-projective ex-
tension using 7 bits with almost full non-projective
coverage. Empirical results show that our encoding
provides more accurate parsers than the existing
unbounded bracketing encodings, which had the
best previous results among sequence-labeling en-
codings, although it underperforms hexatagging.

2 Projective Encoding

Let T}, be a set of unlabeled dependency trees” for
sentences of length n. A sequence-labeling encod-
ing defines a function ®,, : T;,, — L", for a label
set L. Thus, each tree for a sentence w; ... wy,
is encoded as a sequence of labels, [; ...[,, that
assigns a label /; € L to each word w;.

We define the 4-bit projective encoding as an
encoding where T), is the set of projective depen-

used to define the labels. However, the label for each word is
composed of two such atoms (one from a set of two, and other
from a set of four) so there are eight possible labels per word.

For simplicity, we ignore dependency labels in definitions.
In the implementation, they are added as a separate component
to the label of each word, following common practice.
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dency trees, and we assign to each word w; a label
l; = bob1b2b3, such that b; is a boolean as follows:

* by is true if w; is a right dependent, and false
if it is a left dependent. Root nodes are con-
sidered right dependents for this purpose (i.e.,
we assume that they are linked as dependents
of a dummy root node wq located to the left).

* by is true iff w; is the outermost right (or left)
dependent of its parent node.

* by (respectively, bs) is true iff w; has one or
more left (right) dependents.

All combinations of the four bits are possible, so
we have 16 possible labels.

For easier visualization and comparison to ex-
isting bracketing encodings, we will represent the
values of by as > (right dependent) or < (left depen-
dent), by as *x (true) or blank (false), and by and b3
respectively as \ and / (true) or blank (false). We
will use these representations with set notation to
make claims about a label’s bits, e.g. >* € [ means
that label [ has by = 1,b; = 1. Figure 1 shows a
sample tree encoded with this method.

We will now show how to encode and decode
trees, and prove that the encoding is a total, injec-
tive map from projective trees to label sequences.

Encoding and Totality Encoding a tree is trivial:
one just needs to traverse each word and apply the
definition of each bit to obtain the label. This also
means that our encoding from trees to labels is a
total function, as the labels are well defined for any
dependency tree (and thus, for any projective tree).

Decoding and Injectivity Assuming a well-
formed sequence of labels, we can decode it to
a tree. We can partition the arcs of any tree t € T,
into a subset of left arcs, ¢;, and a subset of right
arcs, t,.. We will decode these subsets separately.
Algorithm 1 shows how to obtain the arcs of ¢,.
The idea of the algorithm is as follows: we read
labels from left to right. When we find a label
containing /, we know that the corresponding node
will be a source of one or more right arcs. We push
it into the stack. When we find a label with >, we
know that its node is the target of a right arc, so we
link it to the / on top of the stack. Additionally, if
the label contains *, the node is a rightmost sibling,
so we pop the stack because no more arcs will be

Algorithm 1 To decode right arcs in the 4-bit encoding.
1: function DECODERIGHTARCS(l1..l,,)

2 S <— empty stack

3 a < empty set of arcs

4 s.push(0) > corresponding to dummy root
5: for i < 1ton do

6: if >¢€ [; then

7: a.addArc( s.peek() — 7)
8 if x € [; then

9: s.pop()

10: end if

11: end if

12: if / € I; then

13: s.push(i)

14: end if

15: end for

16: return a

17: end function

created from the same head. Otherwise, we do not
pop as we expect more arcs from the same origin.’

Intuitively, this lets us generate all the possible
non-crossing combinations of right arcs: the stack
enforces projectivity (to cover a / label with a de-
pendency we need to remove it from the stack, so
crossing arcs from inside the covering dependency
to its right are not allowed), and the distinction be-
tween > with and without * allows us to link a new
node to any of the previous, non-covered nodes.

To decode left arcs, we use a symmetric algo-
rithm DecodeLeftArcs (not shown as it is analo-
gous), which traverses the labels from right to left,
operating on the elements \ and < rather than / and
>; with the difference that the stack is not initial-
ized with the dummy root node (as the arc origi-
nating in it is a right arc). By the same reasoning
as above, this algorithm can obtain all the possible
non-crossing configurations of left arcs, and hence
the mapping is injective. The decoding is trivially
linear-time with respect to sequence length.

