
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6342–6353
December 6-10, 2023 ©2023 Association for Computational Linguistics

Compressing Context to Enhance Inference Efficiency of
Large Language Models

Yucheng Li1 , Bo Dong1 , Frank Guerin1 , Chenghua Lin2,3∗
1 Department of Computer Science, University of Surrey, UK

2 Department of Computer Science, The University of Manchester, UK
3 Department of Computer Science, The University of Sheffield, UK
{yucheng.li, bd00531, f.guerin}@surrey.ac.uk

chenghua.lin@manchester.ac.uk

Abstract

Large language models (LLMs) achieved re-
markable performance across various tasks.
However, they face challenges in managing
long documents and extended conversations,
due to significantly increased computational re-
quirements, both in memory and inference time,
and potential context truncation when the input
exceeds the LLM’s fixed context length. This
paper proposes a method called Selective Con-
text that enhances the inference efficiency of
LLMs by identifying and pruning redundancy
in the input context to make the input more
compact. We test our approach using common
data sources requiring long context processing:
arXiv papers, news articles, and long conver-
sations, on tasks of summarisation, question
answering, and response generation. Experi-
mental results show that Selective Context sig-
nificantly reduces memory cost and decreases
generation latency while maintaining compa-
rable performance compared to that achieved
when full context is used. Specifically, we
achieve a 50% reduction in context cost, re-
sulting in a 36% reduction in inference mem-
ory usage and a 32% reduction in inference
time, while observing only a minor drop of
.023 in BERTscore and .038 in faithfulness
on four downstream applications, indicating
that our method strikes a good balance between
efficiency and performance. Code and data
are available at https://github.com/
liyucheng09/Selective_Context.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable power and impressive generalisation
abilities across a wide range of natural language
processing tasks, as well as real-life applications
(Brown et al., 2020; Touvron et al., 2023; Bubeck
et al., 2023). However, a major challenge for ex-
isting LLMs is processing longer context. Deal-
ing with longer context with LLMs is fundamen-
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Context: Large Languages Models (LLMs) have
shown their ability to perform new tasks, resulting in a
line of work that focuses on further scaling these models.
These efforts are based on the assumption {that more
parameters will lead to better performance.}

Query: What’s the assumption behind the efforts to
further scale LLMs?

LLMs: Further scaling Large Language Models will
lead to better performance on a wide range of tasks.

Figure 1: Some context is redundant because LLMs
have learned that knowledge. LLMs can generate
the correct answer even when these redundancies are
deleted.

tal in scenarios such as having long conversations,
document summarisation, and question answering
given long documents. However, it is very compu-
tationally expensive, particularly with Transformer
based LLMs, due to the quadratic growth of mem-
ory and computation associated with the 2-D at-
tention matrix (Vaswani et al., 2017). This makes
LLMs less accessible and sometimes leads to con-
text truncation during inference. Moreover, due to
the above limitation, existing LLMs were usually
pre-trained with fixed-context windows, which fur-
ther constrains their capability in processing longer
context.

There are active attempts in reducing the compu-
tation and memory cost of the Transformer archi-
tecture with sparse attention (Child et al., 2019) or
local dense attention (Beltagy et al., 2020). There
are also efforts to learn soft prompts with further
distillation to save context cost during inference
(Mu et al., 2023; Chevalier et al., 2023). In contrast
to existing approaches that primarily focus on ar-
chitectures or distillations, we introduce a fresh per-
spective to tackle the redundancy in the input con-
text itself, thus proposing a complementary, model-
agnostic approach that can be potentially combined
with other architecture optimisation methods to fur-
ther enhance inference efficiency.
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The proposed method is motivated by the po-
tential redundancy and repetition in human lan-
guage, which has two main sources. The first
is the inherent redundancy of natural language.
For example, in the conversation "A: Did you get
the chance to pick up groceries today?", "B: Yes,
I did get the groceries.", the underlined part can be
seen as a common redundancy in communication.
Linguistic studies suggest redundancy is ubiqui-
tous in language (Wit and Gillette, 1999). The
other type of input redundancy is from the overlap
with training material. As the example in Fig. 1
shows, if some parts of input have already been
included in the pre-training stage of LLMs, then it
is safe to delete them and the model can still gen-
erate the correct answer. In summary, redundancy
in the input context, while beneficial for human
comprehension, can be superfluous for LLMs and
might lead to unnecessary computational expense.

In this paper, we propose Selective Context,
which prunes redundant content in a given input
context, thereby reducing the computational cost
and making better use of the fixed context length in
LLMs. Selective Context evaluates informativeness
of lexical units (i.e., tokens, phrases, or sentences)
with self-information (Shannon, 1948) computed
by a base causal language model. By selectively
retaining content with higher self-information, our
method provides a more compact and efficient con-
text representation for LLMs to process without
compromising their performance on various appli-
cations.

