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Abstract

BabyBERTa, a language model trained on
small-scale child-directed speech while none
of the words are unmasked during training, has
been shown to achieve a level of grammaticality
comparable to that of RoBERTa-base, which
is trained on 6,000 times more words and 15
times more parameters (Huebner et al., 2021).
Relying on this promising result, we explore
in this paper the performance of BabyBERTa-
based models in downstream tasks, focusing on
Semantic Role Labeling (SRL) and two Extrac-
tive Question Answering tasks, with the aim
of building more efficient systems that rely on
less data and smaller models. We investigate
the influence of these models both alone and
as a starting point to larger pre-trained models,
separately examining the contribution of the
pre-training data, the vocabulary, and the mask-
ing policy on the downstream task performance.
Our results show that BabyBERTa trained with
unmasking-removal policy is a much stronger
starting point for downstream tasks compared
to the use of RoBERTa masking policy when
10M words are used for training and that this
tendency persists, although to a lesser extent,
when adding more training data. 1

1 Introduction

Large-scale pre-trained language models (LMs)
(Devlin et al., 2019; Liu et al., 2019; Yang et al.,
2019) have shown promising ability on handling
various downstream tasks including textual classifi-
cation (Wang et al., 2018) and question answering
(QA, Rajpurkar et al., 2016). Previous research
(Zhang et al., 2021; Warstadt et al., 2020) showed
that the size of architecture and amount of pre-
training data actually affect the linguistics features
learned by state-of-the-art (SOTA) pre-trained LMs
like RoBERTa (Liu et al., 2019). It also showed
LMs require much more data to understand com-

1Our code can be found in https://github.com/
yangy96/babyberta_continual

monsense knowledge in order to achieve high per-
formance on natural language understanding tasks,
compared to grammatical ability. On the other
hand, LMs like RoBERTa are costly to train in
terms of GPU computation power and time at both
pre-training and fine-tuning stages. Huebner et al.
(2021) proposed BabyBERTa, a smaller RoBERTa
architecture that is trained on a 5M child-directed
data corpora without using unmasked tokens dur-
ing the masked language modeling training. Baby-
BERTa reaches the same level of grammaticality as
RoBERTa but considerably saves training expenses.
However, no further evaluation on tasks other than
the grammaticality tests were performed for the
model. Deshpande et al. (2023) also focus on the
performance of smaller language models but em-
phasize the relationship between the architecture
size and downstream task performance and train
on larger data corpora. In this paper, we would
like to answer the following questions: (1) What is
the performance for LMs based on smaller models
like BabyBERTa on downstream tasks that require
fine-tuning? and (2) What is an efficient way to
improve the behavior of small pre-trained LMs on
downstream tasks?

In our work, we first evaluated both BabyBERTa
and RoBERTa on three downstream tasks that tar-
get sentence structure and are closely associated
with grammatical capabilities. Additionally, we
propose to have various starting points by com-
bining different ingredients in pre-training includ-
ing the masking policy, the size of the vocabulary,
and the type of the pre-training data corpus (child-
directed language, online written language). Then,
we continually pre-train BabyBERTa and its vari-
ants on more Wikipedia data to improve perfor-
mance on target tasks. We observe that: (1) al-
though BabyBERTa has a lower performance on
the downstream tasks compared to RoBERTa, the
use of the unmasking removal policy and of a small
vocabulary is still effective after fine-tuning; (2)
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running thorough experiments to identify which
factors are important for small language models
when performing continual pre-training, we find
that the influence of the unmasking removal policy
persists, although to a lesser extent, when adding
more training data.

2 Background

2.1 Masked language model objective (MLM)
The large transformers for language models are
pre-trained on billions of tokens and show their
high-capability in various downstream tasks. The
success of large-scale pre-trained language models
is inseparable from the masked language model
objective, which is a widely-used self-supervised
learning approach to construct a text representation
(Devlin et al., 2019). With the MLM objective,
there are p% of the tokens that are masked, and the
model learns to reconstruct the masked tokens at
the pre-training stage. The loss function is defined
as

L = −
n∑

i=1

mi∑

j=1

logP (wi,j |x̃i) (1)

where wi,j is the ground truth of the jth masked
tokens of ith sequence and x̃i is the masked context,
n is the total number of sentences and mi is the
number of masked tokens for the sentence.