A sketch of an injectivity proof can be based
on showing that the set of right arcs generated by
Algorithm 1 (and the analogous for left arcs) is
the only possible one that meets the conditions of
the labels and does not have crossing arcs (hence,
we cannot have two projective trees with the same
encoding). To prove this, we can show that at each
iteration, the arc added by line 7 of Algorithm 1
is the only possible alternative that can lead to a
legal projective tree (i.e., that s. peek() is the only
possible parent of node 7). This is true because (1)

3Note that, thus, the interpretation of the symbols / and
> is similar to that of the same symbols in the unbounded
bracketing encoding by (Strzyz et al., 2019), but here the
/ symbol is acting as a “superbracket” that matches several
opposing brackets (Yli-Jyrd, 2017; Yli-Jyrd, 2019)
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if we choose a parent to the left of s.peek(), then
we cover s. peek () with a dependency, while it has
not yet found all of its right dependents (as other-
wise it would have been popped from the stack),
so a crossing arc will be generated later; (2) if we
choose a parent to the right of s. peek () and to the
left of 1, its label must contain / (otherwise, by def-
inition, it could not have right dependents) and not
be on the stack (as the stack is always ordered from
left to right), so it must have been removed from
the stack due to finding all its right dependents, and
adding one more would violate the conditions of
the encoding; and finally (3) a parent to the right of
1 cannot be chosen as the algorithm is only consid-
ering right arcs. Together with the analogous proof
for the symmetric algorithm, we show injectivity.

Coverage While we have defined and proved this
encoding for projective trees,* its coverage is ac-
tually larger: it can encode any dependency forest
(i.e., does not require connectedness) such that arcs
in the same direction do not cross (i.€., it can han-
dle some non-projective structures where arcs only
cross in opposite directions, as the process of en-
coding and decoding left and right arcs is indepen-
dent). This is just like in the unbounded bracketing
encodings of (Strzyz et al., 2019), but this extra
coverage is not very large in practice, and we will
define a better non-projective extension later.

Non-surjectivity Just like other sequence-
labeling encodings (Strzyz et al., 2019; Lacroix,
2019; Strzyz et al., 2020, inter alia), ours is not
surjective: not every label sequence corresponds to
a valid tree, so heuristics are needed to fix cases
where the sequence labeling component generates
an invalid sequence. This can happen regardless
of whether we only consider a tree to be valid if
it is projective, or we accept the extra coverage
mentioned above. For example, a sequence where
the last word is marked as a left child (<) is invalid
in either case. Trying to decode invalid label
sequences will result in trying to pop an empty
stack or leaving material in the stack after finishing
Algorithm 1 or its symmetric. In practice, we can

“If we did not consider a dummy root, we would be able
to cover planar trees, rather than just projective trees (as in the
bracketing of (Strzyz et al., 2019)), but this would require an
extra label for the sentence’s syntactic root. Instead, we use a
dummy root on the left and explicitly encode the arc from it to
the syntactic root, which is thus labeled as a right child instead
of using an extra label. This simplifies the encoding, and the
practical difference between the coverage of projectivity and
planarity is small (Gémez-Rodriguez and Nivre, 2013).

-
0 1 2 3 4 5 6 7
-ROOT- What country are we talking about ?
<0x \0<0*/1 <0 <0 \0>0*/0 >1x >0%
0010000 0011001 0000000 0000000 1011100 1110000 1010000

Figure 2: A non-projective tree and its 7-bit encoding.

skip dependency creation when the stack is empty,
ignore material left in the stack after decoding,
break cycles and (if we require connectedness)
attach any unconnected nodes to a neighbor.

3 Non-Projective Encoding

For a wider coverage of non-projective dependency
trees (including the overwhelming majority of trees
found in treebanks), we use the same technique as
defined for unbounded brackets in (Strzyz et al.,
2020): we partition dependency trees into two sub-
sets (planes) of arcs (details in Appendix D), and
this lets us define a 7-bit non-projective encoding
by assigning each word w; a label I; = (bg . . . bg),
where:

* bpb; can take values <@ (w; is a left dependent
in the first plane), >0 (right dependent in the
15t plane), <1 or >1 (same for the 2" plane).

* by is true iff w; is the outermost right (or left)
dependent of its parent (regardless of plane).
We represent it as * if true or blank if false.

* b3 (respectively, b,) is true iff w; has one or
more left (right) dependents in the first plane.
We denote it as \@ (/9) if true, blank if false.

* b5 and bg are analogous to b3 and by, but in
the second plane, represented as \1 or /1.