We evaluate the effectiveness and different set-
tings of Selective Context on arXiv papers, BBC
News, and real conversation on ShareGPT.com
with four NLP tasks: summarisation, question an-
swering, original context reconstruction, and con-
versation. Experimental results demonstrate that
our proposed method can significantly enhance con-
text efficiency of LLMs during inference while
maintaining comparable performance compared to
that achieved when full context is used.

2 Self-Information

Self-information, also known as surprisal or in-
formation content, is a fundamental concept in
information theory that quantifies the amount of
information conveyed by an event given a distribu-
tion (Shannon, 1948). In the context of language
modelling, the event can be regarded as one step
of generation (i.e., a token) and the distribution

corresponds to its output distribution. So the self-
information of a token can be defined as the nega-
tive log likelihood:

I(x) = − log2 P (xt|x0, x1, ..., xt−1) (1)

where I(x) represents the self-information of token
x and P (x) denotes its output probability.

In information theory, self-information mea-
sures the level of surprise or uncertainty associated
with an event; rare events convey more informa-
tion and thus have higher self-information, while
common events convey less information and have
lower self-information. In the context of language
modelling, self-information can be used to assess
the informativeness of lexical units, e.g., words,
phrases, or sentences. Lexical units with lower
self-information are less informative and thus are
more likely to be inferred from the context. As a re-
sult, we may treat these parts of input as redundant
during LLM inference.

In NLP, self-information has been used to
measure surprise in creative language artefacts
(Bunescu and Uduehi, 2022). In addition, related
concepts of self-information such as entropy and
perplexity are widely used in language model opti-
misation and evaluation.

H(S) =
1

N
ΣtI(xt) (2)

PP(S) = 2H(S) (3)

where the entropy H(S) of the sentence S =
(x0, ..., xn) is the average self-information of
words in the sentence, and perplexity PP(S) of
the sentence can be calculated with entropy. The
property of self-information that is especially rele-
vant to our method is the additivity.

I(x0, x1) = − log2 P (x0, x1)

= − log2 P (x0)P (x1|x0)
= − log2 P (x0)− log2 P (x1|x0)
= I(x0)I(x1)

(4)

This means we can calculate the self-information
of a lexical unit by simply summing the self-
information of the tokens in it.

3 Method

Selective Context optimises the input context by
filtering out redundant or non-essential content to
reduce computational cost and make better use of
the limited context window. In implementation,
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Original: INTRODUCTION Continual Learning ( CL ) , also known as Lifelong Learning , is
a promising learning paradigm to design models that have to learn how to perform multiple tasks
across different environments over their lifetime [To uniform the language and enhance the readability
of the paper we adopt the unique term continual learning ( CL ) . ] . Ideal CL models in the real world
should be deal with domain shifts , researchers have recently started to sample tasks from
two different datasets . For instance , proposed to train and evaluate a model on Imagenet first and
then challenge its performance on the Places365 dataset . considers more scenarios , starting with
Imagenet or Places365 , and then moving on to the VOC/CUB/Scenes datasets . Few works propose
more advanced scenarios built on top of more than two datasets.

Filtered: INTRODUCTION Continual Learning ( a promising learning paradigm to design models
have to how across overTo uniform the language and enhance adopt the unique term continual learning

Ideal CL models in should deal domain shifts researchers recently started sample tasks
two different datasets For instance proposed to train and evaluate on Imagenet first challenge
Places365considers more scenarios starting Imagenet or Places365 the VOC/CUB/Scenes datasetsFew
works propose more advanced scenarios built top more than two datasets

Figure 2: A visualisation of selective context. Darker colour indicates larger value of self-information.

we first 1) employ a causal language model such
as GPT (Radford et al., 2019; Brown et al., 2020),
OPT (Zhang et al., 2022), or LLaMA (Touvron
et al., 2023), computing self-information for each
token. We then 2) merge tokens, along with their
corresponding self-information values, into lexical
units, which can be phrases or sentences. This
step is optional if tokens are being used as the
basic units. Finally, 3) we eliminate content that
is deemed least necessary to render the input more
compact.

3.1 Computing Self-Information

Given a context C = x0, x1, ..., xn, where xi de-
notes a token, we use a base language model M to
compute the self-information for each token xt as
follows:

I(xi) = − log2 P (xi|x0, x1, ..., xi−1) (5)

3.2 Merging into Lexical Units

If the content filtering of selective context is di-
rectly performed on the token level, it might lead to
very disjoint context. Therefore apart from token
level filtering, we also conduct the filtering proce-
dure on phrase and sentence level. We call a basic
unit in our filtering a lexical unit, which could be a
token, a phrase or a sentence in our setting.

