
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4902–4919
December 6-10, 2023 ©2023 Association for Computational Linguistics

Towards a Mechanistic Interpretation of
Multi-Step Reasoning Capabilities of Language Models

Yifan Hou1, Jiaoda Li1, Yu Fei2, Alessandro Stolfo1, Wangchunshu Zhou3, Guangtao Zeng4,
Antoine Bosselut5, Mrinmaya Sachan1

1ETH Zürich, 2UC Irvine, 3AIWaves, 4SUTD, 5EPFL
1{yifan.hou, jiaoda.li, alessandro.stolfo, mrinmaya.sachan}@inf.ethz.ch, 2yu.fei@uci.edu,

3chunshu@aiwaves.cn, 4guangtao_zeng@mymail.sutd.edu.sg, 5antoine.bosselut@epfl.ch

Abstract

Recent work has shown that language models
(LMs) have strong multi-step (i.e., procedural)
reasoning capabilities. However, it is unclear
whether LMs perform these tasks by cheating
with answers memorized from pretraining cor-
pus, or, via a multi-step reasoning mechanism.
In this paper, we try to answer this question by
exploring a mechanistic interpretation of LMs
for multi-step reasoning tasks. Concretely, we
hypothesize that the LM implicitly embeds a
reasoning tree resembling the correct reason-
ing process within it. We test this hypothesis
by introducing a new probing approach (called
MechanisticProbe) that recovers the reason-
ing tree from the model’s attention patterns.
We use our probe to analyze two LMs: GPT-
2 on a synthetic task (k-th smallest element),
and LLaMA on two simple language-based rea-
soning tasks (ProofWriter & AI2 Reasoning
Challenge). We show that MechanisticProbe
is able to detect the information of the reason-
ing tree from the model’s attentions for most
examples, suggesting that the LM indeed is go-
ing through a process of multi-step reasoning
within its architecture in many cases.1

1 Introduction

Large language models (LMs) have shown impres-
sive capabilities of solving complex reasoning prob-
lems (Brown et al., 2020; Touvron et al., 2023).
Yet, what is the underlying “thought process” of
these models is still unclear (Figure 1). Do they
cheat with shortcuts memorized from pretraining
corpus (Carlini et al., 2022; Razeghi et al., 2022;
Tang et al., 2023)? Or, do they follow a rigorous
reasoning process and solve the problem proce-
durally (Wei et al., 2022; Kojima et al., 2022)?
Answering this question is not only critical to our
understanding of these models but is also criti-
cal for the development of next-generation faithful

1Our code, as well as analysis results, are available at
https://github.com/yifan-h/MechanisticProbe.

Figure 1: An example showing how LMs solve reason-
ing tasks. It is unclear if LMs produce the answer by
reasoning or by recalling memorized information.

language-based reasoners (Creswell and Shanahan,
2022; Creswell et al., 2022; Chen et al., 2023).

A recent line of work tests the behavior of
LMs by designing input-output reasoning exam-
ples (Zhang et al., 2023; Dziri et al., 2023). How-
ever, it is expensive and challenging to construct
such high-quality examples, making it hard to
generalize these analyses to other tasks/models.
Another line of work, mechanistic interpretabil-
ity (Merullo et al., 2023; Wu et al., 2023; Nanda
et al., 2023; Stolfo et al., 2023; Bayazit et al., 2023),
directly analyzes the parameters of LMs, which can
be easily extended to different tasks. Inspired by re-
cent work (Abnar and Zuidema, 2020; Voita et al.,
2019; Manning et al., 2020; Murty et al., 2023) that
uses attention patterns for linguistic phenomena
prediction, we propose an attention-based mecha-
nistic interpretation to expose how LMs perform
multi-step reasoning tasks (Dong et al., 2021).

We assume that the reasoning process for an-
swering a multi-step reasoning question can be rep-
resented as a reasoning tree (Figure 2). Then, we
investigate if the LM implicitly infers such a tree
when answering the question. To achieve this, we
designed a probe model, MechanisticProbe, that
recovers the reasoning tree from the LM’s attention
patterns. To simplify the probing problem and gain
a more fine-grained understanding, we decompose
the problem of discovering reasoning trees into two

4902

https://github.com/yifan-h/MechanisticProbe

Figure 2: Illustration of our MechanisticProbe with one example from each of the three reasoning tasks
considered in this work. We are given a number of input statements: S = {S1, S2, ..., } and a question: Q.
MechanisticProbe recovers the reasoning tree describing the ground-truth reasoning process to answer the ques-
tion. MechanisticProbe works in two stages: in the first stage, MechanisticProbe detects if the LM can select
the set of useful statements required in reasoning, and then in the second stage, MechanisticProbe detects if the
LM can predict the reasoning tree given the useful statements.

subproblems: 1) identifying the necessary nodes in
the reasoning tree; 2) inferring the heights of iden-
tified nodes. We design our probe using two simple
non-parametric classifiers for the two subproblems.
Achieving high probing scores indicates that the
LM captures the reasoning tree well.

We conduct experiments with GPT-2 (Radford
et al., 2019) on a synthetic task (finding the k-th
smallest number in a sequence of numbers) and
with LLaMA (Touvron et al., 2023) on two natu-
ral language reasoning tasks: ProofWriter (Tafjord
et al., 2021) and AI2 Reasoning Challenge (i.e.,
ARC: Clark et al., 2018). For most examples, we
successfully detect reasoning trees from attentions
of (finetuned) GPT-2 and (few-shot & finetuned)
LLaMA using MechanisticProbe. We also ob-
serve that LMs find useful statements immediately
at the bottom layers and then do the subsequent
reasoning step by step (§4).

To validate the influence on the LM’s predictions
of the attention mechanisms that we identify, we
conduct additional analyses. First, we prune the
attention heads identified by MechanisticProbe
and observe a significant accuracy degradation (§5).
Then, we investigate the correlation between our
probing scores and the LM’s performance and
robustness (§6). Our findings suggest that LMs
exhibit better prediction accuracy and tolerance
to noise on examples with higher probing scores.
Such observations highlight the significance of ac-
curately capturing the reasoning process for the
efficacy and robustness of LMs.

2 Reasoning with LM

In this section, we formalize the reasoning task and
introduce the three tasks used in our analysis: k-th
smallest element, ProofWriter, and ARC.

2.1 Reasoning Formulation

In our work, the LM is asked to answer a ques-
tion Q given a set of statements denoted by S =
{S1, S2, ...}. Some of these statements may not be
useful for answering Q. To obtain the answer, the
LM should perform reasoning using the statements
in multiple steps. We assume that this process can
be represented by a reasoning tree G. We pro-
vide specific examples in Figure 2 for the three
reasoning tasks used in our analysis.2 This is a
very broad formulation and includes settings such
as theorem proving (Loveland, 1980) where the
statements could be facts or rules. In our analyses,
we study the tasks described below.

2.2 Reasoning Tasks

k-th smallest element. In this task, given a list
of m numbers (m = 16 by default) in any order,
the LM is asked to predict (i.e., generate) the k-th
smallest number in the list. For simplicity, we only
consider numbers that can be encoded as one token
with GPT-2’s tokenizer. We select m numbers ran-
domly among them to construct the input number
list. The reasoning trees have a depth of 1 (Figure 2
left). The root node is the k-th smallest number
and the leaf nodes are top-k numbers.

For this task, we select GPT-2 (Radford et al.,
2019) as the LM for the analysis. We randomly
generate training data to finetune GPT-2 and ensure
that the test accuracy on the reasoning task is larger
than 90%. For each k, we finetune an independent
GPT-2 model. More details about finetuning (e.g.,
hyperparameters) are in Appendix B.1.

ProofWriter. The ProofWriter dataset (Tafjord
et al., 2021) contains theorem-proving problems.

2Note that we can leave out the question if Q remains the
same for all examples (e.g., Figure 2 left).

4903

In this task, given a set of statements (verbalized
rules and facts) and a question, the LM is asked
to determine if the question statement is true or
false. Annotations of reasoning trees G are also
provided in the dataset. Again, each tree has only
one node at any height larger than 0. Thus, know-
ing the node height is sufficient to recover G. To
simplify our analysis, we remove examples anno-
tated with multiple reasoning trees. Details are in
Appendix C.3. Furthermore, to avoid tree ambigu-
ity (Appendix C.4), we only keep examples with
reasoning trees of depth upto 1, which account for
70% of the data in ProofWriter.