Every 7-bit combination is possible, leading to
128 distinct labels. Figure 2 shows an example of a
non-projective tree represented with this encoding.

The encoding is able to cover every possible
dependency tree whose arc set can be partitioned
into two subsets (planes), such that arcs with the
same direction and plane do not cross.

This immediately follows from defining the de-
coding with a set of four algorithms, two for de-
coding left and right arcs on the first plane (defined
as Algorithm 1 and its symmetric, but consider-
ing only the symbols making reference to arcs in
the first plane) and other two identical decoding
passes for the second plane. With this, injectivity
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Treebank B B-2P 4bit Thit

L C L C L C L C
PTB 114 >99.99| 124 10016 >99.99| 28 100
Russiangsp 104 99.76| 166 >99.99 |16 99.61| 70 >99.99
Finnishrpr 121 99.72| 172 >99.99|16 99.35| 65 >99.99
Anc-Greekperseus | 259 95.81| 527 99.24|16 8893| 128 99.24
Chinesegsp 101 9991 | 152 >99.99|16 99.84| 46 >99.99
Hebrewnts 97 9998 | 125 10016 9998 | 36 100
Tamiltrg 51 99.94 58 100|16 99.98 | 22 100
Uyghurypr 78 99.43| 150 >99.99|16 99.85| 58 >99.99
Wolofwrs 74 99.83| 111 >99.99|16 99.06| 46 >99.99
Englishgwt 110 99.88| 174 >99.99|16 99.75| 63 >99.99
Macro average | 110.9 99.43 1659 99.92|116 98.62(56.2 99.92

Table 1: Number of labels (L) and coverage (C) for each
treebank and encoding. B and B-2P are the baselines.

is shown in the same way as for the 4-bit encoding.
Decoding is still linear-time.

Note that the set of trees covered by the encoding,
described above, is a variant of the set of 2-Planar
trees (Yli-Jyrd, 2003; Gémez-Rodriguez and Nivre,
2010), which are trees that can be split into two
planes such that arcs within the same plane do
not cross, regardless of direction. Compared to 2-
Planar trees, and just like the encodings in (Strzyz
et al., 2020), our set is extended as it allows arcs
with opposite directions to cross within the same
plane. However, it also loses some trees because
the dummy root arc is also counted when restricting
crossings, whereas in 2-Planar trees it is ignored.

4 [Experiments

We compare our 4-bit and 7-bit encodings to their
unbounded analogs, the bracketing (Strzyz et al.,
2019) and 2-planar bracketing encodings (Strzyz
et al., 2020) which overall are the best performing
in previous work (Mufioz-Ortiz et al., 2021). We
use MaChAmp (van der Goot et al., 2021) as a
sequence labeling library, with default hyperparam-
eters (Appendix B). We use XLM-RoBERTa (Con-
neau et al., 2020) followed by two separate one-
layered feed-forward networks, one for syntactic
labels and another for dependency types. We eval-
uate on the Penn Treebank Stanford Dependen-
cies 3.3.0 conversion and on UD 2.9: a set of 9
linguistically-diverse treebanks taken from (An-
derson and Gémez-Rodriguez, 2020), and a low-
resource set of 7 (Anderson et al., 2021). We con-
sider multiple subsets of treebanks as a single sub-
set could be fragile (Alonso-Alonso et al., 2022).
Table 1 compares the compactness of the encod-
ings by showing the number of unique syntactic
labels needed to encode the (unlabeled) trees in the
training set (i.e. the label set of the first task). The
new encodings yield clearly smaller label set sizes,

Treebank B B-2P 4bit 7bit

PTB 94.62  92.03 9472  94.66
Russiangsp 87.84 87.36  88.04  89.58
Finnishrpr 9245 9237 9219 92.74
Anc-Greekpersews | 71.84 7176 67.63  75.36
Chinesegsp 8523 8438 8536  85.70
Hebrewyrs 90.25 9021  90.81  90.58
Tamilrrg 63.65 61.68 6516  65.69
Uyghurypr 67.22 65.49 67.17 69.10
Wolofwrr 75.04 7459 7624 7557
Englishgwr 91.03 9130 8948 9178
Macro average 8192  81.12 81.68  83.08