To enable selective context to work on phrases
and sentences, we merge tokens and their self-
information into lexical units. Each lexical unit u
consists of multiple tokens (xt, ..., xt+α), and we
can calculate its self-information by summing the
self-information of its individual tokens according

to the additivity property of self-information:

I(u) =
α∑

i=t

I(xi) (6)

The NLTK sentence tokenizer is employed to obtain
sentence level lexical units. And we use spacy1 to
merge tokens into noun phrases. We do not merge
verb phrases as it might produce very long phrases.

3.3 Selective Retention of Informative Context
With the self-information of each lexical unit com-
puted, we can now evaluate their informativeness.
Instead of using a fixed threshold or retaining a
fixed number of top k lexical units, we design a
percentile-based filtering approach to adaptively
select the most informative content.

First, we rank the lexical units based on their
self-information values in descending order. Then,
we compute the p-th percentile of self-information
values among all lexical units.

Ip = np.percentile([I(u0), .., I(uk)], p)
(7)

Next, we selectively retain lexical units with self-
information values greater than or equal to the p-th
percentile, constructing a filtered context C ′:

C ′ = Ui | I(Ui) ≥ Ip, 1 ≤ i ≤ n (8)

The percentile-based filtering is a more flexible
approach to retain the most informative content
depending on the distribution of self-information
values in the given context. In Figure 2, we present

1https://spacy.io/api/
pipeline-functions#merge_noun_chunks
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an example on phrase level where p is set to 50,
which means half of phrases are filtered out. In
this case, the context after processing by selective
context only retains 57.2% of tokens, which saves
42.8% of context length.

4 Experiments

The goal of Selective Context is to reduce the redun-
dancy in the input context without compromising
the generation quality of LLMs. As a result, we are
expecting the answers given both selective context
and the original context to be as close as possible.
We take the generated answer given full context
as the reference answer, and compare to the gen-
erated answer given the selective context in our
experiments.

4.1 Datasets

Selective Context prunes redundancy in the input
context to allow very long context processing for
LLMs. However, existing benchmarks for LLMs,
such as MMLU (Hendrycks et al., 2020) and ARC
(Clark et al., 2018), are mostly single round ques-
tion answering and are thus not suitable to evaluate
our proposed method. Therefore, we collect three
test sets consisting of long documents and conver-
sations to evaluate Selective Context. Statistics in
detail are presented in Table 4.
BBC News: A dataset containing news articles col-
lected from the British Broadcasting Corporation
(BBC). This dataset covers a wide range of topics,
including politics, business, sports, and technology.
We use the full content of each news article in our
experiments.
arXiv Articles: A dataset consisting of latest aca-
demic papers, spaning various scientific disciplines,
such as computer science, physics, and mathemat-
ics. As arXiv articles can be quite long, we only
process the first two sections (usually introduction
and background) for each paper in our experiments.
ShareGPT.com: ShareGPT.com is a platform
where ChatGPT users share their surprising and in-
teresting conversation with ChatGPT. This dataset
consists of conversations in different languages and
in various scenarios (e.g., coding, chitchat, writing
assistant, etc.). We use the ShareGPT dataset for
the conversation task in our experiments.

The three evaluation datasets were created care-
fully to avoid data contamination. Data samples in
the BBC News, arXiv, and ShareGPT.com datasets
were all created after March 2023, which is after

the release of all LLMs in our experiments. Con-
sidering some of baseline models are continually
being updated, we employ the latest version re-
leased before 30 March 2023 to make sure models
have never seen our test set in their pre-training and
fine-tuning stage. In addition, as some of LLMs
in our experiments have a max_length of 2048
tokens, we do not include articles or conversations
exceeding this length.

4.2 Models
We test Selective Context on the following models:
GPT-3.5 and GPT-4: GPT-3.5 also known as Chat-
GPT, which is likely to be further fine-tuned from
GPT-3 and InstructGPT. GPT-4 is the latest model
from OpenAI, which has demonstrated substan-
tially improved capability on complex reasoning
compared to its predecessor. GPT-3.5 and GPT-
4 are unfortunately not open-source, we can only
access these models via web api2.
LLaMA-7B, 13B, 30B: LLaMA is a family of
open-source language models released by Meta,
which is reported to outperform GPT-3 with less
parameters. The LLaMA family includes models
with size ranging from 7B to 65B. To investigate
the effect of scaling law to Selective Context, we
experiment with LLaMA with 7B, 13B, and 30B
parameters.
Vicuna-7B, 13B: Vicuna (Chiang et al., 2023) is
a family of open-source language models instruct-
tuned from LLaMA. According to their technical
report, Vicuna models perform quite well on a list
of multitasking benchmarks.