2.1.1 80-10-10 Masking Policy
80% of the masked tokens are replaced by the
<mask> token, 10% are replaced by randomly se-
lected tokens, and the rest are kept as the same
tokens (Devlin et al., 2019). In the paper, we use
the 80-10-10 and RoBERTa masking policy inter-
changeably.

2.1.2 Unmasking Removal Policy
Different from the default masking strategy, we
instead remove the prediction of unchanged / un-
masked tokens. In other words, we replace cor-
rupted tokens with <mask> 90% of the time and use
random tokens 10% of the time2. Previous work
(Huebner et al., 2021; Wettig et al., 2023) shows
masking policies are important to pre-training.

2.2 BabyBERTa
BabyBERTa (Huebner et al., 2021), a small-scale
version of RoBERTa, differs from RoBERTa in ar-
chitecture, corpora, masking policy, and other pre-

2We use 90-10 masking policy and unmasking removal
policy interchangeably

training hyperparameters. The details are shown
in Table 8. The default masking policy of Baby-
BERTa is the unmasking removal policy, and the
pre-training data corpora is AO-CHILDES (Hueb-
ner and Willits, 2021), which consists of child-
directed speech. We consider four versions of
BabyBERTa, each of them being trained on a dif-
ferent corpus (Table 1).

Corpora

BabyBERTa-CHILDES CHILDES
(child-directed speech)

BabyBERTa-Wikipedia Wikipedia (a small subset
of Wikipedia dataset)

BabyBERTa-Curriculum Combines CHILDES,
Newsela, and Wikipedia

BabyBERTa-Combined Combines two Wikipedia
subsets of the same size

Table 1: Data corpora for training BabyBERTa and
its three variations, where CHILDES and Wikipedia
contain the same number of sentences.

2.3 Fine-tune on downstream tasks

In this work, we are interested in following
downstream tasks including semantic role label-
ing (SRL) and two extractive question-answering
tasks: question-answer driven semantic role label-
ing (QASRL) and question-answer meaning repre-
sentation (QAMR).
1) SRL Semantic role labeling aims to detect predi-
cates (in most cases, verbs) in a sentence and assign
its associated arguments with different semantic
roles (Palmer et al., 2010; Carreras and Màrquez,
2005; He et al., 2017). In this paper, we evaluate
models on CoNLL12, an SRL benchmark based on
OntoNotes v5.0 dataset (Pradhan et al., 2013).
2) QASRL (He et al., 2015) also presents the
predicate-argument structure in the sentence but
in the format of question-answer pairs 3. In this
paper, we evaluate models on the QA-SRL Bank
2.1 dataset (FitzGerald et al., 2018).
3) QAMR (Michael et al., 2018) provides
predicate-argument structure for more diverse rela-
tionships compared to those presented in QASRL
and SRL (including noun relationship).

3 BabyBERTa on downstream tasks
In this section, we evaluate BabyBERTa models on
various downstream tasks and experiment with dif-
ferent methods including continually pre-training.
To perform question-answering tasks like QAMR
and QASRL, we train two linear layers on top of

3We here address the Extractive QA tasks (rather than the
parsing tasks) related to the QAMR and QASRL formalisms.
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the encoder of the language model (LM) to pre-
dict the start and end of the answer span within the
context. We implement the classifier using Hug-
gingface (Wolf et al., 2020). For fine-tuning LMs
for SRL tasks, we utilize the implementation pro-
vided in (Zhang et al., 2022).

3.1 How does the BabyBERTa perform on
downstream tasks?

We are interested in the performance of Baby-
BERTa and its variations on downstream tasks in-
cluding SRL, QASRL, and QAMR. We report the
F1 score in Table 2, and compare the performance
of BabyBERTa models and RoBERTa. Our ex-
periments show that BabyBERTa has comparable
performance on QASRL with RoBERTa-10M and
only 3 points lower compared to RoBERTa. For
tasks like SRL and QAMR, BabyBERTa’s perfor-
mance is also within a slight 3-point margin in com-
parison to RoBERTa-10M. We also observe that
the content of the pre-training dataset impacts its
performance on downstream tasks. The Wikipedia
dataset is closer to the target domain compared to
the other two datasets, so BabyBERTa pre-trained
on Wikipedia dataset achieves higher performance
on QAMR, which is a more challenging task.4

Pre-trained Models SRL QASRL QAMR
BabyBERTa-CHILDES 72.38 87.57 54.03
BabyBERTa-Wikipedia 75.96 90.09 77.43
BabyBERTa-Curriculum 77.89 90.13 73.88
BabyBERTa-Combined 76.17 89.9 77.05

RoBERTa-10M 79.75 90.44 80.76
RoBERTa 85.00 93.11 90.58

Table 2: Performance (F1-score) of BabyBERTa and
its variants on three different downstream tasks. The
performance of RoBERTa and RoBERTa-10M serves
as a baseline to compare.