Table 2: LAS for the linguistically-diverse test sets

Treebank B B-2P 4bit 7hit
Belarusiangsg 8521 86.83  86.77  88.23
GaliciantreeGal 7832 7794  81.54 81.22
Lithuanianysg 5226 4953 5556  56.02
MarathiygaL 62.13 5519  66.50  67.19
Old-East-Slavickne | 64.15 6343 68.96  68.84
Welshceg 81.17 8091 8231  82.00
Tamilrg 63.65 6168 6516 65.69
Macro average 69.56  67.93 7240 7274

Table 3: LAS for the low-resource test sets

as predicted in theory. In particular, the 4-bit en-
coding always uses its 16 distinct labels. The 7-bit
encoding only needs its theoretical maximum of
128 labels for the Ancient Greek treebank (the most
non-projective one). On average, it uses around
a third as many labels as the 2-planar bracketing
encoding, and half as many as the basic bracket-
ing. Regarding coverage, the 7-bit encoding covers
over 99.9% of arcs, like the 2-planar bracketing.
The 4-bit encoding has lower coverage than ba-
sic brackets: both cover all projective trees, but
they differ on coverage of non-projectivity (see Ap-
pendix C for an explanation of the reasons). More
detailed data (e.g. coverage and label set size for
low-resource treebanks) is in Appendix A.

Table 2 shows the models’ performance in terms
of LAS. The 4-bit encoding has mixed perfor-
mance, excelling in highly projective treebanks
like the PTB or Hebrew-HTB, but falling behind in
non-projective ones like Ancient Greek, which is
consistent with the lower non-projective coverage.
The 7-bit encoding, however, does not exhibit this
problem (given the almost total arc coverage men-
tioned above) and it outperforms both baselines for
every treebank: the basic bracketing by 1.16 and
the 2-planar one by 1.96 LAS points on average.’

If we focus on low-resource corpora (Table 3),
label set sparsity is especially relevant so compact-

5In our setup, the basic bracketing encoding baseline beats
the 2-planar baseline on average, contrary to the results in
the papers that introduced them (cf. (Strzyz et al., 2020)).
This likely owes to the architecture used: they used BiLSTMs,
whereas we perform our experiments on a more competitive
architecture with XLM-RoBERTa.
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ness further boosts accuracy. The new encodings
obtain large improvements, the 7-bit one surpassing
the best baseline by over 3 average LAS points.

4.1 Additional results: splitting bits and
external parsers

We perform additional experiments to test imple-
mentation variants of our encodings, as well as to
put our results into context with respect to non-
sequence-labeling parsers and simultaneous work.
In the previous tables, both for the 4-bit and 7-bit
experiments, all bits were predicted as a single,
atomic task. We contrast this with a multi-task
version where we split certain groups of bits to
be predicted separately. We only explore a pre-
liminary division of bits. For the 4-bit encoding,
instead of predicting a label of the form bgb;b2bs,
the model predicts two labels of the form byb; and
babs, respectively. We call this method 4-bit-s. For
the 7-bit encoding, we decided to predict the bits
corresponding to each plane as a separate task, i.e.,
bobobsby and b1bs5bg. We call this method 7-bit-s.
We acknowledge that other divisions could be bet-
ter. However, this falls outside the scope of this
paper.

We additionally compare our results with other
relevant models. As mentioned earlier, alongside
this work, Amini et al. (2023) introduced a parsing-
as-tagging method called hexatagging. In what
follows, we abbreviate this method as 6tg. We
implement 6tg under the same framework as our
encodings for homogeneous comparison, and we
predict these hexatags through two separate linear
layers, one to predict the arc representation and
another for the dependency type. We also consider
a split version, 6tg-s, where the two components of
the arc representation are predicted separately. For
a better understanding of their method, we refer
the reader to Amini et al. and Appendix E. Finally,
we include a comparison against the biaffine graph-
based parser by Dozat et al. (2017). For this, we
trained the implementation in SuPar® using xIm-
roberta-large as the encoder, which is often taken
as a strong upper bound baseline.