4.3 Tasks and Metrics
We evaluate Selective Context on four tasks:
Original Context Reconstruction: Given a com-
pressed context produced by Selective Context, this
task aims to evaluate whether models are able to
reconstruct the original context. This task assesses
how well the filtered context retains the essential
information from the original context. In our exper-
iments, the compressed contexts are used as input,
and the original contexts are used as reference an-
swers.
Summarisation: Given a context, the task is to
generate a summary that captures the main points
of the document. This task aims to evaluate
whether Selective Context affects the overall un-
derstanding of models on the input contexts. In

2https://platform.openai.com/docs/
api-reference
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our experiments, the input and output are the com-
pressed context and the summaries generated based
on the compressed contexts. Summaries based on
the original (full) contexts are treated as the refer-
ence answers.

Question Answering (QA): Given a document and
a set of questions, the task is to generate answers
based on the information available in the document.
This task aims to evaluate models’ understanding
of a specific query. Here we first generate questions
and answers based on the original context, where
these answers are treated as reference answers, and
then ask LLMs to answer these questions with se-
lective context.

Conversation: This task is only for the ShareGPT
dataset. Given a conversation history and a user
query, the task is to generate a response to the
query based on the previous conversation history.
This task aims to evaluate selective context’s perfor-
mance on conversation. Specifically, we ask LLMs
to answer the users’ last query of ShareGPT con-
versation instances with selective context applied
on the previous conversation history.

We employ four metrics to assess the perfor-
mance of our models on the tasks: BLEU, ME-
TEOR, ROUGE, and BERTScore. BLEU (Pa-
pineni et al., 2002) calculates n-gram precision,
which is the proportion of n-grams in the generated
text that are also present in the reference text. ME-
TEOR (Banerjee and Lavie, 2005) takes additional
features such as synonymy, stemming and word or-
der into consideration, which leads to more compre-
hensive evaluation. ROUGE (Lin, 2004) focuses
on how much of the important information in the
reference text is present in the generated summary.
BERTScore (Zhang et al., 2019) leverages con-
textualised embeddings from pre-trained language
models like BERT, computing the cosine similar-
ity between the generated text and reference text
embeddings to capture semantic similarity more
effectively than traditional n-gram-based metrics.

As mentioned before, we use the generated an-
swers given the full contexts as the reference an-
swers. When testing the deterministic decoding
strategy (greedy decoding), we take one sin-
gle run on full context as the reference answer.
When testing the non-deterministic decoding strat-
egy (temperature = 0.7), we run multiple
times on full context to obtain multiple reference
answers to address the randomness in decoding.
The metrics are computed based on the set of refer-

ence answers. In our experiment, we set the number
of reference answers to 4.

4.4 Experimental Settings

We use the smaller base causal language model
for self-information computing in our experiments.
For the LLaMA family and vicuna family, we em-
ploy LLaMA-7B to compute self-information. For
the OpenAI family, we use a smaller GPT-3 variant
curie for self-information computing, which is
available on OpenAI web API. In self-information
computing, we do not process the entire context
at once. This is due to our observation on the ten-
dency of LLMs to give later lexical units lower self-
information. Instead, we compute self-information
sentence by sentence in our experiments.

In our experiments, we compare the two dif-
ferent dimensions that are adjustable in Selective
Context.
Compression Ratios: We experiment with differ-
ent content reduction ratios in Selective Context:
0.2, 0.35, 0.5, 0.65, and 0.8. These ratios determine
the proportion of content to be filtered out, allow-
ing us to study the trade-off between efficiency and
performance as the amount of retained information
varies.
Lexical Units: Lexical units are the basic element
of content reduction in Selective Context. It can
be sentence, phrases, or tokens. As mentioned in
§3.2, we remove the redundancy in input context
by a specific lexical unit level.

5 Results

Except for §5.5, all results of selective context pre-
sented are at the phrase level (the optimal).

5.1 Overview

In Table 1, we first compare the performance of
Selective Context against the Original Context to
see how well Selective Context preserves useful in-
formation when reducing context cost. The metrics
are averaged across all models mentioned in §4.2.
The performance drop is shown in parentheses.