AI2 Reasoning Challenge (ARC). The ARC
dataset contains multiple-choice questions from
middle-school science exams (Clark et al., 2018).
However, the original dataset does not have reason-
ing tree annotations. Thus, we consider a subset of
the dataset provided by Ribeiro et al. (2023), which
annotates around 1000 examples. Considering the
limited number of examples, we do not include
analysis of finetuned LMs and mainly focus on the
in-context learning setting. More details about the
dataset are in Appendix C.3.

For both ProofWriter and ARC tasks, we select
LLaMA (7B) (Touvron et al., 2023) as the LM
for analysis. The tasks are formalized as classifi-
cations: predicting the answer token (e.g., true or
false for ProofWriter).3 We compare two settings:
LLaMA with 4-shot in-context learning setting,
and LLaMA finetuned with supervised signal (i.e.,
LLaMAFT). We partially finetune LLaMA on at-
tention parameters. Implementation details about
in-context learning and finetuning on LLaMA can
be found in Appendix C.1.

3 MechanisticProbe

In this section, we introduce MechanisticProbe:
a probing approach that analyzes how LMs solve
multi-step reasoning tasks by recovering reasoning
trees from the attentions of LMs.

3.1 Problem Formulation

Our goal is to shed light on how LMs solve proce-
dural reasoning tasks. Formally, given an LM with
L layers and H attention heads, we assume that the
LM can handle the multi-step reasoning task with
sufficiently high accuracy.

3Note that most reasoning tasks with LMs can be formal-
ized as the single-token prediction format (e.g., multi-choice
question answering).

Figure 3: An illustration of the attention mechanism in
a LM. The example sentence here is: Zurich is located
in Switzerland. Token t|T | is the last token used for the
prediction of the next token t|T |+1. The arrows here
show the attentions, where the red arrows denote the
attentions to the last token.

Let us consider the simplest of the three tasks
(k-th smallest element). Each statement Si here
is encoded as one token ti. The input text (con-
taining all statements in S) to the LM comprises
a set of tokens as T = (t1, t2, ...). We denote the
hidden representations of the token ti at layer l by
zl
i. We further denote the attention of head h be-

tween zl+1
i and zl

j as A(l, h)[i, j]. As shown in
Figure 3, the attention matrix at layer l of head h
is denoted as A(l, h), the lower triangular matrix.4

The overall attention matrix then can be denoted
by A = {A(l, h)|1 ≤ l ≤ L; 1 ≤ h ≤ H}.

Our probing task is to detect G from A, i.e. mod-
eling P (G|A). However, note that the size of A
is very large – L × H × |T |2, and it could con-
tain many redundant features. For example, if the
number of tokens in the input is 100, the attention
matrix A for LLaMA contains millions of attention
weights. It is impossible to probe the information
directly from A. In addition, the tree prediction
task is difficult (Hou and Sachan, 2021) and we
want our probe to be simple (Belinkov, 2022) as
we want it to provide reliable interpretation about
the LM rather than learn the task itself. Therefore,
we introduce two ways to simplify attentions and
the probing task design.

3.2 Simplification of A

In general, we propose two ways to simplify A.
Considering that LLaMA is a large LM, we propose
extra two ways to further reduce the number of
considered attention weights in A for it.

Focusing on the last token. For causal LMs, the
representation of the last token in the last layer zL

|T |

4Note that in this work we only consider causal LMs.

4904

is used to predict the next token t|T |+1 (Figure 3).
Thus, we simplify A by focusing on the attentions
on the last input token, denoted as Asimp. This re-
duces the size of attentions to L×H×|T |. Findings
in previous works support that Asimp is sufficient
to reveal the focus of the prediction token (Brunner
et al., 2020; Geva et al., 2023). In our experimental
setup, we also find that analysis on Asimp gives
similar results to that on A (Appendix B.4).

Attention head pooling. Many existing
attention-based analysis methods use pooling
(e.g., mean pooling or max pooling) on attention
heads for simplicity (Abnar and Zuidema, 2020;
Manning et al., 2020; Murty et al., 2023). We
follow this idea and take the mean value across all
attention heads for our analysis. Then, the size of
Asimp is further reduced to L× |T |.

Ignoring attention weights within the statement
(LLaMA). For LLaMA on the two natural lan-
guage reasoning tasks, a statement Si could contain
multiple tokens, i.e., |T | >> |S|. Thus, the size
of Asimp can still be large. To further simplify
Asimp under this setting, we regard all tokens of
a statement as a hypernode. That is, we ignore
attentions within hypernodes and focus on atten-
tions across hypernodes. As shown in Figure 4, we
can get Across

simp via mean pooling on all tokens of a
statement and max pooling on all tokens of Q as:5

Across
simp (l, h)[i]=max

tj′∈Q

(
mean
ti′∈Si

(
A(l, h)[i′, j′]

))
.

The size of simplified cross-hypernode attention
matrix Across

simp is further reduced to L× (|S|+ 1).

Pruning layers (LLaMA). Large LMs (e.g.,
LLaMA) are very deep (i.e., L is large), and are
pretrained for a large number of tasks. Thus, they
have many redundant parameters for performing
the reasoning task. Inspired by Rogers et al. (2020),
we prune the useless layers of LLaMA for the rea-
soning task and probe attentions of the remaining
layers. Specifically, we keep a minimum num-
ber of layers that maintain the LM’s performance
on a held-out development set, and deploy our
analysis on attentions of these layers. For 4-shot
LLaMA, 13/15 (out of 32) layers are removed for

5We take mean pooling for statements since max pooling
cannot differentiate statements with many overlapped words.
We take max pooling for Q since it is more differentiable
for the long input text. In practice, users can select different
pooling strategies based on their own requirements.

𝒕 𝑻 +𝟏
Layer 1 to L

𝑺𝟏

𝑸

Mean pooling

Max pooling

… …

𝑨Simp
Cross

Figure 4: An illustration of the way to extend our atten-
tion simplification method. In this example, S1 and Q
are both composed of 2 tokens. Thus, there are 2 × 2
attentions. We mean pool all the tokens within the state-
ments (remaining 1 × 2 attentions), and max pool all
the tokens in the question (remaining 1× 1 attention).

ProofWriter and ARC respectively. For finetuned
LLaMA, 18 (out of 32) layers are removed for
ProofWriter. More details about the attention prun-
ing can be found in Appendix C.2.

3.3 Simplification of the Probing Task

We simplify the problem of predicting G by break-
ing it down into two classification problems: clas-
sifying if the statement is useful or not, and classi-
fying the height of the statement in the tree.

P (G|Asimp) = P (V |Asimp) · P (G|V,Asimp).

Here, V is the set of nodes in G. P (V |Asimp)
(binary classification) measures if LMs can select
useful statements from the input based on atten-
tions, revealing if LMs correctly focus on useful
statements. Given the set of nodes in G, the second
probing task is to decide the reasoning tree. We
model P (G|V,Asimp) as the multiclass classifica-
tion for predicting the height of each node. For
example, when the reasoning tree depth is 2, the
height label set is {0, 1, 2}. Note that for the three
reasoning tasks considered by us, G is always a
simple tree that has multiple leaf nodes but one
intermediate node at each height.6

3.4 Probing Score

To limit the amount of information the probe learns
about the probing task, we use a non-parametric
classifier: k-nearest neighbors (kNN) to perform
the two classification tasks. We use SF1(V |Asimp)
and SF1(G|V,Asimp) to denote their F1-Macro
scores. To better interpret the probing results, we

6In practice, many reasoning graphs can be formalized as
the chain-like tree structure (Wei et al., 2022). We leave the
analysis with more complex G for future work.

4905

introduce a random probe baseline as the control
task (Hewitt and Liang, 2019) and instead of look-
ing at absolute probing values, we interpret the
probing scores compared to the score of the ran-
dom baseline. The probe scores are defined as:

SP1 =
SF1(V |Asimp)− SF1(V |Arand)

1− SF1(V |Arand)
, (1)

SP2 =
SF1(G|V,Asimp)− SF1(G|V,Arand)

1− SF1(G|V,Arand)
, (2)

where Arand is the simplified attention matrix given
by a randomly initialized LM. After normaliza-
tion, we have the range of our probing scores:
SP1, SP2 ∈ [0, 1]. Small values mean that there
is no useful information about G in attention, and
large values mean that the attention patterns indeed
contain much information about G.