Table 4 compares the performance of external
parsers with our bit encodings. First, the results
show that the choice of whether to split labels into
components or not has a considerable influence,
both for 6tg (where splitting is harmful across the
board) and for our encodings (where it is mostly

6https ://github.com/yzhangcs/parser

Treebank 4-bit  7-bit | 6tg  6tg-s 4-bit-s 7-bit-s biaffine
PTB 9472 94.66 | 96.13 96.04 9492 94.88 9532
Russiangsp 88.04 89.58 191.83 90.95 88.78 90.18  90.17
Finnishrpr 92.19 927419412 92.66 92.11 93.10 93.33
Anc-Greekperseus | 67.63 75.36 | 73.12 7278 68.02 76.12  79.81
Chinesegsp 85.36 8570|8739 8732 8599 86.13 88.67
Hebrewnts 90.81 90.58 192.82 91.27 90.81 91.05 91.88
Tamilrrg 65.16 65.69 | 78.33 7632 66.99 67.19 67.52
Uyghurypr 67.17 69.10 | 71.11 6523 67.55 69.13 72.33
Wolofwrr 76.24 75.57(76.04 72.11 76.85 7624 76.73
Englishgwt 89.48 91.78 192,62 90.06 89.48 92.15 92.72
Macro avg 81.68 83.08|85.35 83.47 82.15 83.62 84.85

Table 4: LAS comparison against related parsers, for
the linguistically-diverse test sets.

Treebank 4bit  7bit | 6tg  6tg-s d4bit-s 7bit-s biaffine
Belarusiangsg 86.77 88.23189.14 89.01 87.01 88.52 93.83
GalicianTtyecGal 81.54 81.22]82.03 81.94 8197 8131 86.81
Lithuanianysg 55.56 56.02 | 64.47 64.74 5597 5731 56.75
Marathiypar 66.50 67.19]75.00 74.66 66.92 67.57 61.22
Old-East-Slavicgne | 68.96 68.84|71.35 71.37 69.02 68.86 72.06
Welshcceg 82.31 82.00|87.05 86.92 82.62 82.13 85.05
Tamilrrg 65.16 65.69]78.33 7791 6527 65.82 76.12
Macro average 72.40 7274|7819 78.07 72.68 73.07 75.97

Table 5: LAS comparison against related parsers, for
the low-resource test sets.

beneficial, perhaps because the structure of the en-
coding in bits with independent meanings naturally
lends itself to multi-task learning). Second, on
average, the best (multi-task) version of our 7-bit
encoding is about 1.7 points behind the 6tg and
1.2 behind biaffine state-of-the-art parsers in terms
of LAS. However, the difference between versions
with and without multi-task learning suggests that
there might be room for improvement by investi-
gating different splitting techniques. Additionally,
in Appendix F, Table 14 compares the process-
ing speeds of these parsers (on a single CPU). In
Appendix G, Tables 15 and 16 show how often
heuristics are applied in decoding.

Finally, Table 5 shows the external comparison
on the low-resource treebanks, where our encod-
ings lag further behind biaffine and especially 6tg,
which surpasses 7-bit-s by over 5 points.

5 Conclusion

We have presented two new bracketing encod-
ings for dependency parsing as sequence label-
ing, which use a bounded number of labels. The
4-bit encoding, designed for projective trees, ex-
cels in projective treebanks and low-resource se-
tups. The 7-bit encoding, designed to accom-
modate non-projectivity, clearly outperforms the
best prior sequence-labeling encodings across
a diverse set of treebanks. The source code
is available at https://github.com/Polifack/
CoDelLin/releases/tag/1.25.
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Limitations

In our experiments, we do not perform any hy-
perparameter optimization or other task-specific
tweaks to try to bring the raw accuracy figures as
close as possible to state of the art. This is for sev-
eral reasons: (1) limited resources, (2) the paper
having a mainly theoretical focus, with the exper-
iments serving to demonstrate that our encodings
are useful when compared to alternatives (the base-
lines) rather than chasing state-of-the-art accuracy,
and (3) because we believe that one of the primary
advantages of parsing as sequence labeling is its
ease of use for practitioners, as one can perform
parsing with any off-the-shelf sequence labeling
library, and our results directly reflect this kind of
usage. We note that, even under such a setup, raw
accuracies are remarkably good.

Ethics Statement

This is a primarily theoretical paper that presents
new encodings for the well-known task of depen-
dency parsing. We conduct experiments with the
sole purpose of evaluating the new encodings, and
we use publicly-available standard datasets that
have long been in wide use among the NLP com-
munity. Hence, we do not think this paper raises
any ethical concern.
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A Further Data

Tables 6 and 7 show treebank statistics for the gen-
eral and low-resource set of treebanks, respectively.