As demonstrated in the table, using Selective
Context only leads to a marginal drop when the
reduction ratio is set to 0.2 or 0.35, despite it sig-
nificantly reducing the context cost. The BLEU
score drops by only 0.05 when 20% of the con-
tent is reduced. And the number is even smaller
when it comes to ROUGE-1, where the drop is just
0.03. This indicate a high level of consistency be-
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ROUGE BERTScore

Method Ratio BLEU METEOR Rouge-1 Rouge-2 Rouge-L Precision Recall F1

Original - .347 .496 .571 .383 .471 .910 .909 .909

Selective
Context

0.2 .295 (.05) .460 (.04) .540 (.03) .346 (.04) .438 (.03) .905 (.005) .900 (.009) .902 (.007)
0.35 .243 (.10) .421 (.08) .504 (.07) .294 (.09) .396 (.07) .900 (.010) .894 (.015) .897 (.013)
0.5 .179 (.17) .362 (.13) .449 (.12) .237 (.15) .344 (.13) .893 (.018) .882 (.027) .887 (.023)
0.65 .127 (.22) .299 (.20) .391 (.18) .178 (.21) .287 (.18) .885 (.025) .870 (.039) .877 (.032)
0.8 .070 (.28) .224 (.27) .311 (.26) .122 (.26) .225 (.25) .874 (.036) .852 (.057) .863 (.047)

Table 1: Comparing Selective Context to the Original Context with temperature set to 0.7.

ROUGE BERTScore

Ratio BLEU METEOR Rouge-1 Rouge-2 Rouge-L Precision Recall F1

Random deletion 0.20 0.437 0.578 0.666 0.503 0.566 0.892 0.909 0.899
0.35 0.360 0.514 0.629 0.423 0.502 0.879 0.895 0.886
0.50 0.283 0.443 0.576 0.346 0.432 0.867 0.881 0.873
0.65 0.210 0.378 0.522 0.279 0.371 0.855 0.868 0.860
0.80 0.156 0.314 0.450 0.219 0.310 0.843 0.853 0.847

Selective Context 0.20 0.527 0.643 0.714 0.585 0.631 0.930 0.932 0.931
0.35 0.446 0.588 0.679 0.508 0.570 0.915 0.916 0.915
0.50 0.350 0.528 0.642 0.425 0.501 0.900 0.902 0.900
0.65 0.244 0.418 0.557 0.315 0.404 0.886 0.877 0.881
0.80 0.160 0.328 0.464 0.223 0.319 0.875 0.858 0.866

Table 2: Comparing Selective Context to the random deletion baseline when using greedy decoding.

tween answers given selective contexts and original
contexts when the reduction ratio is 0.2. Selective
Context also yields impressive results when 35%
of the content is reduced, with BERT scores around
0.9 and ROUGE-1 scores over 0.5. The drops be-
come noticeable as the reduction ratio rises to 0.5,
where the average BLEU score drops 0.17 and the
average ROUGE-1 drops 0.12. A reduction ratio
of 0.65 and 0.8 tends to be less valuable, as shown
by the 0.18 drop on ROUGE-1 and 0.32 drop on
BERTScore-F1.

We then compare Selective Context against the
Random compression baseline as shown in Table
2. We observe that using Selective Context allows
LLMs to generate very similar answers to the refer-
ence answers (answers given full context) although
we significantly reduce the context cost. Selec-
tive Context maintains BERTScore-F1 above 0.9
when the compression ratio is 0.5 or lower, which
shows a high similarity with the reference answers.
ROUGE demonstrates the same trend: ROUGE-1
continues to be above 0.64 and ROUGE-L keeps
above 0.5 when the ratio is under 0.5. We also
notice that Selective Context is significantly more
effective than the random baseline: Selective Con-
text with compression ratio of 0.5 shows a better
overlapping with the reference answer than Ran-

Ratio #Sorry Answer len. Unfaithfulness

Full 0 160.3 -

0.2 0 156.5 .027
0.35 6 136.0 .050
0.5 4 140.2 .038
0.65 19 131.2 .051
0.8 27 103.7 .086

Table 3: Faithfulness test on gpt-3.5-turbo using
selective context.

dom baseline with only 20% content compression.

5.2 Faithfulness

To evaluate to what extent selective context affects
the faithfulness of the LLMs generated content, we
perform manual tests on our question answering
results based on the idea of Wang et al. (2020). We
evaluate 1000 question-answer pairs (200 for each
ratio) with the following procedure: 1) We first
extract OpenIE tuples from the answers of selective
context, and then 2) manually evaluate whether
each tuple is entailed by the reference answer. If
the model’s answer is "Sorry, I don’t know", we
treat it as "Sorry" cases and do not consider it as
unfaithfulness.

As shown in the Table 3, we find that gpt-3.5
tends to generate shorter answers or refuses to an-
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Figure 3: Performance of selective context on different tasks. x-axix represents compression ratios (same below).