3.1.1 Effect of vocabulary size
The vocabulary size of RoBERTa is approximately
6x that of BabyBERTa, so it is possible that the size
of the vocabulary size limits the understanding of
language at the MLM training stage. In this experi-
ment, we compare the performance with different
vocabulary sets for pre-training the BabyBERTa
model. Table 3 summarizes our experiments for
pre-training BabyBERTa with various factors. We
observe that the larger vocabulary does not give
any improvement in most of the cases. We hypoth-
esize that the training efficiency is low for Baby-

4More details about the training procedure are in Ap-
pendix.

BERTa when we have a larger vocabulary but less
pre-training data.

3.1.2 Effect of masking policy
One observation in previous work (Huebner et al.,
2021) is that, compared to BabyBERTa trained with
80-10-10 masking policy, BabyBERTa trained with
unmasking-removal policy achieves higher scores
on grammar tests. This leads to an interesting ques-
tions: what is the impact of the masking policy of
the starting point on downstream tasks? Here,
we apply two masking policies at the pre-training
stage. The results in Table 3 show that the unmask-
ing policy works better for models with smaller
architectures like BabyBERTa on these three down-
stream tasks. Thus, we conclude that BabyBERTa
pre-training with unmasking removal policy and
smaller vocabulary set achieves the best perfor-
mance across three different tasks given the results
in Table 3.

3.2 Does continually pre-training BabyBERTa
improve downstream tasks performance?

Since there is a performance gap between Baby-
BERTa and RoBERTa as shown in previous experi-
ments, we consider improving the performance by
continually pre-train the BabyBERTa architecture
on more data. To be specific, each time we pretrain
the models on a new subset of the Wikipedia dataset
contains about 100M words repeatedly. Given the
results in section 3.1, we choose the starting points5

trained with the unmasking removal policy and
BabyBERTa vocabulary set.

For all continually pre-train procedures, we keep
using RoBERTa masking policy. The masking ra-
tio used in our experiments is 15% as the default.
Table 4 presents the downstream performance of
models trained with continual pre-training, con-
sidering various starting points.6 For comparison,
we include results from RoBERTa-100M (Zhang
et al., 2021). To assess the impact of a more di-
verse dataset, we mix BookCorpus and Wikipedia
as an additional dataset for continual pre-training
(Gururangan et al., 2020) 7. We observe that the
smaller architecture, after continually training on
100M data, can achieve better and comparable per-
formance for the QASRL and QAMR tasks respec-
tively, compared to a RoBERTa-base pre-trained

5A starting point here is a BabyBERTa model with a spe-
cific masking policy, vocabulary set, and initial training corpus

6The results correspond to the mean value of three runs.
7Mixed with a ratio 1:3 as in (Zhang et al., 2021)
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BabyBERTa-CHILDES BabyBERTa-Wikipedia
URPS Vocabulary SRL QASRL QAMR URPS Vocabulary SRL QASRL QAMR

yes RoBERTa 69.47 87.19 53.72 yes RoBERTa 74.41 89.94 69.61
no RoBERTa 70.03 86.54 53.57 no RoBERTa 73.53 89.52 66.26
yes BabyBERTa 72.38 87.57 54.03 yes BabyBERTa 75.96 90.09 77.43
no BabyBERTa 72.44 86.72 53.36 no BabyBERTa 75.86 89.13 68.7

BabyBERTa-Combined BabyBERTa-Curriculum
URPS Vocabulary SRL QASRL QAMR URPS Vocabulary SRL QASRL QAMR

yes RoBERTa 73.59 89.36 67.61 yes RoBERTa 73.38 89.18 66.61
no RoBERTa 73.11 89.25 66.17 no RoBERTa 73.10 88.99 64.12
yes BabyBERTa 76.17 89.9 77.05 yes BabyBERTa 77.89 90.13 74.96
no BabyBERTa 76.13 89.84 69.23 no BabyBERTa 75.81 89.61 66.84

Table 3: Performance (F1-score) of BabyBERTa and its variants on three different downstream tasks. We evaluate the
impact of the vocabulary size and the masking policies. We highlight the best performance for different pre-training
corpora. URPS indicates whether the Unmasking Removal Policy (URP) is used during pre-training.

on 10M data. Moreover, among the small mod-
els, the BabyBERTa-Wikipedia model trained on
the mixed dataset overall demonstrates the best
performance on QAMR and SRL, and achieves
comparable performance on QASRL with the best-
performing model.