4 Mechanistic Probing of LMs

We use the probe to analyze how LMs perform the
reasoning tasks. We first verify the usefulness of at-
tentions in understanding the reasoning process of
LMs by visualizing Asimp (§4.1). Then, we use the
probe to quantify the information of G contained in
Asimp (§4.2). Finally, we report layer-wise probing
results to understand if LMs are reasoning proce-
durally across their architecture (§4.3). 7

4.1 Attention Visualization
We first analyze Asimp on the k-th smallest element
task via visualizations. We permute Asimp arrang-
ing the numbers in ascending order and denote
this permulation as π(Asimp). We show visualiza-
tions of E[π(Asimp)] on the test data in Figure 5.
We observe that when GPT-2 tries to find the k-th
smallest number, the prediction token first focuses
on top-k numbers in the list with bottom layers.
Then, the correct answer is found in the top layers.
These findings suggest that GPT-2 solves the rea-
soning task in two steps following the reasoning
tree G. We further provide empirical evidence in
Appendix B.4 to show that analysis on Asimp gives
similar conclusions compared to that on A.

4.2 Probing Scores
Next, we use our MechanisticProbe to quantify
the information of G contained in Asimp (GPT-2)

7We have additional empirical explorations in the Ap-
pendix. Appendix B.6 shows that different finetuning methods
would not influence probing results. Appendix B.7 explores
how the reasoning task difficulty and LM capacity influence
the LM performance. Appendix B.8 researches the relation-
ships between GPT-2 performance and our two probing scores.

or Across
simp (LLaMA).

GPT-2 on k-th smallest element (Asimp). We
consider two versions of GPT-2: a pretrained ver-
sion and a finetuned version (GPT-2FT). We report
our two probing scores (Eq. 1 and Eq. 2) with dif-
ferent k in Table 1. The unnormalized F1-macro
scores (i.e., SF1(V |Asimp) and SF1(G|V,Asimp))
can be found in Appendix B.2.

Table 1: Probing scores for GPT-2 models on syn-
thetic reasoning tasks with different k. We also provide
the test accuracy of these finetuned models for refer-
ence. Note that when k = 1, the depth of G is 0, and
SF1(G|V,Asimp) is always equal to 1. Thus, we leave
these results blank. Results show that we can clearly
detect G from attentions of GPT-2FT.

k
Test Acc. SP1 SP2

GPT-2 GPT-2FT GPT-2 GPT-2FT GPT-2 GPT-2FT

1

0.00

99.63 7.09 92.94 - -
2 99.42 5.88 93.71 20.65 98.05
3 98.23 13.48 91.62 13.59 95.76
4 94.89 20.73 88.34 8.04 92.52
5 93.38 24.15 87.54 13.81 88.17
6 92.62 24.82 86.89 11.18 95.06
7 91.37 25.87 76.61 < 1 91.56
8 91.29 22.30 78.73 1.06 93.93

These results show that without finetuning, GPT-
2 is incapable of solving the reasoning task, and we
can detect little information about G from GPT-
2’s attentions.8 However, for GPT-2FT, which
has high test accuracy on the reasoning task,
MechanisticProbe can easily recover the reason-
ing tree G from Asimp. This further confirms that
GPT-2FT solves this synthetic reasoning task fol-
lowing G in Figure 2 (left).

LLaMA on ProofWriter and ARC (Across
simp).

Similarly, we use MechanisticProbe to probe
LLaMA on the two natural language reasoning
tasks. For efficiency, we randomly sampled 1024
examples from the test sets for our analysis. When
depth = 0, LLaMA only needs to find out the use-
ful statements for reasoning (SP1). When depth=1,
LLaMA needs to determine the next reasoning step.

Probing results with different numbers of in-
put statements (i.e., |S|) are in Table 2. Unnor-
malized classification scores can be found in Ap-
pendix C.5. It can be observed that all the prob-
ing scores are much larger than 0, meaning that
the attentions indeed contain information about G.

8Visualization of E[π(Asimp)] for (pretrained) GPT-2 can
be found in Appendix B.3. It shows that GPT-2 can somehow
find out the largest number from the number list.

4906

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.1

0.2

0.3

0.4

(a) k = 1

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.1

0.2

0.3

0.4

(b) k = 2

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

(c) k = 3

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

(d) k = 4

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

(e) k = 5

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

0.30

(f) k = 6

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

0.30

(g) k = 7

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

0.30

(h) k = 8

Figure 5: Visualization of E[π(Asimp)] for k ranging from 1 to 8. Note that m = 16 here, and when k > 8, the
reasoning task becomes finding k-th largest number. The visualizations are roughly the same without loss of
generality. The x-axis represents the layer index and the y-axis represents the size (rank) of the number. The value
of each cube is the attention weight (better view in color). Results show that layers of finetuned GPT-2 have different
functions: bottom layers focusing on top-k numbers and top layers focusing on k-smallest numbers.

Table 2: Probing results for LLaMA on natural language
reasoning. Note that when depth = 0, SF1(G|V,Asimp)
is always equal to 1. When depth = 1 and |S| = 2,
all input statements are useful. SF1(V |Asimp) is always
equal to 1. We leave these results blank. Regarding
ARC, we only report the scores under the 4-shot set-
ting. Results show that attentions of LLaMA contain
some information about selecting useful statements for
ProofWriter but much information for ARC. Regarding
determining reasoning steps, attentions of LLaMA con-
tain much information for both ProofWriter and ARC.

ProofWriter

Depth |S| Test Acc. SP1 SP2
LLaMA LLaMAFT LLaMA LLaMAFT LLaMA LLaMAFT

0 All 81.72

100

57.21 49.08 - -

1

2 94.81 - - 100 100
4 95.12 44.83 48.14 93.34 96.22
8 92.19 27.39 40.09 83.75 96.44

12 90.53 26.23 32.70 77.58 93.45
16 89.55 17.18 21.07 77.85 89.31
20 88.38 11.10 15.84 79.99 94.11
24 86.13 9.39 17.33 80.32 94.42

ARC

1 - 56.32
-

97.49 - 61.73 -
2 - 55.41 96.49 - 53.40 -

Looking at SP1 on ProofWriter, when the number
of input statements is small, MechanisticProbe
can clearly decide the useful statements based on
attentions. However, it becomes harder when there
are more useless statements (i.e., |S| is large). How-
ever, for ARC, our probe can always detect useful

statements from attentions easily.
Looking at SP2, we notice that our probe can

easily determine the height of useful statements
based on attentions on both ProofWriter and ARC
datasets. By comparing the probing scores on
ProofWriter, we find that LLaMAFT always has
higher probing scores than 4-shot LLaMA, imply-
ing that finetuning with supervised signals makes
the LM to follow the reasoning tree G more clearly.
We also notice that 4-shot LLaMA is affected
more by the number of useless statements than
LLaMAFT, indicating a lack of robustness of rea-
soning in the few-shot setting.

4.3 Layer-wise Probing

After showing that LMs perform reasoning follow-
ing oracle reasoning trees, we investigate how this
reasoning happens inside the LM layer-by-layer.

GPT-2 on k-th smallest element. In order to
use our probe layer-by-layer, we define the set
of simplified attentions before layer l as Asimp(:
l) = {Asimp(l

′)|l′ ≤ l}. Then, we report our prob-
ing scores SP1(l) and SP2(l) on these partial atten-
tions from layer 1 to layer 12. We denote these
layer-wise probing scores as SF1(V |Asimp(: l))
and SF1(G|V,Asimp(: l)).

4907

0 5 10
0

0.5

1

Layer index

Pr
ob

in
g

sc
or

es

(a) k = 1

0 5 10

0.2
0.4
0.6
0.8
1

Layer index

(b) k = 2

0 5 10
0.2
0.4
0.6
0.8
1

Layer index

(c) k = 3

0 5 10
0.2

0.4

0.6

0.8

1

Layer index

Pr
ob

in
g

sc
or

es

(d) k = 4

0 5 10

0.2
0.4
0.6
0.8

Layer index

(e) k = 5

0 5 10

0.2
0.4
0.6
0.8
1

Layer index

(f) k = 6

0 5 10

0.2
0.4
0.6
0.8
1

Layer index

Pr
ob

in
g

sc
or

es

(g) k = 7

0 5 10
0

0.5

1

Layer index

SP1(l)

SP2(l)

(h) k = 8

Figure 6: Two probing scores on partial attentions across
12 layers. The x-axis represents the layer index of GPT-
2FT, and the y-axis represents the probing scores. Simi-
larly, we test different k from 1 to 8 (m = 16 by default).
Results show that each layer of GPT-2FT focuses on dif-
ferent steps of the synthetic reasoning task.