Figure 4: Acceptance rate of generated summaries.

swer the questions if it fails to identify necessary
evidence in the given selective context. With a
compression ratio of 0.65, gpt-3.5 refuses to an-
swer 19 questions (9% of 200), and the answers are
35% shorter than the reference answer (131 tokens
in average). However, selective context doesn’t
significantly affect the faithfulness across all com-
pression ratios. About 3.8% of all tuples are not
entailed by the reference answer when the compres-
sion ratio is 0.5, and this number rises slightly to
5.1% as the compression ratio increases to 0.65.

5.3 Tasks

In this part, we break down and analyse the perfor-
mances of Selective Context in the four different
NLP tasks: summarisation, question answering,
original context reconstruction, and conversation.
The results are as shown in Fig. 3. First, the re-
sults on the Original Context Reconstruction task
(RC) show the steepest drop with increasing com-
pression ratio, however, Selective Context allows
LLMs to preserve most of the key points in the

Figure 5: Effects of lexical units.

original context when the reduction ratio is lower
than 0.5, as demonstrated by a rather high ROUGE
score. Second, we notice that the curves of question
answering and summarisation decrease gradually
and are continually higher than those of the other
two tasks evaluated by BERTScore. We could say
Selective Context is especially suitable for tasks of
summarisation and answer generation.

5.4 Scaling and Instruct-Tuning

We perform human evaluation to explore the ef-
fect of model scales and supervised instruct-tuning
on Selective Context. We asked three college stu-
dents to evaluate 1150 generated summaries from
llama and vicuna (about 55 per model and ra-
tio) and record whether they accept the generation
as a reasonable summary. As shown in Figure
4, we find no specific trends between the scales
and generation quality given Selective Context.
The vicuna family demonstrates similar sum-
marisation capability with 7b and 13b parame-
ters. And so does the llama family, larger models
do not show stronger robustness towards Selec-
tive Context. But instruct-tuned model vicuna
demonstrates significantly superior performance
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Original Context, CUDA Memory = 77,695 MB; Time = 110.8 ms/token

Please see the original document and summary given full context in Appendix B.

Selective Context, Ratio: 0.5, CUDA Memory = 61,885 MB, Time = 76.3 ms/token,
Time to construct selective context = 46.1 ms

[1]The above paragraph discusses the use of probabilistic methods, safety distance-based control methods,
and trajectory prediction methods for assisting vehicles in avoiding collisions. [1]It mentions that CNN
has made outstanding contributions in vision tasks, particularly in road condition inspection, due to its
excellent regional feature extraction capabilities. However, the performance of CNN-based models for
vision tasks is inferior to EfficientNets RepVGG, due to the huge differences between sequential tasks
in NLP and image tasks in CV, the difficulty in keeping the original information of inputs after RNN
layers, and the computational and memory requirements of switching layers. The paragraph introduces a
new network structure called Sequential Spatial Network (SSN) blocks, which overcomes the limitations
of traditional CNN-based models. [2]The SSN block consists of convolutional layers, Upsampling
Convolutional Decreasing (UCD) blocks, and Reinforcement Region Unit and Fast MultiHead Self-
Attention (FMHSA) to enhance local information and improve normalization capability. The paragraph
concludes by stating that the SSN network outperforms existing methods on the Lykit dataset and can be
easily transferred for image classification tasks.

Figure 6: Comparing the summary generated by vicuna_13b given original context and selective context.

than llama models given selective context indi-
cating instruct-tuning might help the model to be
more robust against context compression. Given se-
lective context, llama models often fail to follow
instructions and go wild very easily.

5.5 Lexical Units

We test the effect of Selective Context based on
different lexical units: tokens, phrases, and sen-
tences via BERTScore-F1. As shown in Table 5,
employing phrase as the basic lexical units in Selec-
tive Context is the optimal approach, consistently
outperforming the other two variants, followed by
token-level Selective Context. Removing redun-
dancy at sentence-level is a rather unstable imple-
mentation compared to the token and phrase-level.
This experiment indicates that a reasonable granu-
larity can be crucial in Selective Context.

5.6 Case Study

To have a straightforward impression on how well
LLMs generate with selective context, we present
two summaries given the full and selective context
respectively in Figure 6. The original document
and processing to obtain selective context are pre-
sented in Appendix B.

We first found that preparing selective context is
extremely efficient. It takes a one-time cost of 46.1
ms to build selective context for the example para-
graph, which includes computing self-information

and performing lexical unit tokenisation. This en-
sures that the initial stage of establishing a selective
context incurs very little overhead. Secondly, it
shows selective context significantly reduces the
memory usage of the GPU and accelerates the gen-
eration process. With a compression ratio of 0.5,
selective context reduces about 36% of the mem-
ory cost in inference and makes generation 1.32
times faster (per token). By comparing the content
of the two summaries, we see that the summary
given selective context missed relevant information
about the research background (as denoted by the
[1] marker), such as the use of machine learning in
autonomous driving technology and instead starts
with the different methods directly. This is due
to the background parts not being selected and re-
moved as redundancy before feeding to vicuna.
We tried to ask vicuna

"what is the background of this study?",
given the selective context, and obtained a decent
answer:

"the research background of this paper is likely
to be situated in the domain of autonomous driv-
ing technology and the application of artificial in-
telligence (AI) for improving vehicle safety and
decision-making capabilities.".

