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Abstract

Open Information Extraction (OpenIE) is a tra-
ditional NLP task that extracts structured infor-
mation from unstructured text to be used for
other downstream applications.Traditionally,
OpenIE focuses on extracting the surface forms
of relations as they appear in the raw text,
which we term extractive OpenIE. One of the
main drawbacks of this approach is that implicit
semantic relations (inferred relations) can not
be extracted, compromising the performance
of downstream applicationsIn this paper, we
broaden the scope of OpenIE relations from
merely the surface form of relations to include
inferred relations, which we term abstractive
OpenIE. This new task calls for the devel-
opment of a new abstractive OpenIE training
dataset and a baseline neural model that can
extract those inferred relations. We also demon-
strate the necessity for a new semantics-based
metric for evaluating abstractive OpenIE ex-
tractions. Via a case study on Complex QA,
we demonstrate the effectiveness of abstractive
OpenIE. 1

1 Introduction

Open Information Extraction (OpenIE) is the task
of extracting relation tuples from unstructured text
(Etzioni et al., 2008; Mausam et al., 2012; Angeli
et al., 2015). Unlike traditional information extrac-
tion, OpenIE is open domain, intended to be easy
to deploy in different domains without fine-tuning.
These relations can then be used in downstream ap-
plications like summarization (Zhang et al., 2021),
question-answering (Lu et al., 2019), and knowl-
edge base population (Kroll et al., 2021). In or-
der to support these applications, OpenIE needs
to extract as many different types of relations as
possible. One particular relation type of interest
is "Inferred Relations". We define an "Inferred

1Code and models are available at https://github.com/
kevinpei/AbstractiveOpenIE

Sample Sentence
Tokyo, officially Tokyo Metropolis, is the capital
city of Japan and one of its 47 prefectures.

Extractive {Tokyo; is; the capital city of Japan}
OpenIE Extractions {Tokyo; is; one of its 47 prefectures}

{Tokyo; is; the capital city of Japan}
Abstractive {Tokyo; is officially; Tokyo Metropolis}
OpenIE Extractions {Tokyo; is; a prefecture} or

{Tokyo; is; one of Japan’s 47 prefectures}

Table 1: Examples of relations that extractive OpenIE
models can not extract. In this sentence, the apposition
"officially Tokyo Metropolis" has no predicate but still
has a relation with the noun "Tokyo". In the last abstrac-
tive relation, "one of its 47 prefectures" is meaningless
without the context of the rest of the sentence. It would
be more useful to replace the object with "a prefecture"
or "one of Japan’s 47 prefectures", neither of which
appear in the sentence. Preexisting OpenIE models can
not extract these abstractive relations.

Relation" to be a relation where the predicate con-
tains words that are not in the original sentence.
For example, given the sentence "Albert Einstein
(14 March 1879 - 18 April 1955) was a German-
born theoretical physicist", the relation (Albert Ein-
stein, died on, 18 April 1955) can be inferred even
though "died on" is not in the original sentence. Ex-
tracting inferred relations increases recall, which
is explicitly desired by various downstream tasks
including question-answering, slot filling, event
schema induction, summarization, and knowledge
base population (Pei et al., 2022). Based on the
number of inferred relations in the manually an-
notated dataset WiRe57, extracting inferred rela-
tions could increase the total number of relations
extracted by 50% (Léchelle et al., 2018). Exist-
ing neural OpenIE models struggle to extract these
inferred relations, with only one previous model,
OpenIE6, including hand-written rules to extract
only some cases of inferred relations (Kolluru et al.,
2020a). Table 1 has an example of an inferred rela-
tion.

Another problem is that the extraction is very de-
pendent on the sentence’s syntax. For downstream
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applications using OpenIE, it is important to be
able to extract either different surface forms of a
relation or its canonical form. The surface form
refers to how it appears within the text, while the
canonical form refers to the semantic meaning. In
question answering (QA), several methods repeat-
edly paraphrase the questions so that the surface
forms of extracted relations match at least one of
the question paraphrases, indicating that extracting
more surface forms of relation would answer more
questions (Fader et al., 2013, 2014; Yin et al., 2015).
In addition, the more complex a sentence’s syntax
is, such as having more clauses, the more difficult
it is to extract high-quality relations. An illustrative
example of how being limited to extracting surface
forms can be found in Table 1.

By design, all existing neural OpenIE models are
unable to extract these abstractive relations, which
could be utilized by the downstream application.
Therefore, in this work, we propose an abstractive
Open Information Extraction (abstractive OpenIE)
task. The purpose of this task is to extract relation
tuples that are far beyond the reach of any existing
OpenIE tasks. We define abstractive OpenIE as a
task that given an input sentence generates ordered
tuples in the form of (subject, predicate, object)
for all possible relations (inferred or non-inferred)
within the sentence.

Although not explicitly defined as such, exist-
ing neural models often treat OpenIE as a labeling
problem, where tokens are labeled as being part
of the subject, predicate, or object of a relation
(Kolluru et al., 2020a; Vasilkovsky et al., 2022).
Even in cases where OpenIE is defined as a genera-
tive problem, the generated relations don’t contain
words outside the vocabulary of the original sen-
tence (Kolluru et al., 2020b) (Han and Wang, 2021).
Due to the labeling problem definition, prior neural
OpenIE models struggle to extract relations with
predicates that don’t appear in the original sentence.
We refer to all preexisting neural OpenIE models
as extractive OpenIE methods, because they can
only generate relations by extracting tokens from
the original sentence.