Figure 6 shows the layer-wise probing scores
for each k for GPT-2FT models. Observing SP1,
i.e., selecting top-k numbers, we notice that GPT-
2FT quickly achieves high scores in initial layers
and then, SP1 increases gradually. Observing SP2,
i.e., selecting the k-th smallest number from top-k
numbers, we notice that GPT-2FT does not achieve
high scores until layer 10. This reveals how GPT-
2FT solves the task internally. The bottom layers
find out the top-k numbers, and the top layers select
the k-th smallest number among them. Results in
Figure 5 also support the above findings.

LLaMA on ProofWriter and ARC (Across
simp).

Similarly, we report layer-wise probing scores
SP1(l) and SP2(l) for LLaMA under the 4-shot set-
ting. We further report SF1(Vheight|Across

simp (: l)) for
nodes with height = 0 and height = 1 to show if
the statement at height 0 is processed in LLaMA
before the statement at height 1.

The layer-wise probing results for ProofWriter
are shown in Figure 7(a-e). We find that similar
to GPT-2, probing results for 4-shot LLaMA reach
a plateau at an early layer (layer 2 for SP1(l)),
and at middle layers for SP2(l). This obserrva-
tion holds as we vary|S| from 4 to 20. This
shows that similar to GPT-2, LLaMA first tries
to identify useful statements in the bottom layers.

0 5 10 15 20

0.2
0.4
0.6
0.8
1

Layer number

Pr
ob

in
g

sc
or

es

(a) |S| = 4

0 5 10 15 20

0.2
0.4
0.6
0.8

Layer number

(b) |S| = 8

0 5 10 15 20
0

0.2
0.4
0.6
0.8

Layer number

(c) |S| = 12

0 5 10 15 20

0
0.2
0.4
0.6
0.8

Layer number

Pr
ob

in
g

sc
or

es

(d) |S| = 16

0 5 10 15 20

0
0.2
0.4
0.6
0.8

Layer number

SP1(l)

SP2(l)

(e) |S| = 20

0 5 10 15 20

0.5

0.55

0.6

Layer numberS
F1
(V

he
ig

ht
|A

cr
os

s
si

m
p
(:

l)
)

height = 0

height = 1

(f) Height probing

Figure 7: Layer-wise probing results on ProofWriter.
x-axis represents the number of layers used for prob-
ing. We can find that SP1(l) scores reach the plateau
quickly and SP2(l) scores increase smoothly till the mid-
dle layers. This indicates that useful statement selection
is mainly finished in the bottom layers and the reason-
ing step is decided in the middle layers. Results of
SF1(Vheight|Across

simp (: l)) shows that statements at height
0 are identified by LLaMA in bottom layers, and state-
ment at height 1 are identified later in middle layers.

0 5 10 15

0.2
0.4
0.6
0.8
1

Layer number

Pr
ob

in
g

sc
or

es

SP1(l)

SP2(l)

Figure 8: Layer-wise probing results on ARC (depth=1).
Similar to that of ProofWriter, we can find that SP1(l)
scores reach the plateau quickly and SP2(l) scores in-
crease smoothly till the middle layers.

Then, it focuses on predicting the reasoning steps
given the useful statements. Figure 7(f) shows
how SF1(Vheight|Across

simp (: l)) varies across layers.
LLaMA identifies the useful statements from all
the input statements (height 0) immediately in layer
2. Then, LLaMA gradually focuses on these state-
ments and builds the next layer of the reasoning
tree (height 1) in the middle layers.

The layer-wise probing results for ARC are in
Figure 8. Similar to ProofWriter, the SP1(l) scores
on ARC for 4-shot LLaMA reach a plateau at an
early layer (layer 2), and at middle layers for SP2(l).
This also shows that LLaMA tries to identify useful
statements in the bottom layers and focuses on the
next reasoning steps in the higher layers.

4908

5 Do LMs Reason Using Asimp?

Our analysis so far shows that LMs encode the
reasoning trees in their attentions. However, as
argued by Ravichander et al. (2021); Lasri et al.
(2022); Elazar et al. (2021), this information might
be accidentally encoded but not actually used by
the LM for inference. Thus, we design a causal
analysis for GPT-2 on the k-th smallest element
task to show that LMs indeed perform reasoning
following the reasoning tree. The key idea is to
prove that the attention heads that contribute to
Asimp are useful to solve the reasoning task, while
those heads that are irrelevant (i.e., independent) to
Asimp are not useful in the reasoning task.

Intuitively, for the k-th smallest element task,
attention heads that are sensitive to the number size
(rank) are useful, while heads that are sensitive
to the input position are not useful. Therefore, for
each head, we calculate the attention distribution on
the test data to see if the head specially focuses on
numbers with a particular size or position. We use
the entropy of the attention distribution to measure
this9: small entropy means that the head focuses
particularly on some numbers. We call the entropy
with respect to number size as size entropy and that
with respect to input position as position entropy.
The entropy of all the heads in terms of number
size and position can be found in Appendix B.5.

We prune different kinds of attention heads in
order of their corresponding entropy values and
report the test accuracy on the pruned GPT-2.10

Results with different k are shown in Figure 9. We
find that the head with a small size entropy is essen-
tial for solving the reasoning task. Dropping 10%
of this kind of head, leads to a significant drop in
performance on the reasoning task. The heads with
small position entropy are highly redundant. Drop-
ping 40% of the heads with small position entropy
does not affect the test accuracy much. Especially
when k = 1, dropping 90% position heads could
still promise a high test accuracy.

These results show that heads with small size
entropy are fairly important for GPT-2 to find k-th
smallest number while those with small position
entropy are useless for solving the task. Note that
the reasoning tree G is defined on the input number

9We regard the attentions E[Asimp(l, h)] as probabilities,
and calculate the entropy of head h at layer l using them.

10We gradually prune heads, and the order of pruning heads
is based on the size/position entropy. For example, for the size
entropy pruning with 50% pruned heads, we remove attention
heads that have the top 50% smallest size entropy.

0 50

0

0.5

1

Pruned heads (%)

Te
st

ac
cu

ra
cy

(a) k = 1

0 50

0

0.5

1

Pruned heads (%)

(b) k = 2

0 50

0

0.5

1

Pruned heads (%)

(c) k = 3

0 50

0

0.5

1

Pruned heads (%)

Te
st

ac
cu

ra
cy

(d) k = 4

0 50

0

0.5

1

Pruned heads (%)

(e) k = 5

0 50

0

0.5

1

Pruned heads (%)

(f) k = 6

0 50

0

0.5

1

Pruned heads (%)

Te
st

ac
cu

ra
cy

(g) k = 7

0 50

0

0.5

1

Pruned heads (%)

Random

Position entropy

Size entropy

(h) k = 8

Figure 9: Test accuracy on the reasoning task for differ-
ent pruning rates. The x-axis represents pruning rates:
ranging from 0% to 90%, and the y-axis represents the
test accuracy. We prune heads in the ascending order
of their size/position entropy. Results show that heads
with small size entropy are essential to the test accuracy
while those with small position entropy are useless.

size and it is independent of the number position.
MechanisticProbe detects the information of G
from attentions. Thus, our probing scores would
be affected by the heads with small size entropy
but would not be affected by heads with small po-
sition entropy. Then, we can say that changing
our probing scores (via pruning heads in terms of
size entropy) would cause the test accuracy change.
Therefore, we say that there is a causal relationship
between our probing scores and LM performance,
and LMs perform reasoning following the reason-
ing tree in Asimp.

6 Correlating Probe Scores with Model
Accuracy and Robustness

Our results show that LMs indeed reason mecha-
nistically. But, is mechanistic reasoning necessary
for LM performance or robustness? We attempt
to answer this question by associating the probing
scores with the performance and robustness of LMs.
Given that finetuned GPT-2 has a very high test ac-
curacy on the synthetic task and LLaMA does not
perform as well on ARC, we conduct our analysis
mainly with LLaMA on the ProofWriter task.