Treebank projective  1-planar I arcs avgd
PTB 99.89% 99.89% 48.74% 2295
Russiangsp 93.87% 93.89% 49.03%  2.263
Finnishrpr 93.85% 93.88% 52.88%  2.365
Anc-GreeKperseus 37.66% 37.67% 52.81%  2.447
Chinesegsp 97.75% 97.87% 63.67%  2.440
Hebrewnts 96.26% 96.28% 49.21% 2.242
Tamilrrg 98.33% 98.33% 68.56%  2.262
Uyghurypr 95.02% 96.03% 6431%  2.140
Wolofwrr 97.01% 97.10% 4821%  2.519
Englishgwr 97.47% 97.63% 57.18%  2.525

Table 6: Statistics for the linguistically-diverse set of
treebanks: percentage of projective trees, 1-planar trees,
percentage of rightward arcs (r arcs), and average de-
pendency distance (avg d).

Treebank projective  1-planar rarcs avgd
Belarusianggg 94.92% 95.22% 46.92%  2.232
GaliciantreeGal 88.80% 89.20% 53.02%  2.530
Lithuaniangsg 85.93% 86.69% 5840%  2.321
Old-East-Slavicgne  66.26% 66.35% 5821% 2433
Marathiygar 95.92% 96.35% 50.81%  2.362
Welshccg 98.24% 98.24% 43.94%  2.324
Tamilrg 98.33% 98.33% 68.56%  2.262

Table 7: Statistics for the low-resource set of treebanks:
percentage of projective trees, 1-planar trees, percent-
age of rightward arcs (r arcs), and average dependency
distance (avg d).
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Table 8 shows the number of labels and the arc
coverage of each considered encoding for the low-
resource treebank set of Anderson et al. (2021), in
the same notation as in Table 1. As can be seen in
the table, the trends are analogous to those for the
other treebanks (Table 1 in the main text).

Treebank B B-2P 4bit Thit

L C L C L C L C
Belarusianysg 133 99.53| 228 >99.99(16 99.46| 89 >99.99
GaliciantyeeGal 79 99.51| 129 >99.99 (16 99.52| 60 >99.99
Lithuanianysg 64 98.88 84 99.98|16 98.82| 45 99.98
Marathiypar, 46 99.44 58 10016 99.32| 36 100
Old-East-Slavicgne | 134 97.66| 230 99.94|16 97.46| 86 99.94
Welshcca 53 99.90 71 10016 99.93| 38 100
Tamilrg 51 99.82 58 100 (16 99.84 | 22 100
Macro average 80.0 99.25]122.6 99.99|16 99.19|53.7 99.99

Table 8: Number of labels (L) and arc coverage (C) for
each low-resource treebank and encoding. B and B-2P
are the baselines.

Tables 9 and 10 show the coverage of the en-
codings in terms of full trees, rather than arcs (i.e.,
what percentage of the dependency trees in each
treebank can be fully encoded and decoded back
by each of the encodings).

Treebank B B-2P 4bit 7hit
PTB >99.99% 100% >99.99% 100%
Russiangsp 96.94% 99.92% 95.65% 99.92%
Finnishrpr 99.43% 100% 99.35% 100%
Anc-Greekperseus 72.25% 90.63% 50.48% 90.63%
Chinesegsp 99.30% 100% 98.54% 100%
Hebrewnrs 98.26% 99.89% 97.20% 99.89%
Tamilrrg 99.50% 100% 98.67% 100%
Uyghurypr 97.80% 100% 97.19% 100%
Wolofwrr 97.86% 99.95% 97.25% 99.95%
Englishgwt 98.73% 99.98% 98.18% 99.98%
Macro average 96.01% 99.04% 93.25% 99.04%

Table 9: Full tree coverage for each encoding on the
linguistically-diverse set of treebanks.

Treebank B B-2P 4bit 7bit
Belarusiangsg 96.36%  99.95%  96.22%  99.95%
GalicianTreeGal 92.90%  99.80%  92.60%  99.80%
Lithuaniangsg 88.97%  99.62%  88.97%  99.62%
Old-East-Slavicgne  72.15%  97.75%  72.05%  97.75%
Marathiygar, 97.63% 100% 97.42% 100%
Welshceg 98.88% 100% 98.88% 100%
Tamilyrg 99.50% 100% 98.67% 100%
Macro average 9234%  99.59%  92.12%  99.59%

Table 10: Full tree coverage for each encoding on the
low-resource set of treebanks.

Tables 11 and 12 show the total number of labels
needed to encode the training set for each encod-
ing and treebank, when considering full labels (i.e.,
the number of combinations of syntactic labels and
dependency type labels). This can be relevant for
implementations that generate such combinations
as atomic labels (in our implementation, label com-
ponents are generated separately instead).