One such attempt to go beyond extractive Ope-
nIE is the OpenIE6 model Kolluru et al. (2020a).
It explicitly concatenates manually defined out-of-
vocabulary tokens at the end of each sentence to
allow for the extraction of specific inferred rela-
tions. However, obtaining such a list is non-trivial
and can not scale to every domain. We differ from

OpenIE6 in the sense that abstractive OpenIE mod-
els trained on abstractive OpenIE training datasets
generate this inferred relation on the fly and do
not require defining a list of out-of-vocabulary to-
kens. Therefore, in this paper, we derive abstractive
OpenIE training datasets from existing information
extraction datasets and train a baseline machine-
learning model that extracts abstractive relations.

Further, we also develop an abstractive OpenIE
evaluation metric to evaluate the quality of abstrac-
tive OpenIE models. Our problem warrants a new
evaluation metric because all the existing OpenIE
evaluation metrics are lexical and evaluated based
on the token overlap between the predicted rela-
tions and the gold standard relation. These lexical
metrics are undesirable for the proposed task as
the relations extracted using the abstractive Ope-
nIE model do not have to use the tokens present
in the input sentence. Therefore, we propose a
semantics-based metric for evaluating abstractive
OpenIE models.

In summary, our contributions are as follows:

• We propose an abstractive OpenIE task to
expand the scope of OpenIE extractions com-
pared to prior extractive OpenIE models.

• We derive an abstractive OpenIE training
dataset and develop an initial abstractive Ope-
nIE model as a baseline.

• We propose a general-purpose semantics-
based evaluation metric for evaluating any
OpenIE model.

• We perform a comprehensive comparison be-
tween abstractive and extractive OpenIE mod-
els.

2 Related Work

OpenIE Datasets: Given how data-hungry deep
learning models are and how costly it is to manu-
ally label OpenIE datasets, most OpenIE training
sets are weakly labeled using high-confidence ex-
tractions from prior OpenIE models to get "silver-
standard" labels. For example, the CopyAttention
(Cui et al., 2018), SpanOIE (Zhan and Zhao, 2020),
and OIE4 (Kolluru et al., 2020b) training sets are
created from high-confidence OpenIE4 extractions
from Wikipedia. LSOIE (Solawetz and Larson,
2021) is instead created from examples from the
QA-SRL 2.0 dataset. Because traditional OpenIE is
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Dataset Number of
Sentences

Number of
Relations

Number of Relations
with Inferred Predicates

Number of Relations with
Inferred Predicates or Arguments

Training
Sets

OIE4 90K 160K 0 0
OIE4 Backtranslated 44K 61K 19K 48K
OIE4 with SuRE
Relations

90K 178K 16K 16K

OIE4 Backtranslated
with SuRE Relations

44K 69K 26K 56K

Test
Sets

WiRe57 57 343 116 120
CaRB 634 2715 736 798
ReOIE2016 683 1508 155 156
LSOIE 2402 5371 0 0

Table 2: Comparison of the attributes of different datasets. SuRE is the relation extraction model we use to obtain
additional inferred relations for training (Lu et al., 2022).

Sample Sentence The purse contains the seal of Order of the Garter.

Back Translated Sentence In the handbag is the seal of the Order of the Garter.

Relations {The purse; contains; the seal of Order of the Garter}

Table 3: An example of paraphrasing via back translation. The sentence is from the OIE4 training set.

extractive, there are no inferred relations in OpenIE
training sets, with only hand-labeled benchmarks
containing inferred relations. As a result, these
training sets are not well-suited for training an ab-
stractive OpenIE model.

In contrast, there are several benchmarks with
inferred relations. WiRe57 (Léchelle et al., 2018)
is 57 manually annotated sentences. CaRB (Bhard-
waj et al., 2019) uses crowdsourcing to re-annotate
the sentences in the OIE2016 benchmark, the first
commonly used OpenIE benchmark (Stanovsky
and Dagan, 2016). ReOIE2016 (Zhan and Zhao,
2020) is a different manual re-annotation of
OIE2016 to attempt to resolve problems arising
from incorrect extractions. LSOIE also has its own
benchmark created using the same method as its
training set. WiRe57, CaRB, and ReOIE2016 all
contain inferred relations, making them useful for
evaluating abstractive OpenIE.
OpenIE Models: OpenIE6 is a neural OpenIE
model that performs BIOES tagging for the subject,
predicate, and object of each relation (Kolluru et al.,
2020a). At the end of each sentence, it appends the
tokens "be", "of", and "from" so that they can also
be tagged as part of the predicate. However, this
method limits inferred relation extraction to only
those containing the tokens they manually specify
and doesn’t help with the issue of extracting only
the surface form of the relation.

IMoJIE is an OpenIE model that tries to reduce
the redundancy of relations by appending extracted

relations to the end of each sentence (Kolluru et al.,
2020b). This new sentence is then given as input
so the model can identify what relations have pre-
viously been extracted at the cost of significantly
reduced extraction speed. Although it uses a gen-
erative neural model, IMoJIE relies on its copy
mechanism to extract relations, so its vocabulary
is limited so that it only generates tokens that are
within the original sentence. In addition, the fo-
cus on reducing redundancy means it is also con-
strained to extracting only a single surface form of
each relation in each sentence.