Accuracy. We randomly sample 64 to 128 exam-
ples from the dataset and test 4-shot LLaMA on
these examples. We calculate their test accuracy

4909

Table 3: Pearson correlation coefficient between our
probing scores and test accuracy for 4-shot LLaMA.

Pearson correlation coefficient ρ (×100%)

ρ (SP1, SP2) 0.01

ρ (Test accuracy, SP1) 27.42
ρ (Test accuracy, SP2) 71.13

and the two probing scores SP1 and SP2. We repeat
this experiment 2048 times. Then, we calculate
the correlation between the probing scores and test
accuracy. From Table 3, we find that test accuracy
is closely correlated with SP2. This implies that
when we can successfully detect reasoning steps of
useful statements from LM’s attentions, the model
is more likely to produce a correct prediction.

Robustness. Following the same setting, we also
associate the probing scores with LM robustness.
In order to quantify model robustness, we randomly
corrupt one useless input statement for each ex-
ample, such that the prediction would remain un-
changed.11 We measure robustness by the decrease
in test accuracy after the corruption.

0.4 0.5 0.6 0.7

−10

−5

0

5

x

SP2 (ranges from minimum to maximum)

Te
st

ac
cu

ra
cy

ch
an

ge

Test accuracy decrease

Figure 10: Histogram for LM prediction robustness and
SP2. We measure robustness by the change in accuracy
on the corrupted dataset. We present results with 8 bins.
Results show that LLaMA is more robust to noise on
examples with higher probing scores SP2.

Figure 10 shows that if SP2 is small (less than
0.7), the prediction of LLaMA could be easily influ-
enced by the noise (test accuracy decreases around
10%). However, if the probing SP2 is high, LLaMA
is more robust, i.e., more confident in its correct pre-
diction (test accuracy increases around 4%). This
provides evidence that if the LM encodes the gold
reasoning trees, its predictions are more reliable
(i.e., robust to noise in the input).

7 Related Work

Attention-based analysis of LMs. Attention has
been popularly used to interpret LMs (Vig and

11We do it by adding negation: corrupting Si as [“That”◦
Si ◦ “ is false”], where ◦ means string concatenation.

Belinkov, 2019; DeRose et al., 2021; Bibal et al.,
2022). A direct way for interpreting an attention-
based model is to visualize attentions (Samaran
et al., 2021; Chefer et al., 2021). But the irrelevant,
redundant, and noisy information captured by at-
tentions makes it hard to find meaningful patterns.
Alternatively, accumulation attentions that quan-
tify how information flows across tokens can be
used for interpretation (Abnar and Zuidema, 2020;
Eberle et al., 2022). However, for casual LMs, in-
formation flows in one direction, and it causes an
over-smoothing problem when the model is deep.12

To tackle this, other works propose new metrics and
analyze attentions using them (Ethayarajh and Ju-
rafsky, 2021; Liu et al., 2022). However, these
metrics are proposed under specific scenarios, and
these are not useful for detecting the reasoning
process in LMs. We address this challenge by de-
signing a more structured probe that predicts the
reasoning tree in LMs.

Mechanistic Interpretability. Mechanistic inter-
pretation explains how LMs work by reverse en-
gineering, i.e., reconstructing LMs with different
components (Räuker et al., 2022). A recent line of
work provides interpretation focusing on the LM’s
weights and intermediate representations (Olah
et al., 2017, 2018, 2020). Another line of work
interprets LMs focusing on how the information is
processed inside LMs (Olsson et al., 2022; Nanda
et al., 2023). Inspired by them, Qiu et al. (2023)
attempts to interpret how LMs perform reasoning.
However, existing explorations do not cover the
research problem we discussed.

8 Conclusion

In this work, we raised the question of whether
LMs solve procedural reasoning tasks step-by-step
within their architecture. In order to answer this
question, we designed a new probe that detects the
oracle reasoning tree encoded in the LM architec-
ture. We used the probe to analyze GPT-2 on a
synthetic reasoning task and the LLaMA model
on two natural language reasoning tasks. Our em-
pirical results show that we can often detect the
information in the reasoning tree from the LM’s
attention patterns, lending support to the claim that
LMs may indeed be reasoning “mechanistically”.

12The issue is that all token representations are dominated
by the first token. Detailed discussion is in Appendix A.

4910

Limitations

One key limitation of this work is that we con-
sidered fairly simple reasoning tasks. We invite
future work to understand the mechanism behind
LM-based reasoning by exploring more challeng-
ing tasks. We list few other limitations of our work
below:

Mutli-head attention. In this work, most of our
analysis takes the mean value of attentions across
all heads. However, we should notice that attention
heads could have different functions, especially
when the LM is shallow but wide (e.g., with many
attention heads, and very high-dimensional hidden
states). Shallow models might still be able to solve
procedural reasoning tasks within a few layers, but
the functions of the head could not be ignored.

Auto-regressive reasoning tasks. In our analy-
sis, we formalize the reasoning task as classifica-
tion, i.e., single-token prediction. Thus, the analy-
sis could only be deployed on selected reasoning
tasks. Some recent reasoning tasks are difficult and
can only be solved by LMs via chain-of-thought
prompting. We leave the analysis of reasoning un-
der this setting for future work.

Acknowledgements

We are grateful to anonymous reviewers for their
insightful comments and suggestions. Yifan Hou is
supported by the Swiss Data Science Center PhD
Grant (P22-05) and Alessandro Stolfo is supported
by armasuisse Science and Technology through
a CYD Doctoral Fellowship. Antoine Bosselut
gratefully acknowledges the support of the Swiss
National Science Foundation (No. 215390), Inno-
suisse (PFFS-21-29), the EPFL Science Seed Fund,
the EPFL Center for Imaging, Sony Group Corpo-
ration, and the Allen Institute for AI. Mrinmaya
Sachan acknowledges support from the Swiss Na-
tional Science Foundation (Project No. 197155), a
Responsible AI grant by the Haslerstiftung; and an
ETH Grant (ETH-19 21-1).

References
Samira Abnar and Willem Zuidema. 2020. Quantify-

ing attention flow in transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4190–4197, On-
line. Association for Computational Linguistics.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail
Weiss, and Antoine Bosselut. 2023. Discovering

knowledge-critical subnetworks in pretrained lan-
guage models.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo
Wilkens, Xiaoou Wang, Thomas François, and
Patrick Watrin. 2022. Is attention explanation? an
introduction to the debate. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3889–3900, Dublin, Ireland. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Wat-
tenhofer. 2020. On identifiability in transformers. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramèr, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. CoRR, abs/2202.07646.

Hila Chefer, Shir Gur, and Lior Wolf. 2021. Generic
attention-model explainability for interpreting bi-
modal and encoder-decoder transformers. In 2021
IEEE/CVF International Conference on Computer
Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pages 387–396. IEEE.

Zeming Chen, Gail Weiss, Eric Mitchell, Asli Celiky-
ilmaz, and Antoine Bosselut. 2023. RECKONING:
reasoning through dynamic knowledge encoding.
CoRR, abs/2305.06349.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Antonia Creswell and Murray Shanahan. 2022. Faith-
ful reasoning using large language models. CoRR,
abs/2208.14271.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. CoRR,
abs/2205.09712.

4911

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
http://arxiv.org/abs/2310.03084
http://arxiv.org/abs/2310.03084
http://arxiv.org/abs/2310.03084
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.18653/v1/2022.acl-long.269
https://doi.org/10.18653/v1/2022.acl-long.269
http://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=BJg1f6EFDB
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.1109/ICCV48922.2021.00045
https://doi.org/10.48550/arXiv.2305.06349
https://doi.org/10.48550/arXiv.2305.06349
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.48550/arXiv.2208.14271
https://doi.org/10.48550/arXiv.2208.14271
https://doi.org/10.48550/arXiv.2205.09712
https://doi.org/10.48550/arXiv.2205.09712

Joseph F. DeRose, Jiayao Wang, and Matthew Berger.
2021. Attention flows: Analyzing and comparing
attention mechanisms in language models. IEEE
Trans. Vis. Comput. Graph., 27(2):1160–1170.

Yue Dong, Chandra Bhagavatula, Ximing Lu, Jena D.
Hwang, Antoine Bosselut, Jackie Chi Kit Cheung,
and Yejin Choi. 2021. On-the-fly attention modula-
tion for neural generation. In Findings of the Associ-
ation for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 1261–
1274. Association for Computational Linguistics.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaïd Harchaoui, and Yejin Choi. 2023.
Faith and fate: Limits of transformers on compo-
sitionality. CoRR, abs/2305.18654.