Model Dataset SRL QASRL QAMR

Wiki wiki 78.18 90.73 79.98
mixed 78.47 90.73 80.29

Comb wiki 78.14 90.63 79.87
mixed 78.47 90.60 79.44

Curr wiki 78.47 90.68 79.61
mixed 78.33 90.75 79.50

RoBERTa-10M mixed 79.75 90.44 80.76
RoBERTa-100M mixed 80.31 91.82 87.24

RoBERTa mixed 85.00 93.11 90.58

Table 4: Downstream performance of continually pre-
train BabyBERTa on more data. The models are trained
on 100M tokens in total. (The starting points are using
BabyBERTa vocabulary set and 90-10 masking policy.)
We highlight the best performance across different start-
ing points and datasets.

Additionally, we show how the masking pol-
icy of the starting points affects continually pre-
training in Table 5. We report the mean value of
three runs of the models in the table and use the
methods recommended in (Dror et al., 2018) for
F1 score evaluation: we apply bootstrap to perform
the significance test of 3 runs and get the p-value
of 0.04 when α = 0.05 for BabyBERTa-CHILDES
and 0.0 for BabyBERT-Wikipedia. It again shows
that the BabyBERTa-CHILDES and BabyBERTa-
Wikipedia gain from unmasking removal policy
for QAMR. We summarize that for BabyBERTa-
CHILDES and BabyBERT-Wikipedia, the unmask-
ing removal policy at the starting point improves
the performance on downstream tasks, and, for
QAMR, even after continuing pre-training. How-
ever, the BabyBERTa-Curriculum does not show
the same trend on QAMR (p = 0.25).

Model URPS URPC SRL QASRL QAMR

CHIL no no 78.04 90.48 77.60
yes no 78.08 90.43 77.88
yes yes 78.19 90.56 78.60

Wiki no no 77.95 90.40 74.83
yes no 78.07 90.78 79.88
yes yes 78.08 90.93 80.43

Curr no no 77.93 90.64 79.57
yes no 78.22 90.67 79.6
yes yes 78.27 90.77 79.68

Table 5: The impact of masking policy after pre-training
on more data. The models are pre-trained on 100M
tokens in total. URPS indicates whether the Unmasking
Removal Policy (URP) is used at the starting point and
URPC denotes whether URP is used for continually pre-
training. CHIL, Wiki, and Curr refer to BabyBERTa-
CHILDES, Wikipedia and Curriculum respectively. We
highlight the best performance for each starting points.

3.3 Scale to more data

After combining the optimal training policies as
discussed in the previous section, we continually
pre-train the smaller models on more data. The
learning curve of the model is presented in Fig-
ure 1 on downstream tasks as more data become
available (500M tokens). The performance contin-
ually improves as we keep pre-training the model
on new data sequentially. In Table 6, we report the
final performance after continually pre-training the
model on 1B tokens. However, the performance is
still lower than that of RoBERTa-base (Liu et al.,
2019).

Model SRL QASRL QAMR
Comb 79.40 91.29 82.37

RoBERTa 85.00 93.11 90.58

Table 6: Performance (F1-score) of continually pre-
training BabyBERTa with 1B tokens on three different
downstream tasks.
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Figure 1: F1 score versus the size of tokens. Continually
pre-training various variants of BabyBERTa until 500M
tokens. (On QAMR task)

4 Conclusion

In this work, we investigate three important factors
for improving smaller language models on down-
stream tasks: vocabulary set, masking policy, and
dataset at the starting point. Our findings reveal
that continuously pre-training a smaller model like
BabyBERTa leads to continued improvement in
downstream performance. Additionally, employ-
ing the unremoval masking policy and utilizing a
smaller vocabulary prove advantageous for down-
stream tasks. We provide a comprehensive inves-
tigation into the relationship between pre-training
procedures and downstream tasks for small models.
In future research, we aim to delve deeper into the
abilities acquired during the pre-training stage and
their impact on downstream task performance.