Gen2OIE is an OpenIE model that fine-tunes a
seq2seq model to generate relations (Kolluru et al.,
2022). It follows a two-stage approach, where pred-
icates are first extracted, then arguments are ex-
tracted for each predicate. Unlike previous OpenIE
models, Gen2OIE can generate relations using to-
kens that do not appear in the original sentence.

Closed Information Extraction (CIE) is a related
task where relations within an existing KB are ex-
tracted from unstructured text. GenIE proposes a
generative model to perform this task (Josifoski
et al., 2021). However, CIE is an inherently more
limited task than OpenIE due to its dependence on
a preexisting domain. CIE models are unable to ex-
tract relations from new and emerging domains and
require human effort to transfer to new domains.
OpenIE Evaluation Metrics: Existing OpenIE
metrics are lexical. This means that extracted re-
lations are evaluated based on the token overlap
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Sample Sentence In 569, unopposed, Alboin took northern Italy’s main city, Milan.

Extractive Relations {Alboin; took; In 569 nothern Italy’s main city, Milan}

SuRE-Extracted Relations {northern Italy’s main city; is also known as; Milan}

Table 4: An example of data augmentation via relation extraction. The method used for relation extraction is SuRE
(Lu et al., 2022). The sentence is from the OIE4 training set.

between the predicted relations and the gold stan-
dard relations. In particular, OIE2016 is based on
tuple-level matching, treating relations extraction
as a binary classification problem where a gold
standard relation is extracted if a predicted relation
contains a majority of tokens in the gold standard
relation (Stanovsky and Dagan, 2016). WiRE57
and CaRB use token-level matching, where pre-
dicted relations are evaluated based on the token
overlap between the best matches between the pre-
dicted and gold standard relations (Léchelle et al.,
2018) (Bhardwaj et al., 2019). Because the abstrac-
tive relations extracted using abstractive OpenIE
do not have to use the original sentence’s tokens,
evaluating them using lexical metrics is undesir-
able.

There has been previous interest in semantics-
based metrics for evaluating abstractive summa-
rization and machine translation. BERTScore is
a popular metric that calculates the cosine simi-
larity between the BERT contextual embeddings
of each token in the document and each token in
the summary. The highest total similarity score
possible from the mapping of tokens in the docu-
ment to tokens in the summary is then chosen as
the BERTScore (Zhang et al., 2019). In theory, this
metric would take into account the context of each
word, which would capture the semantics of each
word. However, it has been found that BERTScore
may still be insufficient in cases where individ-
ual tokens like negations significantly change the
meaning of the sentence, even if it is marginally
better than lexical methods like BLEU, ROUGE,
and METEOR (Saadany and Orasan, 2021).

3 Abstractive OpenIE

Abstractive OpenIE is defined as a task that gener-
ates ordered tuples in the form of (subject, predi-
cate, object) for all possible relations (inferred or
non-inferred) within a given sentence. In this sec-
tion, we will describe all the pieces required to
accomplish this task.

3.1 Training Sets

Although there are existing OpenIE training sets,
they do not fit our goals because they are purely
extractive. The training set needs to contain in-
ferred relations so that trained models can extract
inferred relations. To address this problem, we use
two methods to derive abstractive OpenIE training
sets from OIE4, a preexisting OpenIE training set:
Paraphrasing Via Back Translation

Back translation is the translation of a text into
a different language, then translation back into the
original language (Edunov et al., 2018). The result-
ing text should retain the same semantic meaning,
but may differ in the specific words or syntax used.
To generate abstractive OpenIE training data, we
generate back translations of the sentences but re-
tain the gold standard relations. Because the back
translated sentences use different words and syntax,
the gold standard relations may no longer consist
of only words from the original sentence, thus be-
coming inferred relations. We provide an example
in Table 3.

When generating paraphrases, we need to make
sure that the paraphrased sentence has the same
semantic meaning as the original sentence and con-
tains the same relations. Thus, we perform a val-
idation step where we use entailment to measure
the quality of the paraphrase. During this step,
we use three measures to ensure the quality of
the paraphrase. We measure whether the original
sentence entails the paraphrase to ensure the para-
phrase doesn’t contain extraneous information not
in the original sentence. We measure whether the
paraphrase entails the original sentence to ensure
the paraphrase contains all information present in
the original sentence. Finally, we measure whether
the paraphrased sentence entails all of the gold stan-
dard relations to ensure that the relations are the
same for the original sentence and the paraphrase.
If any of these hypotheses does not have an entail-
ment confidence above a certain threshold, then we
do not use the paraphrase in the training data.
Data Augmentation Via Relation Extraction

Although paraphrasing can create inferred rela-
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Sample Sentence Sharon had been in a coma since suffering a stroke in January 2006.