Oliver Eberle, Stephanie Brandl, Jonas Pilot, and An-
ders Søgaard. 2022. Do transformer models show
similar attention patterns to task-specific human
gaze? In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4295–4309, Dublin,
Ireland. Association for Computational Linguistics.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

Kawin Ethayarajh and Dan Jurafsky. 2021. Attention
flows are shapley value explanations. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 49–54, Online. As-
sociation for Computational Linguistics.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. CoRR,
abs/2304.14767.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Yifan Hou and Mrinmaya Sachan. 2021. Bird’s eye:
Probing for linguistic graph structures with a sim-
ple information-theoretic approach. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1844–1859, Online.
Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yibing Liu, Haoliang Li, Yangyang Guo, Chenqi Kong,
Jing Li, and Shiqi Wang. 2022. Rethinking attention-
model explainability through faithfulness violation
test. In International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine
Learning Research, pages 13807–13824. PMLR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Donald W. Loveland. 1980. Automated theorem prov-
ing. a logical basis. Journal of Symbolic Logic,
45(3):629–630.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proc. Natl. Acad. Sci.
USA, 117(48):30046–30054.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2023.
Language models implement simple word2vec-style
vector arithmetic.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023. Grokking of hierarchi-
cal structure in vanilla transformers. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 439–448, Toronto, Canada. Association for
Computational Linguistics.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill, 5(3):e00024–
001.

Chris Olah, Alexander Mordvintsev, and Ludwig Schu-
bert. 2017. Feature visualization. Distill, 2(11):e7.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexan-
der Mordvintsev. 2018. The building blocks of inter-
pretability. Distill, 3(3):e10.

4912

https://doi.org/10.1109/TVCG.2020.3028976
https://doi.org/10.1109/TVCG.2020.3028976
https://doi.org/10.18653/v1/2021.findings-acl.107
https://doi.org/10.18653/v1/2021.findings-acl.107
https://doi.org/10.48550/arXiv.2305.18654
https://doi.org/10.48550/arXiv.2305.18654
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.18653/v1/2022.acl-long.296
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.18653/v1/2021.acl-short.8
https://doi.org/10.18653/v1/2021.acl-short.8
https://doi.org/10.48550/arXiv.2304.14767
https://doi.org/10.48550/arXiv.2304.14767
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/2021.acl-long.145
https://doi.org/10.18653/v1/2021.acl-long.145
https://doi.org/10.18653/v1/2021.acl-long.145
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.18653/v1/2022.acl-long.603
https://proceedings.mlr.press/v162/liu22i.html
https://proceedings.mlr.press/v162/liu22i.html
https://proceedings.mlr.press/v162/liu22i.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.2307/2273428
https://doi.org/10.2307/2273428
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
http://arxiv.org/abs/2305.16130
http://arxiv.org/abs/2305.16130
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://openreview.net/pdf?id=9XFSbDPmdW
https://openreview.net/pdf?id=9XFSbDPmdW

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al.
2023. Phenomenal yet puzzling: Testing in-
ductive reasoning capabilities of language mod-
els with hypothesis refinement. arXiv preprint
arXiv:2310.08559.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2022. Toward transparent AI: A
survey on interpreting the inner structures of deep
neural networks. CoRR, abs/2207.13243.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377, Online. Association
for Computational Linguistics.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 840–854, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma,
Henghui Zhu, Rui Dong, Deguang Kong, Juli-
ette Burger, Anjelica Ramos, Zhiheng Huang,
William Yang Wang, George Karypis, Bing Xiang,
and Dan Roth. 2023. STREET: A multi-task struc-
tured reasoning and explanation benchmark. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Sebastian Ruder, Jonas Pfeiffer, and Ivan Vulić. 2022.
Modular and parameter-efficient fine-tuning for NLP
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
Tutorial Abstracts, pages 23–29, Abu Dubai, UAE.
Association for Computational Linguistics.

Jules Samaran, Noa Garcia, Mayu Otani, Chenhui Chu,
and Yuta Nakashima. 2021. Attending self-attention:
A case study of visually grounded supervision in

vision-and-language transformers. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
Student Research Workshop, pages 81–86, Online.
Association for Computational Linguistics.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. Understanding arithmetic reasoning
in language models using causal mediation analysis.
arXiv preprint arXiv:2305.15054.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context semantic
reasoners rather than symbolic reasoners. CoRR,
abs/2305.14825.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Zhengxuan Wu, Atticus Geiger, Christopher Potts, and
Noah D. Goodman. 2023. Interpretability at scale:
Identifying causal mechanisms in alpaca. CoRR,
abs/2305.08809.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman,
Maxim Raginsky, and Talia Ringer. 2023. Can trans-
formers learn to solve problems recursively? CoRR,
abs/2305.14699.

4913

https://doi.org/10.48550/arXiv.2207.13243
https://doi.org/10.48550/arXiv.2207.13243
https://doi.org/10.48550/arXiv.2207.13243
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://openreview.net/pdf?id=1C_kSW1-k0
https://openreview.net/pdf?id=1C_kSW1-k0
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2022.emnlp-tutorials.5
https://doi.org/10.18653/v1/2022.emnlp-tutorials.5
https://doi.org/10.18653/v1/2021.acl-srw.8
https://doi.org/10.18653/v1/2021.acl-srw.8
https://doi.org/10.18653/v1/2021.acl-srw.8
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.48550/arXiv.2305.14825
https://doi.org/10.48550/arXiv.2305.14825
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2305.08809
https://doi.org/10.48550/arXiv.2305.08809
https://doi.org/10.48550/arXiv.2305.14699
https://doi.org/10.48550/arXiv.2305.14699

A Proof of The First-Token Domination

Proof. Without loss of generality, we assume the
LM have L layers with only 1 attention head (h =
H = 1), and the attention weight matrix in layer l is
A(l, h). We consider the input that have more than
1 token. We model attention as flows following the
setting of Abnar and Zuidema (2020). Then, the
attention accumulation Accum() of the token zl+1

i

in the layer l + 1 can be written as

Accum(zl+1
i) =

∑

1≤j≤|T |
ai,j(l, h) · Accum(zl

j),

(3)
where we have

Accum(z1
i) =

∑

1≤j≤|T |
ai,j(l, h) · tj . (4)

Since ai,j(l, h) is the attention weight for casual
LM, we have





ai,j(l, h) = 0 if i < j
0 < ai,j(l, h) < 1 if i ≥ j∑

j ai,j(l, h) = 1
. (5)

Note that attention is normalized by Softmax func-
tion in LMs. The minimum attention weight is
non-zero, and we assume there exist a constant
ϵ > 0 such as ϵ ≤ ai,j(l, h) < 1 if i ≥ j. Now we
define the information ratio IRzl

i
(tj) as the informa-

tion of token tj stored in the hidden representation
zl
i. Consider that in each layer, token t1 would

propagate its information to all tokens in the next
layer with at least ϵ amount. Then, by tracing the
information flow from other tokens j > 1, we have

1− IRzl+1
i

(t1) ≤ (1− ϵ)(1− IRzl
i
(t1)). (6)

Using the chain rule, we have

1− IRzL
i
(t1) ≤ (1− ϵ)L(1− IRz1

i
(t1)), (7)

which means

IRzL
i
(t1) ≥ 1− (1− ϵ)L−1(1− IRz1

i
(t1)), (8)

IRzL
i
(t1) ≥ 1− (1− ϵ)L. (9)

With the inequality above, we know that if the LM
is deep, i.e., L is large, we have IRzL

i
(t1) increase

exponentially in terms of layer L, which means
that IRzL

i
(t1) ≈ 1 with large L in general.

B Supplementary about GPT-2

We provide some more details on our experiments
on GPT-2 as well as LLaMA to help in reproducibil-
ity. First of all, we fix the random seed (42) and
use the same random seed for all experiments, in-
cluding LM finetuning and interpretations. In addi-
tion, to make sure the random seed is unbiased, we
further re-run the same experiment with different
random seeds. All of our experiments have roughly
the same results as those of using other seeds.

Second, we design our analysis as simply as
possible to ensure that there is as little random
influence (i.e., confounder) as possible. For
MechanisticProbe, we select the kNN classifier.
For LLaMA, we run analysis experiments on a 4-
shot in-context learning setting.