Treebank B B-2P 4bit 7Thbit
PTB 1216 1233 396 408
Russiangsp 802 961 400 614
Finnishrpr 1054 1223 435 685
Anc-GreeKperseus 1469 2401 304 1167
Chinesegsp 804 912 321 406
Hebrewyrg 754 798 317 357
Tamilrrg 262 274 153 164
Uyghurypr 553 683 353 475
Wolofwrr 585 643 318 382
Englishgwr 1089 1281 487 709

Macro average 858.8 1040.9 3484  536.7

Table 11: Unique labels generated when encoding the
training sets of the linguistically-diverse set of treebanks,
including dependency types as a component of the la-
bels.

Treebank B B-2P 4bit 7bit
Belarusiangsg 1136 1479 477 926
GalicianTtreeGal 512 601 270 376
Lithuanianysg 398 432 256 306
Old-East-Slavicgnc 910 1181 378 715
Marathiygar. 275 291 197 223
Welshceg 474 514 265 312
Tamilyrg 262 274 153 164
Macro average 566.7  681.7  285.1 431.7

Table 12: Unique labels generated when encoding the
training sets of the low-resource set of treebanks, includ-
ing dependency types as a component of the labels.

B Hyperparameters

We did not perform hyperparameter search, but just
used MaChAmp’s defaults, which can be seen in
Table 13.

Parameter Value
dropout 0.1
max input length | 128
batch size 8
training epochs | 50
optimizer adam
learning rate 0.0001
weight decay 0.01

Table 13: Hyperparameter settings

C Coverage Differences

It is worth noting that, while the 7-bit encoding has
exactly the same coverage as the 2-planar brack-
eting encoding (see Tables 1, 8, 9, 10); the 4-bit
encoding has less coverage than the basic bracket-
ing. As mentioned in the main text, both have full
coverage of projective trees, but there are subtle
differences in how they behave when they are ap-
plied to non-projective trees. We did not enumerate
all of these differences in detail for space reasons.
In particular, they are the following:
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* Contrary to basic bracketing, the 4-bit encod-
ing needs to encode the arc originating from
the dummy root explicitly. This means that it
cannot encode non-projective, but planar trees
where the dummy root arc crosses a right arc
(or equivalently, the syntactic root is covered
by a right arc).

In the basic bracketing, a dependency involv-
ing words w; and w; (7 < j) is not encoded
in the labels of w; and wj, but in the labels
of w; 1 and w; (see (Strzyz et al., 2019)), as
a technique to alleviate sparsity (in the par-
ticular case of that encoding, it guarantees
that the worst-case number of labels is linear,
rather than quadratic, with respect to sentence
length). In the 2-planar, 4- and 7-bit encod-
ings, this is unneeded so dependencies are en-
coded directly in the labels of the intervening
words.

Contrary to basic bracketing, in the 4-bit en-
coding a single / or \ element is shared by
several arcs. Thus, if an arc cannot be suc-
cessfully encoded due to unsupported non-
projectivity, the problem can propagate to sib-
ling dependencies. In other words, due to
being more compact, the 4-bit encoding has
less redundancy than basic bracketing.

D Plane Assignment

The 2-planar and 7-bit encodings need a strategy
to partition trees into two planes. We used the
second-plane-averse strategy based on restriction
propagation on the crossings graph (Strzyz et al.,
2020). It can be summarized as follows:

1. The crossings graph is defined as an undi-
rected graph where each node corresponds
to an arc in the dependency tree, and there is
an edge between nodes a and b if arc a crosses
arc b in the dependency tree.

2. Initially, both planes are marked as allowed
for every arc in the dependency tree.

3. The arcs are visited in the order of their right
endpoint, moving from left to right. Priority
is given to shorter arcs if they have a com-
mon right endpoint. Once sorted, we iterate
through the arcs.

4. Whenever we assign an arc a to a given plane
p, we immediately propagate restrictions in

the following way: we forbid plane p for the
arcs that cross a (its neighbors in the crossings
graph), we forbid the other plane (p’) for the
neighbors of its neighbors, plane p for the
neighbors of those, and so on.

5. Plane assignment is made by traversing arcs.
For each new arc a, we look at the restric-
tions and assign it to the first plane if allowed,
otherwise to the second plane if allowed, and
finally to no plane if none is allowed (for non-
2-planar structures).