Limitations

Our study specifically concentrated on masked lan-
guage model objectives and downstream tasks that
are closely associated with grammaticality. How-
ever, it would be interesting to evaluate our findings
on diverse downstream tasks, such as the GLUE
benchmark (Wang et al., 2018). Furthermore, our
investigation primarily focused on the BabyBERTa
architecture configuration and small data corpus (≤
1B). It would be valuable to explore the correlation
between different pre-training factors and various
architecture configurations.
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A Appendix

A.1 Dataset details
Here we provide more details about the dataset of
the downstream tasks.

Train Validation Test
SRL 75187 9603 9479

QASRL 215427 38487 45387
QAMR 50509 18772 18596

Table 7: The number of samples in SRL, QASRL, and
QAMR datasets.

A.2 Architecture and datasets of BabyBERTa
Here we provide the model configurations and the
size of the datasets.

RoBERTa BabyBERTa
layers 12 8

attention heads 12 8
hidden size 768 256

intermediate size 3072 1024
vocabulary size 50265 8192

Table 8: Architecture of BabyBERTa and RoBERTa.
Dataset Size

BabyBERTa-CHILDES 6.5M
BabyBERTa-Wikipedia 15.91M
BabyBERTa-Curriculum 31.81M
BabyBERTa-Combined 31.92M

Table 9: Data corpora size for training BabyBERTa and
its three variations.

A.3 Compare masking policy with more
pre-training data

In this section, we investigate the impact of mask-
ing policy of starting point when continually pre-
training the model with more than 100M tokens.
Specifically, we plot the performance on QAMR
versus the number of tokens for BabyBERTa-
CHILDES trained with unremoval masking policy
and 80-10-10 masking policy. We observe that the
performance of CHILDES trained with unremoval
masking policy keeps getting better performance
compared to CHILDES with 80-10-10 masking pol-
icy after continue pre-training on more and more
data.

A.4 Continually pre-train on the task-specific
data

Prior work (Gururangan et al., 2020) suggests that
continually pre-training on a task-specific dataset
is an effective domain adaptation for downstream
tasks. Following this work, we continually pre-
training the model on the dataset such as QASRL,
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Figure 2: F1 score versus the size of tokens to compare
the . Continually pre-training various variants of Baby-
BERTa until 500M tokens. (On QAMR task)

QAMR, and OntoNotes. To ensure consistency,
we convert the context from QASRL and QAMR
into the same format as the pre-training data. The
results are listed in Table 10.

Model Dataset SRL QASRL QAMR

Wiki

N/A 76.01 90.09 77.43
QAMR 76.1 90.03 77.47
QASRL 76.01 89.92 77.73

OntoNotes 77.16 90.07 77.78

Comb

N/A 76.17 89.9 77.05
QAMR 76.84 90.17 77.91
QASRL 76.43 89.92 77.74

OntoNotes 77.25 90.03 78.13

Curr

N/A 76.11 89.75 74.96
QAMR 76.13 89.88 76.52
QASRL 75.97 89.61 75

OntoNotes 76.7 89.94 76.02

Table 10: Performance of continually pre-train Baby-
BERTa on task-specific data.

A.5 Continually pre-train with RoBERTa
vocabulary

Here we present additional results of continually
pre-train the model with RoBERTa vocabulary.

Model Vocab QASRL QAMR

Wiki BabyBERTa 90.77 80.03
RoBERTa 90.93 80.38

Comb BabyBERTa 90.78 79.76
RoBERTa 90.94 78.38

Curr BabyBERTa 90.72 79.76
RoBERTa 91.05 76.91

Table 11: Downstream performance of continually pre-
train BabyBERTa on more data for different vocabulary
sets. The models are trained on 100M tokens in total.
(The starting points are using 90-10 masking policy.)

A.6 Implementation details
All of our models are trained and evaluated on
two Nvidia Quadro RTX 6000. At the initial pre-

training stage, the number of steps we use is 260K
and the batch size is 16. The learning rate is 1e-4
and the weight decay is 0.01. At the continually
pre-training stage, the number of steps we use is
300K and the batch size is 256. The learning rate
is 1e-4, the warmup steps are set to be 6000 and
the weight decay is 0.01.
At the fine-tuning stage for QAMR, QASRL and
SRL, the model is fine-tuned on the target dataset
for 10 epochs, 3 epochs, and 10 epochs respectively.
The batch size is set to 16 and the learning rate is
2e-4.
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