Third, we report as many intermediate and sup-
plement results as possible. In the Appendix, there
are many other interesting findings. However, due
to the space limit, we cannot present them in the
main paper. We hope our findings are helpful to
the community to better understand LMs.

B.1 GPT-2 Finetuning
The finetuning settings for all GPT-2 models are
roughly identical. We generate 0.98 million se-
quences of numbers as the training data and 10, 000
in data for validation and testing. Note that the col-
lision probability is extremely small, thus we can
assume that there is no data leakage. The epoch
number is set as 2, and the batch size here is 256.
We use the AdamW (Loshchilov and Hutter, 2019)
optimizer with weight decay 1e− 3 from Hugging-
face13 for finetuning. The learning rate is 1e− 6.

B.2 Original Probing Scores
The original classification scores (F1-Macro) for
two probing tasks can be found in Table 4. Here,
random means we randomly initialize GPT-2 and
use its attentions for probing as the random base-
line. The other two pretrained and finetuned are
the pretrained GPT-2 model and GPT-2 model after
finetuning with supervised signals.

B.3 Visualization of E[π(Asimp)] for GPT-2
We visualize the Asimp for pretrained GPT-2 with-
out finetuning in Figure 11. We can find that even
if pretrained GPT-2 cannot solve the synthetic rea-
soning task (finding k-th smallest number from a
list). It can still somehow differentiate the size of

13https://huggingface.co/

4914

https://huggingface.co/

Table 4: The original classification F1-Macro scores of
GPT-2 for two probing tasks.

Probing task SF1(V |Asimp) SF1(G|V,Asimp)

GPT-2 random pretrained finetuned random pretrained finetuned

k=1 48.38 52.04 96.36 100 100 100

k=2 48.60 51.61 96.77 73.18 78.72 99.47

k=3 47.62 54.68 95.61 61.45 66.69 98.36

k=4 47.42 58.32 93.87 55.71 59.28 96.69

k=5 48.50 60.94 93.58 54.86 55.48 94.66

k=6 48.66 61.40 93.27 50.44 55.98 97.55

k=7 49.28 62.40 88.14 51.75 51.11 97.55

k=8 49.74 60.95 89.31 50.54 51.07 97.00

numbers. The largest number of the list often has
slightly larger attentions in layer 11.

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.0600
0.0625
0.0650
0.0675
0.0700
0.0725
0.0750

0.0775

Figure 11: Visualization of E[π(Asimp)] for pretrained
GPT-2 (w/o any finetuning). Similarly, we take mean
pooling for different attention heads.

B.4 Visulization of A

To avoid disturbance, we remove 40% position
heads (heads with small position entropy) and take
mean pooling on all left heads. We visualize A to
directly show that Asimp contains sufficient essen-
tial information of A. We consider a special case
when k = 2, the largest number is at position 8 and
the second largest number is at position 12.14

The attention E[A] is visualized as in Figure 12.
From Figure 12, we can get similar conclusion as
on the visualization of E[Asimp]. In the bottom
layers, most hidden representations focus on top-2
numbers. In the top layers, most hidden represen-
tations focus on the second smallest number. This
result proves that our analysis on Asimp is as rea-
sonable as that on A.

We also provide the visualization of E[A] on
normal test data (i.e., the input position is indepen-
dent of the size) in Figure 13. We can find that
the attention distribution is even, and there is no

14We modify our test data only to satisfy this condition.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

16
15
14
13

12 (root)
11
10

9
8 (leaf)

7
6
5
4
3
2
1

To
ke

n

Figure 12: Visualization of E[A]. The x-axis represents
layers and the y-axis represents input token positions.
We take the mean pooling of 60% attention heads with
large position entropy. The leaf node (i.e., the largest
number) is always at position 8, and the root node (i.e.,
the second largest number) is always at position 12. We
track their attentions and visualize them by blue and red
lines.

typical tendency.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

To
ke

n

Figure 13: Visualization of E[A] on normal test data.
The x-axis represents layers and the y-axis represents
input token positions. We take mean pooling of 60%
attention heads with large position entropy.

B.5 Attention Head Entropy
From Figure 14, we can find that most heads belong
to either position head or size head. Note that we
generate input data randomly, thus, the number size
and input position are independent of each other.
Thus, one head cannot be both position head and
size head.

B.6 Do Finetuning Methods Matter?
To show that our analysis is robust, we explore the
attention of GPT-2 with different ways of param-

4915

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

At
te

nt
io

n
he

ad
Layers

0.0

0.2

0.4

0.6

0.8

1.0

(a) Entropy in terms of num-
ber size (rank)

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

At
te

nt
io

n
he

ad

Layers

0.0

0.2

0.4

0.6

0.8

1.0

(b) Entropy in terms of num-
ber input position

Figure 14: Entropy for all attention heads of finetuned
GPT-2. x-axis represents layers and y-axis represents
the head index. The cube (better view in color) shows
the entropy value.

eter efficient finetuning (Ruder et al., 2022). We
report our two probing scores SP1 and SP2 with var-
ious ways of finetuning in Figure 15 (We consider
the condition when k = 2 and m = 16). We find
that probing scores of finetuning the full GPT-2
model are similar to that of partially finetuning on
attention parameters and MLP (multilayer percep-
tron) parameters. These consistent results ensure
the general usage of our MechanisticProbe on
current large LMs with partial finetuning.

w/o Full
Attention MLP Bias

0

0.5

1

1.5

5.88 · 10−2

0.94 0.92 0.92
0.84

0.21

0.98 0.97 0.93

0.68

Finetuning methods

Pr
ob

in
g

sc
or

es

SP1 SP2

Figure 15: Probing scores of GPT-2 with different fine-
tuning methods. Here, w/o denotes the baseline when
GPT-2 model is not finetuned. Full denotes finetuning
with all parameters. Other models are partial finetuned
with corresponding parameters. With the exception
of probing scores of the Bias tuned model, other par-
tial finetuning methods have roughly the same probing
scores compared to that full finetuning. This indicates
that MechanisticProbe can provide consistent analy-
sis for LMs finetuned in different ways.

The direct visualization of E[π(Asimp)] for dif-
ferent finetuning methods can be found Figure 16(a-
d). And the test accuracy of these 4 finetuned mod-
els are: 99.42, 99.31, 94.11, and 76.84. We can
find that finetuning attention parameters or MLP
parameters can obtain quite similar attention pat-

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.1

0.2

0.3

0.4

(a) Full

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Partial (Attention)

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.05

0.10

0.15

0.20

0.25

(c) Partial (MLP)

1 2 3 4 5 6 7 8 9 10 11 12

1st
2nd
3rd
4th
5th
6th
7th
8th
9th

10th
11th
12th
13th
14th
15th
16th

Si
ze

 ra
nk

in
g

Layers

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(d) Partial (Bias)

Figure 16: Visualization of E[π(Asimp)] with different
ways of finetuning. The x-axis represents layers and the
y-axis represents size ranking. We take mean pooling
attention heads. From Figures (a-d) are GPT-2 with
full finetuning, GPT-2 with partial finetuning on atten-
tion parameters, GPT-2 with partial finetuning on MLP
parameters, and GPT-2 with partial finetuning on bias
parameters. We can find that different finetuning meth-
ods would not affect the attention patterns much.

terns to that of full model finetuning. Regarding
the bias tuning, it is slightly different. We speculate
that this is because the LM does not learn the k-th
smallest element task well (with much lower test
accuracy). Generally, without significant perfor-
mance drops, these results can support the general
usage of our probing method MechanisticProbe
under different finetuning settings.