Sample Relations {Sharon; had been; in a coma}
{Sharon; suffering; a stroke in January 2006}

Sample Predicate predicates: Sharon had been in a coma since suffering a stroke in January
Prediction Input 2006. [pred] had been [pred] suffering

args: Sharon had been in a coma since suffering a stroke in January
Sample Argument 2006. [pred] had been [arg1] Sharon [arg2] in a coma
Prediction Inputs args: Sharon had been in a coma since suffering a stroke in January

2006. [pred] had been [pred] suffering [arg1] Sharon [arg2] a stroke in
January 2006

Table 5: Illustrative training example. For each sentence, there is one predicate prediction example and a number of
argument prediction examples equal to the number of gold standard relations. The model first extracts all predicates,
then for each predicate extracts the arguments.

tions in that the words used may not match the sen-
tence exactly, the relations remain fundamentally
the same. The inferred relations that the bench-
marks such as WiRe57 contain are not derived
from paraphrases of the sentence, so creating para-
phrases as training data for them is not appropriate.
Instead, we augment the data with additional in-
ferred relations derived using relation extraction
(RE). We provide an example in Table 4.

RE also aims to extract relations from unstruc-
tured text, but instead of being completely open
domain, RE is limited to extracting a specific set
of relations that must be defined beforehand (Bach
and Badaskar, 2007). However, those relations
may take a variety of surface forms. For instance,
the relation "country_of_birth" could take the form
"Einstein was born in Ulm", "Einstein (born 14
March 1879 in Ulm)", other forms. We thus use
RE models to extract additional inferred relations
for abstractive OpenIE training. To ensure quality
and prevent redundancy, we only keep extracted
relations above a certain level of confidence and
which are not entailed by or entail preexisting Ope-
nIE gold standard relations.

3.2 Benchmarks
In contrast to existing OpenIE training dataset,
there are several OpenIE benchmarks which con-
tain inferred relations because they were manu-
ally annotated or used crowdsourcing for anno-
tation. For evaluation, we use WiRe57, CaRB,
Re-OIE2016, and LSOIE test sets. Each of these
benchmarks contains a different proportion of in-
ferred relations, in Table 2. In particular, the man-
ual annotation of WiRe57 makes prior extractive
OpenIE methods perform poorly compared to their
performance on other OpenIE benchmarks. Unlike

the other benchmarks, LSOIE contains no inferred
relations at all, meaning in theory extractive Ope-
nIE methods should be able to extract all relations.
Thus, we can use performance on LSOIE to di-
rectly compare abstractive OpenIE and extractive
OpenIE models on the extractive OpenIE task.

Statistics for the derived training sets and bench-
marks is available in Table 2.

3.3 Abstractive Tuple Generator
Prior OpenIE models are not suited for the pro-
posed task because all existing models are extrac-
tive models. As a result, we use generative mod-
els to generate relations for a given sentence. We
choose to fine-tune T5, a text-to-text transformer
model, to generate relations from a sentence (Raffel
et al., 2020).

Inspired by Multi2OIE, we perform relation gen-
eration in two stages, a predicate and an argument
stage (Ro et al., 2020). In the predicate stage, all
predicates are extracted from the sentence at once.
The input for this stage is the sentence, while the
gold standard is the predicates of all gold stan-
dard relations separated by the special "[pred]" to-
ken. Although the order of relations in our output
doesn’t matter, we need to enforce a strict order for
the model to learn. Thus, we order the predicates
by their position within the sentence.

For the argument prediction stage, for each pred-
icate the model predicts the arguments for the rela-
tion with that predicate. Because multiple relations
may have the same predicate, we specify the pred-
icate by including all predicates before it in the
sentence. For each relation, we assume there are
two arguments, which the model extracts simultane-
ously. The input for this stage is the sentence with
the predicate concatenated to the end, separated by
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a "[pred]" special token, while the gold standard is
the arguments for the gold relation corresponding
to that predicate, in Table 5.

3.4 Semantic-based Evaluation Metrics

CaRB is a popular metric for evaluating OpenIE
models, but it requires the predicates of the predic-
tion and gold standard to match to score a given
prediction. Although it serves as a good proxy for
a semantic metric in extractive OpenIE, it is signifi-
cantly less useful for abstractive OpenIE where the
space of all possible predicates is much larger than
just the tokens in the sentence.

To evaluate abstractive OpenIE, we require a
semantics-based metric rather than a lexical met-
ric based on token matching. Although pre-
vious semantics-based evaluation metrics like
BERTScore exist, we do not find them to be appro-
priate for our use case. Previous semantics-based
evaluation metrics do not work well for cases where
a single token can dramatically change the seman-
tics of a statement, such as negations like "not"
(Saadany and Orasan, 2021). Thus, we introduce a
set of 3 evaluation metrics based on entailment for
more accurate semantic evaluation. Each of these
metrics measures semantic coherence at different
granularities, and which granularity is most impor-
tant will depend on the application and properties
of the datasets. We demonstrate this necessity with
an example in Table 6.

When calculating the entailment score for a re-
lation, we remove special characters so that it re-
sembles a sentence. For instance, for the relation
triple {Sharon; had been; in a coma}, we form the
statement "Sharon had been in a coma."
Sentence-tuple entailment The first metric we
propose is sentence-tuple entailment. For recall,
we combine all the relations together and see if
the combined relations entail the sentence. If the
combined relations do not entail the sentence, that
means the sentence contains information not in
any relation and thus the extracted relations as a
whole have poor recall. For precision, we take
the average of the entailment score obtained when
seeing if the sentence entails an individual relation
for all extracted relations. If the relation is not
entailed, that means it contains information not in
the sentence and thus has poor precision.
Combined tuple-tuple entailment The second
metric we propose is combined tuple-tuple entail-
ment. This metric is inspired by a metric proposed