This demonstrates that LLMs are likely to be
able to infer the deleted parts of background infor-
mation in the selective context. Selective context
also affects vicuna’s decision on what informa-
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tion should be included in the summary as the sec-
ond summary includes details about, for example,
FMHSA and UCD block (as denoted by the [2]

marker) which are not covered in the summary gen-
erated with the full context. We find no factual
errors in the summary given selective context.

6 Conclusion

We introduced Selective Context to improve the
context efficiency of LLMs in inference by deleting
redundant content measured by self-information.
Our extensive experiments on arXiv papers, BBC
news articles, and conversation transcripts showed
that our proposed method can significantly reduce
GPU memory cost, accelerate generation with mi-
nor performance decrease, and potentially enable
LLMs to handle long documents and extended con-
versations without the risk of context truncation.

7 Limitations

Selective Context demonstrates promising results,
but it is still necessary to note a couple of poten-
tial limitations. Firstly, our approach is somewhat
influenced by the phrase boundary detection pro-
cedure. We employ the noun phrase tokenisation
algorithm provided by spacy in our experiments.
However, we do not consider verb phrases as there
is no mature solution for verb phrase tokenisation.
We speculate that we can achieve better compres-
sion performance with dependency tree-based fil-
tering procedure which might lead to better bound-
ary identification of lexical units. Secondly, in the
experiment section, we use percentile to control
the pruning process. However, the optimal com-
pression percentile varies based on specific tasks
and context. Developing a tool to find the optimal
threshold can further enhance the effectiveness of
selective context.
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A Dataset statistics

Dataset #Doc #Sent #Phrase #Token

Arxiv 408 28.20 514.55 864.85
ShareGPT 470 27.35 389.42 689.32
BBC 294 25.63 523.96 732.54

Table 4: Statistics of the three datasets. #Sent, #Phrase,
#Token are averaged per document.

B Example of selective context on long
context

Here we present an example of selective con-
text on a rather long context. The original para-
graphs is from https://arxiv.org/abs/
2303.07352. The original paragraphs is shown
in Fig. 7. The resulting context is shown in Fig. 8.
The reference summary is given in Fig. 9.

C The Previous Version of Selective
Context

If you’re looking for the previous of the paper,
please check (Li, 2023).
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INTRODUCTION In the past many years , researchers have focused on how to turn vehicles from
assisted driving to more intelligent autonomous driving . Due to the iteration of intelligent hardware
and the improvement of chip computing power , a large amount of data collected by sensors can be
quickly converted and fed into models to make decisions . In the driving process , the safety factor
is the first consideration for users and researchers . Therefore , how AV should avoid collisions
has become a top priority . Concepts such as probabilistic methods ( eg . : Markov chains and
Monte Carlo ) , safety distance-based control methods , and trajectory prediction methods have been
designed in recent years to cope with complex traffic conditions . In terms of vision , CNN has made
outstanding contributions and has been applied to a large number of road condition inspection tasks
due to its excellent regional feature extraction capabilities . The local feature information obtained by
CNN will be used for obstacle detection . Secondly , because the motion trajectory is planned for AV
, the relationship between each local feature of the image obtained by CNN needs to be established .
Some strategies are based on CNN plus RNN so that they can deal with sequential graphs as input
, eg . : STDN . Although the above strategies have performed well in a large number of vision tasks
, their performances are still far inferior to similar-sized convolutional neural networks counterparts
, such as EfficientNets and RepVGG . We believe this is due to the following aspects . First
, the huge differences between the sequential tasks of NLP and the image tasks of CV are
ignored . For example , when the local feature information acquired in a two-dimensional image
is compressed into one-dimensional time series information , how to achieve accurate mapping
becomes a difficult problem . Second , it is difficult to keep the original information of inputs
since after RNN layers , we need to recover the dimension from one to three . Besides , due
to the several transformations between different dimensions , that process becomes even harder ,
especially since our input size is 224×224×5 . Third , the computational and memory requirement
of switching between layers are extremely heavy tasks , which also becomes a tricky point for
the algorithm to run . Higher hardware requirements as well as more running time arise when
running the attention part . In this paper , we propose a new network structure based on CNN and
attention to vision tasks in autonomous driving .The new network structure overcomes these problems
by using Sequential Spatial Network (SSN) blocks . As shown in Fig . , input images first go
through the convolution stem for fine-grained feature extraction , and are then fed into a stack of
SSN blocks for further processing . The Upsampling Convolutional Decreasing (UCD) blocks are
introduced for the purpose of local information enhancement by deep convolution , and in SSN block
of features generated in the first stage can be less loss of image resolution , which is crucial
for the subsequent trajectory adjustment task . In addition , we adopt a staged architecture design
using five convolutional layers with different kernel sizes and steps gradually decreasing
the resolution ( sequence length ) and flexibly increasing the dimensionality . Such a design helps
to extract local features of different scales and , since the first stage retains high resolution
, our design can effectively reduce the resolution of the output information in the first layer
at each convolutional layer , thus reducing the computational effort of subsequent layers .
The Reinforcement Region Unit ( RRU ) and the Fast MultiHead Self-Attention (FMHSA ) in
the SSN block can help obtain global and local structural information within the intermediate features
and improve the normalization capability of the network . Finally , average pooling is used to obtain
better trajectory tuning . Extensive experiments on the lykit dataset demonstrate the superiority of
our SSN network in terms of accuracy . In addition to image classification , SSN block can be easily
transferred to other vision tasks and serve as a versatile backbone.

