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Abstract
Parameter-efficient fine-tuning (PEFT) has
shown its effectiveness in adapting the pre-
trained language models to downstream tasks
while only updating a small number of parame-
ters. Despite the success, most existing meth-
ods independently adapt to each task without
considering knowledge transfer between tasks
and are limited to low-data regimes. To over-
come this issue, we propose Prototype-based
HyperAdapter (PHA), a novel framework built
on the adapter-tuning and hypernetwork. It
introduces an instance-dense retriever and a
prototypical hypernetwork to generate the con-
ditional modules in a sample-efficient man-
ner. This leads to comparable performance
improvements against existing PEFT methods
on multi-task learning and few-shot transfer
learning. More importantly, when the avail-
able data size gets smaller, our method outper-
forms other strong baselines by a large margin.
Based on our extensive empirical experiments
across various datasets, we demonstrate that
PHA strikes a better trade-off between trainable
parameters, accuracy on stream tasks, and sam-
ple efficiency. Our code is publicly available at
https://github.com/Bumble666/PHA

1 Introduction

Fine-tuning a pre-trained language model (PLM)
yields extraordinary potential for simultaneous
adaptation to multiple downstream tasks in a multi-
task setting. However, fine-tuning all the parame-
ters of models induces substantial storage and de-
ployment costs, especially as pre-trained model
sizes are growing rapidly. To address this is-
sue, several works (Houlsby et al., 2019; Lester
et al., 2021; Karimi Mahabadi et al., 2021a; Hu
et al., 2022; Ding et al., 2022; Gui and Xiao,
2023; Zeng et al., 2023; Liao et al., 2023; Xie
and Lukasiewicz, 2023) have developed parameter-
efficient fine-tuning which trains compact modules
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Figure 1: Prototype-based HyperAdapter generates task-
specific adapter with a shared hypernetwork and pro-
totypes calculated by task-specific instances. During
generalization, the relevant task prototype is retrieved
by the Instance-dense Retriever, and the new adapter
layers are generated by hypernetwork.

per task and adapts PLMs to downstream tasks.
Nonetheless, these methods require learning differ-
ent modules to adapt to diverse tasks, and the cost
of the parameter increases proportionally with the
number of tasks. On the other hand, training task-
specific modules separately fails to reap benefits
from other relative tasks.

Recent work (Karimi Mahabadi et al., 2021b;
Ivison and Peters, 2022) has proposed training a
hypernetwork to generate the parameters of these
modules to achieve a better trade-off between pa-
rameter efficiency and adaption for downstream
tasks. These methods encourage the multi-task
learning model to capture the shared information by
leveraging task-shared hypernetwork while elimi-
nating negative task interference by generating con-
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ditioned modules individually. Despite these meth-
ods’ success in multi-task learning, there are still
some issues:(1) hypernetwork-based methods gen-
erally optimize the specific embedding and shared
hypernetwork together by end-to-end training with-
out any regularization. Task-specific information is
inseparably intertwined, which suppresses the effi-
ciency of the hypernetwork, especially in resource-
limited settings. (2) these existing approaches gen-
eralize to new tasks that require task-specific prior
knowledge or knowledge from frozen pre-trained
models.

These works (Karimi Mahabadi et al., 2021b;
Pfeiffer et al., 2023) indicate that the task-shared
hypernetwork serves as a cross-task information
captor, while a specific embedding should encapsu-
late task-level semantic features in order to extract
pertinent information from the hypernetwork for
generating corresponding module parameters. Em-
pirically, task-level features are typically implicitly
represented by related instance features. A natural
idea to encourage embedding generation is to calcu-
late the central points (prototypes) of task-specific
instance features.

In this paper, we introduce the Prototype-based
HyperAdapter(PHA), a novel framework built on
adapter-tuning that achieves both multi-task learn-
ing and generalization to new tasks in a sample-
efficient manner. As depicted in Figure 1, PHA
consists of two main components, Instance-dense
Retriever and Prototypical HyperNetworks. The
first part aims to train a retriever to discriminate
the instances from different tasks in embedding
space. For the second part, we aim to estimate the
task-specific prototypes with the instance-level fea-
tures and keep the prototypes as embeddings to be
trained with the hypernetwork.