by (Dušek and Kasner, 2020). For this metric, we
use the gold standard relations to evaluate the ex-
tracted tuples. The combined tuple in this case
refers to the combination of all gold standard re-
lations. For recall, we combine all the predicted
relations together and see if the combined relations
entail the combined gold relations. If the combined
predictions do not entail the combined gold, that
means the gold relations contains information not
in any prediction and thus the extracted relations
as a whole have poor recall. For precision, we take
the average of the entailment score obtained when
seeing if the combined gold entails an individual
relation for all extracted relations. If the prediction
is not entailed, that means it contains information
not in any gold relation and thus has poor precision.
Compared to the sentence-tuple entailment metric,
this one excludes any extraneous information in
the sentence not in the gold standard relations from
evaluation.
Tuple-tuple entailment The third metric we pro-
pose is tuple-tuple entailment. This metric is based
on the OpenIE metric CaRB (Bhardwaj et al.,
2019). For recall, for each gold standard relation
we calculate the entailment for each extracted re-
lation if the gold standard entails that prediction.
Then, for each gold standard relation its recall is
equal to the highest entailment score achieved by
any of the predictions. The recall for the sentence
is the average of the recall of its relations. Note
that the highest recall for multiple gold standard
relations can be achieved by the same predicted
relation if the predicted relation contains all of
those gold standard relations. For precision, for
each gold standard relation we calculate the entail-
ment for each extracted relation if the prediction
entails that gold standard relation. Then, we find
the optimal matching of gold standard relations to
extracted relations that results in the highest av-
erage precision. Unlike recall, when calculating
precision a predicted relation can only entail a sin-
gle gold standard relation. This is because we want
the number of predictions to match the number of
gold relations.

4 Experimental Setup

Datasets and Metrics
We evaluate the trained abstractive OpenIE model
on four benchmarks: WiRe57, CaRB, Re-OIE2016,
and LSOIE-wiki with respectively decreasing pro-
portion of inferred relations.
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Sentence Rival political factions were unable to resolve disagreements.

Gold Standard {Rival political factions unable to; resolve; disagreements}

Prediction {Rival political factions to; resolve; disagreements}

Evaluation
Metric

CaRB
F1 Score

ROUGE-1
Score

BERTScore
F1 Score

Tuple-Tuple Entailment
F1 Score

0.923 0.923 0.976 0.005

Table 6: Comparison of different evaluation metrics on an example from the training set. CaRB is a popular
lexical metric used to evaluate OpenIE (Bhardwaj et al., 2019). ROUGE-1 is a popular lexical metric to evaluate
summarization (Lin, 2004). BERTScore is a previous semantics-based metric used to evaluate summarization
(Zhang et al., 2019). Tuple-Tuple Entailment is a new semantics-based metric we propose.

Figure 1: Comparison of Sentence-Tuple Entailment F1 Score of different OpenIE models on all relations in the
benchmarks. All models are trained on OIE4.

Since OIE4 trained OpenIE models showed su-
perior F1 performance on all these benchmarks
as compared to other OpenIE training sets we de-
rive abstractive training data from this dataset. We
generate four different versions of OIE4 using the
methods we describe in Section 3.1. The first ver-
sion is the original extractive dataset, the second
version uses backtranslation for paraphrasing, the
third version is augmented by relation extraction,
and the fourth uses both backtranslation and rela-
tion extraction for augmentation. For backtransla-
tion we use Facebook-FAIR’s WMT’19 German-
English and English-German models (Ng et al.,
2019) and retain only those back translated sen-
tences whose entailment confidence is above 80%.
For relation extraction, we use a pretrained SuRE
model, a state-of-the-art relation extraction model
(Lu et al., 2022) without any additional fine-tuning
and keep all relations with confidence above 80%.
These confidence thresholds are hyperparameters
that may be adjusted.

We compare performance using the preexist-
ing CaRB metric, as well as our own introduced
semantics-based metrics of tuple-tuple entailment,

combined tuple-tuple entailment, and sentence-
tuple entailment. The entailment model we use
for our datasets and evaluation metrics is a BERT-
based encoder model trained on MNLI, SNLI, and
the Hans dataset (Gao et al., 2021).
Models and Hyperparameters
We fine-tune the T5-base model for our experi-
ments. We fine-tuned T5 for 5 epochs with an
initial learning rate of 2e-5 and batch size of 12.
We validate T5 on a subset of the OIE4 training
set using the tuple-tuple entailment metric. We
also compare our model with Multi2OIE, a state-of-
the-art neural extractive OpenIE model (Ro et al.,
2020). We train Multi2OIE on the original OIE4
dataset with no paraphrasing. We use the default
hyperparameters of Multi2OIE.

5 Results and Analysis

For this section, we focus on the sentence-tuple se-
mantic score because it offers a holistic comparison
of the extracted relations and the sentence and does
not rely upon potentially incomplete or faulty gold
relations. Full tables with our empirical results in-
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Figure 2: Comparison of Sentence-Tuple Entailment Recall of different combinations of OpenIE models on all
relations in the benchmarks. All models are trained on OIE4.

cluding other metrics can be found in Appendix
A.