Figure 7: Selective context on the introduction of https://arxiv.org/abs/2303.07352
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In researchers how turn vehicles assisted driving more intelligent autonomous drivingDue the iteration
intelligent hardware the improvement chip computing power collected quickly converted fed
models In the driving process the safety factor users researchers Therefore how AV should avoid
collisions has Concepts such probabilistic methods ( eg . : ) , safety distance-based control methods
, trajectory prediction methods designed cope complex traffic conditions In terms vision
CNN made outstanding contributions and applied road condition inspection tasks due
its excellent regional feature extraction capabilities The local feature information obtained CNN
will obstacle detection Secondly because the motion trajectory planned for AV the relationship
each local feature obtained CNN needs established Some strategies based CNN plus RNN so
deal sequential graphs as input eg STDN . Although the above strategies performed vision tasks
their performances inferior EfficientNets RepVGG . We believe this due the following aspects
First the huge differences the sequential tasks NLP the image tasks CV ignored For example when
the local feature information acquired compressed how achieve accurate mapping becomes Second
difficult keep the original information of inputs since after RNN layers recover the dimension from
one three Besides due the several transformations between different dimensions that process becomes
especially our input size 224×224×5 Third , the computational and memory requirement switching
layers are extremely heavy tasks also becomes a tricky point Higher hardware requirements as
running arise the attention part In CNN attention to vision tasksThe new network structure overcomes
Sequential Spatial Network (SSN) blocks As shown Fig , input images first go the convolution stem
for a stack SSN blocks The Upsampling Convolutional Decreasing (UCD) blocks introduced for
local information enhancement deep convolution , in SSN block of features generated in can
less loss of image resolution crucial the subsequent trajectory adjustment task In addition we
adopt a staged architecture design using five convolutional layers steps gradually ( sequence length
flexibly Such a design helps extract local features different scales , since the first stage retains
high resolution our design effectively reduce the output information atThe Reinforcement Region Unit
and the Fast MultiHead Self-Attention (FMHSA in the SSN block can help obtain within
the intermediate features and improve the normalization capability Finally average pooling
better trajectory tuning Extensive experiments the lykit dataset demonstrate our SSN network In
addition image classification SSN block can easily transferred and serve a versatile backbone.

Figure 8: The resulting context

Given Original Context, CUDA Memory = 77,695 MB; Time = 110.8 ms/token

The paragraph discusses the development of autonomous driving technology and the use of artificial
intelligence and machine learning to make decisions in the driving process. The safety of the vehicle
is a top priority and methods such as probabilistic methods, safety distance-based control methods, and
trajectory prediction methods have been developed to cope with complex traffic conditions. The use
of convolutional neural networks (CNN) has been successful in image tasks such as obstacle detection,
but the performance of these networks is still inferior to similar-sized convolutional neural networks
counterparts. This is due to the huge differences between the sequential tasks of NLP and the image
tasks of CV, the difficulty of keeping the original information of inputs, and the heavy computational
and memory requirement of switching between layers. The authors propose a new network structure
based on CNN and attention to vision tasks in autonomous driving, using Sequential Spatial Network
(SSN) blocks. The network structure overcomes these problems by using deep convolution and attention
mechanisms to extract local and global features, and reducing the computational effort of subsequent
layers. The proposed network structure is evaluated on the lykit dataset and shows superior performance
in terms of accuracy. B.

Figure 9: The reference summary generated by vicuna-13b given the full context.
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