Specifically, we project the encoded instance fea-
tures into embedding space using the retriever. To
avoid instances interference in embedding space,
we train the retriever with the InfoNCE estimator
(Oord et al., 2018). As a result, it clusters intra-
task instances and increases the distances between
inter-task instances. The projected features here
can be deemed as instance-level semantic features
that are used to estimate task-level embeddings. In-
spired by PCL (Li et al., 2021), we estimate the
task-specific embedding using the contrastive pro-
totypical loss, which encourages the prototypes
to become the center points of instance-level fea-
tures. Compared with the existing method, where

the specific embeddings are optimized directly dur-
ing tuning, our method efficiently learns specific
embedding with side information, which helps to
optimize the embedding space in low-data regimes.
During the adaptation of new tasks, since we main-
tain the previous task-level semantic features as
prototypes that align with the instances in the em-
bedding space, we match the corresponding pro-
totype for the current new task by calculating the
distance between the new instances and the previ-
ous prototypes.

We evaluate PHA on 13 NLP datasets across
diverse tasks. Extensive experiments show the ef-
fectiveness of PHA, especially in low-data regimes.
Meanwhile, PHA is able to achieve a few-shot do-
main adaption with 4-32 shots. For example, PHA
outperforms the strong multitask adapter transfer
baseline by 1.0% with lower trainable parameters
on the GLUE benchmark. In low resource regimes
where only 100 samples per task from the GLUE
benchmark is available, PHA outperforms adapter-
tuning by 8.0%. Our analysis shows that PHA
efficiently captures specific information and shared
information while reducing negative transfer. We
also present a detailed analysis to demonstrate that
the instances from different tasks can be identified
by corresponding prototypes and used for new task
adaption.

2 Background

HyperNetworks. A hypernetwork(Ha et al., 2017)
can generate parameters to be used by networks or
modules. Specifically, the hypernetwork, denoted
as hw, leverages an embedding I to generate the
module parameters ϕ:

ϕ = hw(I) (1)

Adapter. Adapter(Houlsby et al., 2019) is com-
monly used in parameter-efficient tuning that aims
to apply PLM to downstream tasks. Specifically,
adapter-based tuning inserts trainable task-specific
modules into transformer layers, while keeping the
PLM fixed. The adapter Al(x) for layer l is defined
as:

Al(x) = Dl(ReLU((U l(x))) + x, (2)

where Dl ∈ Rd×b and U l ∈ Rb×d are down/up-
projection matrices. x ∈ Rd refers to the input. d
is the hidden dimension of PLM, b is the bottleneck
size satisfying b ≪ d.
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He et al. (2022a) propose using the parallel
adapter, which is different from the traditional se-
quential insertion method. They demonstrate the
more efficient parameter-efficient fine-tuning that
the parallel adapter offers.

3 Method

Problem Setup. We are following a general multi-
task learning problem. Given a pre-trained lan-
guage model Mθ with parameters θ and a set of
target tasks {D} = {D1,D2, . . . ,Dτ}, where τ is
the total number of tasks and {Di} = {xni , yni }Ni

n=1

represents the training data of the i-th task with
Ni samples. The main objective of our study is to
fine-tune Mθ for downstream tasks {D} using a
multi-task learning setup and to ensure that it is
capable of generalizing to new tasks.
Method Overview. The key idea of our approach
is to directly learn prototype embeddings for each
task from training instances which is acquired by
using a task-shared encoder, then generating task-
specific adapter layers by retrieving prototype em-
bedding and feeding it into a hypernetworks. As
shown in Figure 1, the encoded instances are pro-
jected into retrieval vectors by the instance-dense
retriever for prototype learning. These prototypes
that represent the task-specific information enable
hypernetwork to update efficiently. This potentially
allows more sample-efficient fine-tuning and few-
shot transfer learning.

3.1 Instance-dense Retriever
We define an instance-dense retriever for better
generalization. Let hi ∈ Rd denote the last layer’s
mean-pooled hidden state of the training sample,
which belongs to the i-th task. To align the embed-
ding feature with the training sample in the latent
space, an instance-dense retriever G(·) is applied
to construct the retrieval vector zi = G(hi), where
G(·) is an MLP consisting of two feed-forward
layers and a ReLU non-linearity. Furthermore, we
need the retriever to have the ability which explic-
itly encourage alignment between instances from
the same task, as well as push away instances from
different tasks.