We first compare performance on all relations
in Figure 1. In general, abstractive OpenIE leads
to better performance the higher the proportion of
inferred relations in the test set. This is expected
because Multi2OIE can not extract inferred rela-
tions at all. When considering the full benchmarks,
of the data augmentation methods we use, SuRE
augmentation works the best. Training on back-
translated OIE4 degrades the performance com-
pared to the base extractive OIE4 data. This may
be because back translation reduces the amount
of training data. Additionally, back translation of-
ten just replaces the gold standard predicate with
a synonym instead of changing the syntax of the
sentence, which does not help in the extraction of
inferred relations.

To demonstrate the complementary nature of ab-
stractive OpenIE to extractive OpenIE, we combine
their extractions. When combining their extrac-
tions, we remove redundant relations by removing
relations that are entailed by any other relations. If
two relations entail each other, then we keep the
longer one. A comparison of combined models can
be found in Figure 2. When combining model pre-
dictions, we observe that back translation actually
helps more than SuRE augmentation. This suggests
that SuRE augmentation helps extractive OpenIE
relations, while back translation is more useful for
increasing the recall to inferred relations that could
not be extracted by Multi2OIE. The more inferred
relations in the benchmark, the more beneficial
merging extractions are.

We also evaluate our abstractive OpenIE models

OpenIE Model Documents MRR P@1 Hit@5

Multi2OIE Top 10 0.193 0.127 0.267

Abstractive OIE4 Top 10 0.154 0.080 0.240

Abstractive Back
Translated OIE4

Top 10 0.167 0.100 0.227

Abstractive SuRE
Augmented OIE4

Top 10 0.157 0.093 0.220

Abstractive SuRE
Augmented Back
Translated OIE4

Top 10 0.181 0.093 0.287

Table 7: Performance of QUEST on the CQ-W dataset
using the Top 10 Google documents (Lu et al., 2019).

on only the inferred relations within each bench-
mark. To do this, we remove non-inferred relations
from the gold standards. We can only measure
the resulting recall of the models because the mod-
els are trained to generate both inferred and non-
inferred relations and the metrics we use penalize
the precision when there are too many predicted
relations for a given sentence, which would be the
case for any sentence that had non-inferred rela-
tions. Figure 3 shows the results of these experi-
ments. As before, the more inferred relations in the
benchmark, the better suited an abstractive OpenIE
model is for the task.

Upon a manual examination of the generated
relations of each model, we observe that fine-tuning
T5 on SuRE-augmented data results in generated
relations replacing some of its predicates with the
predicates from SuRE. Table 8 demonstrates one
example of a model generating a predicate that
does not exist within the sentence but is a common
predicate among the SuRE-augmented relations.
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Figure 3: Comparison of Sentence-Tuple Entailment Recall of different combinations of OpenIE models on only
the inferred relations in the benchmarks. All models are trained on OIE4.

Sentence

Formerly known as Edo, it has been
the de facto seat of government since
1603 when Shogun Tokugawa Ieyasu
made the city his headquarters.

T5 Fine-Tuned (it; has been; the de facto seat of
on OIE4 government since 1603)

T5 Fine-Tuned
on SuRE-
Augmented OIE4

(it; is also known as; the de facto
seat of government since 1603)

Table 8: A demonstration that T5 fine-tuned on OIE4
augmented with SuRE extractions generates predicates
from the SuRE extractions rather than the sentence. This
sentence is from the WiRE57 test set.

Case Study
To further test the applicability of abstractive Ope-
nIE, we evaluate its performance on QUEST, a
downstream Complex QA task that uses OpenIE in
its pipeline (Lu et al., 2019). QUEST specifically
desires higher recall from its OpenIE model, which
can be achieved by extracting inferred relations.
We show the results in Table 7. The results show
that augmenting the training data improves down-
stream performance, indicating that including more
inferred relations in the training data is helpful for
this task.

6 Conclusion

In this paper, we introduce abstractive OpenIE, an
alternative to what we call extractive OpenIE, the
paradigm all current OpenIE models currently fol-
low, in order to address the problems of inferred
relations and surface form extraction. We find that
existing OpenIE datasets and metrics are ill-suited
for this task. As a result, we introduce abstractive
training set, model, and metrics. We then com-
pare our models trained on different abstractive

training sets and the state-of-the-art extractive Ope-
nIE model using preexisting OpenIE benchmarks.
Overall, we find that our models achieve higher
performance on inferred relations, which extractive
OpenIE models have previously struggled with. We
believe abstractive OpenIE has potential as a task
that will greatly benefit downstream applications
that use OpenIE in their pipeline.

7 Limitations

In this work, we used a relatively smaller T5-base
model. A model with more parameters may have
led to improved performance. Further, the corpora
we chose are all limited to English. As a result,
our results are not generalizable to any downstream
task that relies on different languages.

Ethics Statement

We did not create any of the models, datasets, or
applications covered in this paper. Any ethical
issues with the preexisting OpenIE datasets we use
in this paper will reflect on this work.

Acknowledgements

This material is based upon work supported by
the National Science Foundation IIS 16-19302 and
IIS 16-33755, Zhejiang University ZJU Research
083650, Futurewei Technologies HF2017060011
and 094013, IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR) and IBM-
Illinois Discovery Accelerator Institute (IIDAI),
grants from eBay and Microsoft Azure, UIUC
OVCR CCIL Planning Grant 434S34, UIUC CSBS
Small Grant 434C8U, and UIUC New Frontiers
Initiative. Any opinions, findings, conclusions, or
recommendations expressed in this publication are

6154



those of the author(s) and do not necessarily reflect
the views of the funding agencies.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguistic
structure for open domain information extraction. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 344–354.