E Hexatagging

Amini et al. (2023) use an intermediate representa-
tion, called binary head trees, that acts as a proxy
between dependency trees and hexatags. These
trees have a structure akin to binary constituent
trees in order to apply the tetra-tagging encoding
(Kitaev and Klein, 2020). In addition, non-terminal
intermediate nodes are labeled with ‘L’ or ‘R’ based
on whether the head of the constituent is on its left
or right subtree. We direct the reader to the pa-
per for specifics. However, a mapping between
projective dependency trees and this structure can
be achieved by starting at the sentence’s root and
conducting a depth-first traversal of the tree. The
arc representation components for each hexatag
encode: (i) the original label corresponding to the
tetratag, and (ii) the value of the non-terminal sym-
bol in the binary head tree.

F Speed comparison

Table 14 compares the speed of the models over
an execution on a single CPU.” It is important to
note that while SuPar is an optimized parser, in this
context, we used MaChAmp as a general sequence
labeling framework without specific optimization
for speed. With a more optimized model, practical
processing speeds in the range of 100 sentences per
second on CPU or 1000 on a consumer-grade GPU
should be achievable (cf. the figures for sequence-
labeling parsing implementations in (Anderson and
Gomez-Rodriguez, 2021)).

G Non-Surjectivity in Decoding

As mentioned in the main text, all encodings ex-
plored in this paper are non-surjective, meaning
that there are label sequences that do not corre-
spond to a valid tree. In these cases, the labels

"Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz.

6383



Treebank biaffine 6tg 4bit Thbit
Penn-Treebank 28.34 14.65 14.28 14.42
UD-Russian-GSD 28.15 14.27 14.63 14.30
UD-Finnish-TDT 34.68 18.22 17.56 17.82
UD-Ancient-Greek-Perseus 24.12 12.53 12.93 12.15
UD-Chinese-GSD 22.64 10.78 11.05 10.86
UD-Hebrew-HTB 27.06 13.46 13.15 13.71
UD-Tamil-TTB 29.19 11.98 12.17 12.87
UD-Uyghur-UDT 34.87 18.69 18.01 18.93
UD-Wolof-WTF 28.14 12.61 12.31 12.61
UD-English-EWT 35.02 20.03 19.87  20.17

Table 14: Speed (sentences per second) for the
linguistically-diverse test sets.

Treebank otg 4-bit 7-bit

PTB 4.01% 8.24% 4.13%
Russiangsp 14.42%  1934%  16.57%
Finnishrpy 3.75%  10.01% 8.84%
Anc-Greekperseus | 12.66%  20.08%  18.81%
Chinesegsp 12.31%  22.06% 21.81%
Hebrewnrp 10.82% 16.76%  16.79%
Tamilyrg 29.06%  36.12%  37.67%
Uyghurypr 18.13%  22.19% 18.52%
Wolofwrtr 30.01%  42.15%  50.54%
Englishgwt 4.01% 12.24% 6.48%
Macro average 13.92%  20.92%  20.02%

Table 15: Percentage of trees in the linguistically-
diverse test sets where the label sequence output by the
tagger does not correspond to a valid tree, and heuris-
tics need to be applied to deal with unconnected nodes,
cycles or out-of-bounds indexes.

are decoded using simple heuristics (e.g. skipping
dependency creation if the stack is empty, ignoring
material remaining in the stack after decoding, at-
taching unconnected nodes and breaking cycles).
Table 15 shows data about the number of trees in
the test set such that the labels output by the tagger
do not directly correspond to a valid tree, and at
least one of these heuristics has to be applied. Ta-
ble 16 shows the same information in terms of the
percentage of dependency arcs that are affected by
said heuristics.

Treebank 6tg 4-bit 7-bit

PTB 0.531% 0.941%  0.566%
Russiangsp 0.930% 1.479%  1.200%
Finnishrpr 0.291%  0.987%  0.780%
Anc-Greekperseus | 0.563%  2.291%  1.917%
Chinesegsp 0.705%  1.622%  1.593%
Hebrewyrs 0.550%  0.965%  0.958%
Tamilrrg 2.728% 3.819%  4.280%
Uyghurypr 2.052% 2.801% 2.191%
Wolofwtr 1.853%  3.043%  3.868%
Englishgwt 0.554%  1.523%  0.726%
Macro average 1.075%  1.947%  1.807%

Table 16: Percentage of dependency arcs in the
linguistically-diverse test sets where heuristics need to
be applied to deal with unconnected nodes, cycles or
out-of-bounds indexes.
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