To efficiently learn the discriminative retriever,
we introduce the following loss function LIR based
on the InfoNCE:

Li=
∑

zi∈D

−1

Ni − 1

∑

zj∈D̂i

log
exp f(zi · zj)∑

zm∈S(i)
exp f(zi · zm)

,

(3)

LIR=
1

τ

τ∑

i=1

Li, (4)

where Li is the learning objective for task i, f(·)
is the cosine similarity function. D̂i is a set of
positive samples of zi and S(i) denotes a set of
negative samples for zi.

The instance-dense retriever aggregates instance-
level information from the same task and enables
flexible reuse of knowledge used for few-shot trans-
fer learning.

3.2 Prototypical HyperNetworks
Simply using the learned task embedding to en-
capsulate task-specific information biases the task-
shared hypernetwork to overfit the training data
distribution, which means that inadequate sample
efficiency and mixed knowledge are more suscep-
tible to changes in distribution during cross-task
transferring.

To overcome this issue, we propose to implicitly
exploit the instance-level information to instruct the
task embedding instead of end-to-end training. To
be more specific, we found the contrastive formula-
tion is an efficient strategy for learning robust and
sample-efficient Hypernetworks. We first initial-
ize a set of embedding {ki}τi=1, where {ki} ∈ Rd

is a trainable vector to learn the specific informa-
tion of the i-th task. The learning objective for an
embedding is

Li =
∑

zi∈D

−1

Ni − 1
log

exp f(zi · ki)∑
km∈V (i)

exp f(zi · km)
,

(5)

LPro =
1

τ

τ∑

i=1

Li, (6)

where V (i) is a set of negative embedding. The
objective forces each embedding to make use of the
relative relationships between samples across tasks
and avoid sample-inefficient knowledge transfer.

To generate specific parameters for different
transformer layers and reduce the number of train-
able parameters, we introduce a learnable layer em-
bedding denoted as em, following a similar recipe
as in Hyperformer (Karimi Mahabadi et al., 2021b).
m denotes the m-th layer of transformer model.

Let H(·) denote the HyperNetwork which gen-
erates the weight matrices Dm

i and Um
i for task

conditional adapter Am
i :

(Dm
i , Um

i ) = H(C(ki, em)), (7)
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where C(·) is a project network to concatenate the
task embedding and layer embedding into a mixed
embedding Imi .

Inspired by Pfeiffer et al. (2021) and He et al.
(2022a), we only insert these conditional param-
eters (Adapter) into the Feed-Forward Networks
(FFN) sub-layer in parallel:

y = FFN(LN(x)) + A(LN(x)), (8)

where LN(·) represents the LayerNorm layer. This
enables efficient decoupling of knowledge from
different tasks to task prototypes and adapts the
changeable data distribution during transfer learn-
ing.

3.3 Multi-task Tuning and New Task
Generalization

PHA achieves sample-efficient multi-task learning
and few-shot adaption with different training meth-
ods.
Multi-task Tuning. We follow a general multi-task
learning setup, where the task identity is included,
and the different datasets are concatenated together.
To achieve efficient fine-tuning, the encoder with
task-shared adapters is used for encoding the train-
ing sample, and we estimate the embedding cor-
responding to the retrieval vector given the task
identity via the loss function in Equation 5. The
decoder is attached by the specific adapters con-
ditioned on contextual information. The whole
model is trained in a sequence-to-sequence setting
with the following objective function:

LTotal = LPLM + λ(LIR + LPro), (9)

where LPLM =
∑τ

i=1 Li denotes the cross-entropy
loss for all training tasks and λ is a scalar balancing
factor.

PHA allows the specific embedding to efficiently
capture contextual information which helps the hy-
pernetwork to generate the parameters of adapter
layers in sample-efficient adaption.
New Task Generalization. For few-shot adaption,
we retrieve the adaption embedding ka by calculat-
ing the similarity scores of retrieval vector z and
learned embeddings {k} after multi-task training:

ka = argmax
i

f(ki | z). (10)

During training, we feed the adaption embedding
to hypernetworks that generate the weight matrices

of adapters for new tasks and optimize with the
cross-entropy loss.