B.7 Task Difficulty & Model Capacity

This subsection discusses which factors can let
GPT-2 handle reasoning tasks with more leaf nodes
in G, i.e., large k. We explore the model capacity
and reasoning task difficulty. Specifically, we ex-
tend the list length m from 16 to 64, and maximum
k from 8 to 32. For each k, we finetune LMs with
the same finetuning settings and evaluate them on
test data with accuracy. For model capacity, we
compare three versions of GPT-2 with different
sizes: Distilled GPT-2, GPT-2 (small), and GPT-2
Medium. For task difficulty, we construct synthetic
data by selecting m=64 numbers from 256, 384,

4916

0 10 20 30

20

40

60

80

100

k

Te
st

ac
cu

ra
cy

(%
)

Distilled GPT-2

GPT-2 (Small)

GPT-2 Medium

(a) Model capacity

0 10 20 30

20

40

60

80

100

k

m=64 from 256 numbers

m=64 from 384 numbers

m=64 from 512 numbers

(b) Procedural task difficulty

Figure 17: Test accuracies for LMs under different con-
ditions. The x-axis represents k (finding the k-th small-
est number) and the y-axis represents the test accuracy.
The left figure explores the performance of LMs with
different capacities, and the right figure explores the
performance of GPT-2 with different task difficulties.

and 512 distinct numbers.
We report their test accuracies in Figure 17. Note

that here the setting remains the same: for each
reasoning task (i.e., k), we finetune an individual
model. From Figure 17(a), we find that LMs with
large model capacities can better solve procedural
tasks with more complex G (i.e., more leaf nodes in
G). But it does not mean that small LMs fail in this
case. If we can reasonably reduce the task difficulty
(e.g., decompose the procedural task), small LMs
are still able to handle that task with complex G
(Figure 17(b)).

B.8 What if Reasoning Tasks Become
Harder?

1 11 21 31

−0.5

0

0.5

1

k

Pr
ob

in
g

sc
or

es

Test Acc.

−SP1

SP2

Figure 18: Probing scores and test accuracy of GPT-2FT
on more difficult reasoning tasks. We finetune GPT-
2 models to find the k-th smallest number from the
long number list (m = 64, and k ranges from 1 to 32).
Results show that when the accuracy is low, GPT-2FT
would still know how to select top-k numbers more
or less. But they are unable to find the k-th smallest
number from top-k numbers anymore.

Till now, we have experimented on a relatively
easy task (m = 16). In this subsection, we in-
crease the difficulty of the task by extending the
input number list from m = 16 numbers to m = 64
numbers. We report the test accuracy as well as the
two probing scores in Figure 18, varying k from
1 to 32. As expected, the test accuracy decreases
smoothly from near 100% to around 15%. Interest-
ingly, SP1 and SP2 do not decrease with the same
speed. Even when the model has a very low ac-
curacy, SP1 still maintains at a high score (above
30%), while SP2 quickly jumps to 0 when k is
around 20. This suggests that GPT-2FT solves the
two steps sequentially, and step 2 fails first when
the task goes beyond the capacity of the model.

C Supplementary about LLaMA

C.1 Settings for 4-shot and Finetuned LLaMA

For the in-context learning of LLaMA, we con-
struct the input prompt as simple as possible. Given
set of statements [S1, S2, ...], the question state-
ment Q, and the answer label A (e.g., “True” or
“False”), the prompt templates for ProofWriter and
ARC are:

[S1, S2, ...] + [Q] + True or False? + [A],

[S1, S2, ...] + [Q] + The answer is: + [A].

The test accuracy of 0-shot, 2-shot, 4-shot, and 8-
shot prompting of LLaMA can be found in Table 5.
We select 4-shot in-context learning setting in our
analysis due to its best performance.

Table 5: Test accuracy of LLaMA.

ProofWriter

Acc. (%) depth=0 depth=1 depth=2 depth=3

0-shot LLaMA 50.07 49.61 49.74 49.83
2-shot LLaMA 75.58 75.83 74.31 73.74
4-shot LLaMA 81.72 78.33 75.58 74.64
8-shot LLaMA 54.26 52.96 52.82 52.42

Finetuned LLaMA 100 100 100 100

ARC

4-shot LLaMA - 56.32 53.40 -

Regarding the finetuning of LLaMA (i.e., par-
tially finetuning on attention parameters), most set-
tings are similar to that of GPT-2. The epoch num-
ber is set as 2, and the batch size is 256. We use
the AdamW optimizer with weight decay 1e − 5
for finetuning, and the warmup number is 500. The

4917

learning rate is 1e− 6. Test accuracy of finetuned
models can be found in Table 5 as well.

C.2 Layer (Attention) Pruning

For the layer pruning, we use the greedy search
strategy. Specifically, we remove all attentions in
layers from top to bottom.15 If the performance
decrease on test data is small (less than 5% in to-
tal), the attention in that layer is dropped. For
4-shot LLaMA on ProofWriter, 13 (out of 32) top
layers are removed, and 15 (out of 32) top layers
are removed for ARC. For finetuned LLaMA on
ProofWriter, 2 middle layers (layer 9 and layer 13)
and 16 top layers are removed. After removing
all attentions in these layers, the performance de-
creases are around 2% for both in-context learning
and finetuning settings.

C.3 Statistics of Cleaned ProofWriter and
Annotated ARC

Table 6: Data statistics of cleaned ProofWriter in terms
of different depth.

of examples Training Development Test

depth = 0 84,568 12,227 24,270

depth = 1 41,718 6,101 12,044

depth = 2 25,021 3,712 7,215

depth = 3 14,042 2,079 4,132

depth = 4 6,078 891 1765

depth = 5 5,998 874 1756

ProofWriter. We follow the original data split
for training, development, and test sets. However,
the depth split of ProofWriter is not suitable in our
case. The original dataset only considers the largest
depth of a set of examples (with similar templates)
for the split. It means for example in depth 5, there
would be many of them with depth smaller than
5. In our case, we classify examples into 6 types
from depth 0 to 5 only based on the example’s
reasoning tree depth. After the depth split, we also
remove examples whose reasoning trees have loops
or multiple annotations. Besides, we remove few
examples whose depth annotations are wrong (e.g.,
annotated as depth 5 but only with 4 nodes in G).
Statistics of the cleaned and re-split ProofWriter

15Transformer layers without attention degrade to MLPs.

can be found in Table 6. We can find that there are
less than 2000 4/5-depth examples in test data.

Table 7: Data statistics of annotated ARC in terms of
different depth.

of examples Training Development Test

depth = 1 331 51 87

depth = 2 380 64 95

depth = 3 277 28 67

depth = 4 175 18 51

depth > 4 150 26 40

ARC. We follow the original data split for train-
ing, development, and test sets (Ribeiro et al.,
2023). Note that the number of examples in ARC
is quite small. Thus, in our analysis, we do not run
experiments only on test data. We simply merge
all data for the analysis.

C.4 Reasoning Tree Ambiguity Example
We consider a simple case to explore if the rea-
soning tree ambiguity issues happens in LLaMA.
We sample 1024 examples whose annotations of
2-depth reasoning trees are

S1− > S2− > S3 99K Q.

We give a real example from the dataset randomly
to illustrate the issue of reasoning tree ambiguity.
Consider the three statements of G (from 17 input
statements) as

S1 : Erin is cold;

S2 : If someone is cold then they are rough;

S3 : If someone is rough then they are white;

Q : Erin is white (True).

It is intuitive that following the annotated reasoning
tree could obtain correct answer. However, there
are other ways to answer the question. We can first
combine S2 and S3 to get a new statement S4 as

S4 : If someone is cold then they are white.

Then, the reasoning tree becomes

S2− > S3− > S1 99K Q,

and we can rewrite it with brackets as

S1− > (S2− > S3) 99K Q.

4918

There are multiple ways to do reasoning for this
example, and we do not know which one the LM
uses. Thus, in this work, we ignore these kinds of
examples with reasoning tree depth larger than 1.16

C.5 Original Probing Scores

Table 8: The original classification F1-Macro scores of
LLaMA for two probing tasks.

ProofWriter

Probing task SF1(V |Asimp) SF1(G|V,Asimp)

LLaMA random 4-shot finetuned random 4-shot finetuned

depth = 0 |S| = 1 48.10 77.79 73.57 - - -

depth = 1

|S| = 2 - - - 100 100 100
|S| = 4 62.38 79.24 80.49 47.39 96.50 98.01
|S| = 8 63.31 73.36 78.02 54.67 92.63 98.39
|S| = 12 51.64 64.33 67.45 49.75 88.73 96.71
|S| = 16 49.79 58.42 60.37 44.43 87.65 94.06
|S| = 20 47.40 53.24 55.73 48.74 89.74 96.98
|S| = 24 48.40 53.25 57.34 51.77 90.51 97.31

ARC

depth=1 - 51.21 98.77 - 48.73 80.38 -

depth=2 - 50.86 98.28 - 50.38 76.88 -

The original classification scores (F1-Macro) for
two probing tasks on LLaMA can be found in Ta-
ble 8. Here, random means we randomly initialize
LLaMA and use its attentions for probing as the
random baseline.

16In ProofWriter, there are only 30% examples that have
reasoning trees with depth larger than 1.

4919