Nguyen Bach and Sameer Badaskar. 2007. A review of
relation extraction. Literature review for Language
and Statistics II, 2:1–15.

Sangnie Bhardwaj, Samarth Aggarwal, and Mausam
Mausam. 2019. Carb: A crowdsourced benchmark
for open ie. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6262–6267.

Lei Cui, Furu Wei, and Ming Zhou. 2018. Neu-
ral open information extraction. arXiv preprint
arXiv:1805.04270.
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Model Training Set Benchmark
CaRB Score

Sentence-Tuple
Entailment

Combined Tuple-
Tuple Entailment

Tuple-Tuple
Entailment

P R F1 P R F1 P R F1 P R F1

Multi2OIE OIE4 LSOIE-wiki 0.396 0.318 0.353 0.953 0.381 0.545 0.595 0.488 0.536 0.591 0.467 0.522
Abstractive T5 OIE4 LSOIE-wiki 0.496 0.369 0.423 0.964 0.432 0.596 0.614 0.525 0.566 0.608 0.499 0.548
Abstractive T5 OIE4 Back Translated LSOIE-wiki 0.5 0.483 0.491 0.961 0.439 0.603 0.627 0.546 0.584 0.640 0.510 0.568

Abstractive T5
OIE4 with SuRE
Relations

LSOIE-wiki 0.518 0.49 0.504 0.963 0.436 0.601 0.632 0.565 0.597 0.645 0.511 0.570

Abstractive T5
OIE4 Back Translated
with SuRE Relations

LSOIE-wiki 0.538 0.527 0.532 0.974 0.571 0.720 0.645 0.670 0.657 0.660 0.611 0.634

Multi2OIE OIE4 ReOIE2016 0.565 0.373 0.449 0.939 0.351 0.511 0.835 0.504 0.629 0.763 0.477 0.587
Abstractive T5 OIE4 ReOIE2016 0.733 0.449 0.557 0.953 0.425 0.588 0.861 0.580 0.693 0.779 0.543 0.640
Abstractive T5 OIE4 Back Translated ReOIE2016 0.706 0.565 0.628 0.948 0.418 0.580 0.855 0.582 0.693 0.806 0.531 0.640

Abstractive T5
OIE4 with SuRE
Relations

ReOIE2016 0.757 0.572 0.652 0.953 0.424 0.587 0.871 0.602 0.712 0.814 0.531 0.643

Abstractive T5
OIE4 Back Translated
with SuRE Relations

ReOIE2016 0.813 0.647 0.72 0.976 0.574 0.723 0.894 0.736 0.808 0.823 0.684 0.747

Multi2OIE OIE4 CaRB 0.525 0.309 0.389 0.935 0.357 0.517 0.856 0.538 0.661 0.682 0.487 0.568
Abstractive T5 OIE4 CaRB 0.619 0.336 0.436 0.949 0.431 0.593 0.882 0.592 0.709 0.694 0.526 0.599
Abstractive T5 OIE4 Back Translated CaRB 0.592 0.394 0.473 0.945 0.422 0.583 0.843 0.578 0.686 0.682 0.491 0.571

Abstractive T5
OIE4 with SuRE
Relations

CaRB 0.619 0.389 0.478 0.951 0.428 0.591 0.862 0.584 0.697 0.701 0.495 0.580

Abstractive T5
OIE4 Back Translated
with SuRE Relations

CaRB 0.647 0.442 0.525 0.975 0.572 0.721 0.884 0.707 0.786 0.702 0.619 0.658

Multi2OIE OIE4 WiRe57 0.45 0.343 0.389 0.960 0.362 0.526 0.668 0.572 0.617 0.378 0.574 0.456
Abstractive T5 OIE4 WiRe57 0.519 0.357 0.423 0.988 0.355 0.523 0.665 0.613 0.638 0.361 0.586 0.447
Abstractive T5 OIE4 Back Translated WiRe57 0.502 0.399 0.445 0.946 0.475 0.632 0.642 0.675 0.658 0.290 0.661 0.403

Abstractive T5
OIE4 with SuRE
Relations

WiRe57 0.506 0.391 0.441 0.981 0.469 0.635 0.633 0.670 0.651 0.284 0.678 0.401

Abstractive T5
OIE4 Back Translated
with SuRE Relations

WiRe57 0.537 0.37 0.439 0.990 0.371 0.539 0.665 0.611 0.637 0.377 0.556 0.449

Table 9: Empirical results of different models on different benchmarks. Differences in the number of inferred
relations in each of the benchmarks influences the relative performance of each model. The benchmarks are listed
from lowest to highest proportion of relations with inferred predicates.