Our method enables efficient generalization to
new tasks with limited training examples, owing
to the retrieved adaption embedding containing
knowledge similar to that required for the new task.

4 Experiments

4.1 Datasets

Following prior works on multi-task learning for
natural language understanding (NLU) tasks, we
consider 8 datasets from GLUE (Wang et al.,
2019b) benchmark and 4 datasets from Super-
GLUE (Wang et al., 2019a) benchmark to eval-
uate the performance of our models. This bench-
marks is a collection of text classification tasks
including CoLA (Warstadt et al., 2019) for sen-
tence acceptability, SST-2 (Socher et al., 2013) for
sentiment analysis, MNLI (Williams et al., 2018),
QNLI (Demszky et al., 2018), RTE (Giampiccolo
et al., 2007), CB (De Marneffe et al., 2019) for nat-
ural language inference, STS-B (Cer et al., 2017)
for sentence similarity, MRPC (Dolan and Brockett,
2005), QQP (Wang et al., 2019c) for paraphrasing
similarity, WSC (Levesque et al., 2012) for corefer-
ence resolution, BoolQ (Clark et al., 2019) for ques-
tion answering and WiC (Pilehvar and Camacho-
Collados, 2019) for word sense disambiguation. In
addition, we also introduced an additional dataset:
SciTail (Khot et al., 2018) for few-shot adaption.

4.2 Baselines

To evaluate the effectiveness of our proposed
method, we conduct an analysis against several
established methods that serve as strong baselines
for multi-task learning: Adapter (Houlsby et al.,
2019) and Shared-Adapter, we train adapters on
a single task or a group of tasks and place them
into transformer layers. Hyperformer (Karimi Ma-
habadi et al., 2021b) and Hyperdecoder (Ivison
and Peters, 2022) that use task-conditioned or
sample-conditioned Hypernetworks to generate
adapters and place them into transformer layers.
In addition, We compare our method with Fully
fine-tuning(FT), and Shared-FT share the model
across different tasks. We also compare the state-of-
art prompt transfer methods: Prompt tuning(PT)
(Lester et al., 2021), prompt tuning prepends tun-
able embeddings to the input layer, and the em-
beddings are initialized with each task respectively.
SPoT (Vu et al., 2022) and ATTEMPT (Asai et al.,

4606



GLUE SuperGLUE

Method Tunable
Params CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg BoolQ WiC CB WSC Avg

FT† 220M 61.8 94.6 89.7 90.2 91.6 86.8 93.0 71.9 84.9 81.1 70.2 85.7 59.6 74.2
Shared-FT† 28M 54.9 92.5 88.8 90.2 91.1 85.7 92.0 75.4 83.8 78.5 69.5 85.2 66.7 75.0
Adapter† 1.9M 64.0 93.2 90.7 85.3 90.2 86.5 93.2 71.9 84.5 82.5 67.1 85.7 67.3 75.7
Shared-Adapter† 1.8M 61.5 93.0 89.9 90.2 90.5 86.3 93.2 70.3 84.4 78.4 67.3 85.2 64.7 73.9
PT∗ 76.8k 10.6 90.9 89.5 68.1 89.7 81.3 92.8 54.7 72.2 61.7 48.9 67.9 51.9 57.6
Hyperformer++† 638K 59.0 93.7 90.3 88.6 89.9 85.0 93.3 77.5 84.7 75.8 68.9 81.5 52.9 69.8
HyperDecoder‡ 1.8M 55.9 94.0 90.5 87.7 90.5 86.0 93.4 71.7 83.7 77.8 66 92.6 66.7 75.8
PHA (ours) 616K 60.6 94.0 88.9 89.2 90.9 86.3 93.4 80.4 85.5 80.7 64.8 96.3 62.7 76.1

Table 1: Overall comparison on Multi-task Adaption. T5-base is used as the PLM backbone of all methods. We
also report Tunable Params, which represents the number of parameters that need to be fine-tuned for each task.
The best result on each block is in bold. For GLUE results, † denotes results reported from (Karimi Mahabadi
et al., 2021b). ‡ denotes results reported from (Ivison and Peters, 2022). ∗ denotes results reported from (Asai et al.,
2022).