Model Training Set Benchmark
CaRB Score

Sentence-Tuple
Entailment

Combined Tuple-
Tuple Entailment

Tuple-Tuple
Entailment

P R F1 P R F1 P R F1 P R F1

Multi2OIE OIE4 Re-OIE2016 0.813 0.647 0.72 0.976 0.574 0.723 0.894 0.736 0.808 0.823 0.684 0.747
Multi2OIE +
Abstractive T5

OIE4 Re-OIE2016 0.601 0.561 0.581 0.972 0.563 0.713 0.869 0.737 0.798 0.791 0.675 0.729

Multi2OIE +
Abstractive T5

OIE4 Back Translated Re-OIE2016 0.64 0.554 0.594 0.964 0.678 0.796 0.864 0.789 0.825 0.757 0.722 0.739

Multi2OIE +
Abstractive T5

OIE4 with SuRE
Relations

Re-OIE2016 0.584 0.569 0.577 0.962 0.591 0.732 0.860 0.756 0.805 0.788 0.689 0.735

Multi2OIE +
Abstractive T5

OIE4 Back Translated
with SuRE Relations

Re-OIE2016 0.599 0.542 0.569 0.965 0.683 0.800 0.846 0.768 0.805 0.764 0.701 0.731

Multi2OIE OIE4 CaRB 0.647 0.442 0.525 0.975 0.572 0.721 0.884 0.707 0.786 0.702 0.619 0.658
Multi2OIE +
Abstractive T5

OIE4 CaRB 0.525 0.404 0.457 0.970 0.568 0.717 0.859 0.699 0.770 0.678 0.621 0.648

Multi2OIE +
Abstractive T5

OIE4 Back Translated CaRB 0.544 0.402 0.463 0.958 0.684 0.798 0.874 0.767 0.817 0.651 0.670 0.661

Multi2OIE +
Abstractive T5

OIE4 with SuRE
Relations

CaRB 0.518 0.413 0.46 0.961 0.595 0.735 0.851 0.719 0.780 0.670 0.630 0.649

Multi2OIE +
Abstractive T5

OIE4 Back Translated
with SuRE Relations

CaRB 0.531 0.409 0.462 0.957 0.690 0.802 0.859 0.757 0.805 0.634 0.663 0.648

Multi2OIE OIE4 WiRe57 0.537 0.37 0.439 0.990 0.371 0.539 0.665 0.611 0.637 0.377 0.556 0.449
Multi2OIE +
Abstractive T5

OIE4 WiRe57 0.481 0.376 0.422 0.992 0.621 0.764 0.625 0.755 0.684 0.264 0.732 0.388

Multi2OIE +
Abstractive T5

OIE4 Back Translated WiRe57 0.476 0.39 0.429 0.988 0.564 0.718 0.639 0.730 0.681 0.312 0.691 0.430

Multi2OIE +
Abstractive T5

OIE4 with SuRE
Relations

WiRe57 0.482 0.39 0.431 0.958 0.600 0.738 0.651 0.728 0.688 0.283 0.722 0.407

Multi2OIE +
Abstractive T5

OIE4 Back Translated
with SuRE Relations

WiRe57 0.458 0.398 0.426 0.948 0.656 0.775 0.633 0.727 0.677 0.294 0.723 0.418

Table 10: Empirical results where the relations extracted by Multi2OIE and abstractive OpenIE are combined.
Redundant relations are removed after the combination of extractions. Redundant relations are relations that are
entailed by at least one other relation in the same sentence. If two relations entail each other, the shorter one is
removed.
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Model Training Set Benchmark
CaRB Score

Sentence-Tuple
Entailment

Combined Tuple-
Tuple Entailment

Tuple-Tuple
Entailment

R R R R

Multi2OIE OIE4
ReOIE2016 Inferred
Predicates or Args

0.231 0.304 0.452 0.411

Abstractive T5 OIE4
ReOIE2016 Inferred
Predicates or Args

0.231 0.219 0.394 0.343

Abstractive T5 OIE4 Back Translated
ReOIE2016 Inferred
Predicates or Args

0.152 0.236 0.424 0.380

Abstractive T5
OIE4 with SuRE
Relations

ReOIE2016 Inferred
Predicates or Args

0.223 0.236 0.386 0.408

Abstractive T5
OIE4 Back Translated
with SuRE Relations

ReOIE2016 Inferred
Predicates or Args

0.087 0.189 0.481 0.475

Multi2OIE OIE4
CaRB Inferred
Predicates or Args

0.116 0.520 0.641 0.605

Abstractive T5 OIE4
CaRB Inferred
Predicates or Args

0.109 0.362 0.522 0.482

Abstractive T5 OIE4 Back Translated
CaRB Inferred
Predicates or Args

0.082 0.346 0.509 0.495

Abstractive T5
OIE4 with SuRE
Relations

CaRB Inferred
Predicates or Args

0.128 0.360 0.511 0.490

Abstractive T5
OIE4 Back Translated
with SuRE Relations

CaRB Inferred
Predicates or Args

0.099 0.289 0.532 0.498

Multi2OIE OIE4
WiRe57 Inferred
Predicates or Args

0.051 0.346 0.546 0.536

Abstractive T5 OIE4
WiRe57 Inferred
Predicates or Args

0.059 0.427 0.544 0.599

Abstractive T5 OIE4 Back Translated
WiRe57 Inferred
Predicates or Args

0.057 0.325 0.501 0.523

Abstractive T5
OIE4 with SuRE
Relations

WiRe57 Inferred
Predicates or Args

0.067 0.433 0.574 0.605

Abstractive T5
OIE4 Back Translated
with SuRE Relations

WiRe57 Inferred
Predicates or Args

0.043 0.341 0.468 0.509

Table 11: Empirical results of models where the gold standard consists only of relations with inferred predicates or
arguments. We only measure recall in this case because relations are extracted per-sentence, so relations that do not
have inferred predicates will also be extracted, which will lower the precision.
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