2022), MPT (Wang et al., 2023) adapts to the target
tasks with the shared prompts obtained by distilling
knowledge from the source tasks.

4.3 Experiments Details

Following the setting of Karimi Mahabadi et al.
(2021b), when an original testing set is unavail-
able, the validation set is utilized as the testing
set. In situations where the dataset contains less
than 100k records, the validation set is divided
into two sets: validation and testing. Conversely,
larger datasets utilize 1000 training set samples
selected for validation, with the original valida-
tion set used for testing. For the multi-task adap-
tation experiment, we performed multi-task learn-
ing on 8 datasets from GLUE and 4 datasets from
SuperGLUE. For the low-data adaption experi-
ment, we separately sample each individual task
in GLUE with different proportions and quantities
(100, 500, 1000, 2000, 4000, 1%, 3%, 5%). As for
the evaluation strategy, we use Pearson Correlation
for STS-B and accuracy for other tasks as metrics.
We save a checkpoint every 1000 steps for all mod-
els and report the average performance of all tasks
on a single checkpoint. In the few-shot adaption
experiment, we randomly sample k = 4, 16, 32 in-
stances from the training set while the entire test set
is used for testing. We mainly use T5-Base (220M)
model (Raffel et al., 2020) as the pre-trained lan-
guage model. In addition, we also use T5-Small
(60M) and T5-Large (770M) to explore the effect
of model size on PHA performance in Section 4.4.5.
Unless specified, we train for 65k steps using the
AdamW (Loshchilov and Hutter, 2019) optimizer
and set the batch size as 128 for all experiments.
During training, the initial learning rate is set to

3e-4 with linear decay and 500 warm-up steps. We
set the balancing factor λ = 0.1 in Eq. 9 and keep
it fixed for all our experiments. All experiments
run for 5 times with different seeds and we report
the average for each result. The detailed configura-
tions per method on diverse datasets are shown in
Appendix A.

4.4 Results and Analysis

4.4.1 Multi-task Adaptation

Table 1 shows the evaluation results on GLUE and
SuperGLUE. The results indicate that PHA out-
performs all comparative methods regarding per-
formance improvement while maintaining param-
eter efficiency. Note that we do not compare with
SPoT, ATTEMPT, and MPT since they require pre-
training prompts to save the knowledge from source
tasks and transfer them to target tasks. Extending
these methods to the same setting where only pre-
trained models are available is beyond our scope.
Therefore, under the experimental setup of multi-
task learning, our method cannot achieve a fair
comparison with them. It is worth mentioning
that MPT, ATTEMPT, and our method both use
the same two-step training method in the few-shot
transfer setting (Section 4.4.3). Specifically, our
PHA approach achieves a performance increase of
+1.0% over Adapter while only using 3× fewer
trainable parameters. When we compared with the
state-of-art adapter-based multi-task methods in-
cluding recent Hyperformer++ and Hyperdecoder
that use a hypernetwork to generate conditioned
parameters similar to our approach, PHA achieves
0.8% and 1.8% point accuracy improvements re-
spectively on GLUE while utilizing the same or
lower number of trainable parameters. This demon-
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k-shot FT† Adapter† PT† SPoT† HF† ATP† HD MPT‡ PHA(our)

4
CB 57.7 51.1 53.5 71.4 60.7 82.1 69.1 73.6 76.5

SciTail 79.6 79.5 57.7 69.6 82.0 80.2 75.4 80.2 82.5
BoolQ 50.5 53.4 61.6 50.5 48.0 61.8 54.4 62.2 68.2

16
CB 77.0 74.8 63.5 64.3 76.3 78.5 75.3 78.6 79.6

SciTail 80.0 83.2 60.8 71.9 86.5 79.5 85.4 87.3 87.7
BoolQ 56.5 51.4 61.9 50.6 50.2 60.0 64.6 63.3 71.3

32
CB 80.0 74.8 67.8 64.3 81.4 85.7 79.6 82.1 82.7

SciTail 81.9 85.0 60.2 71.9 85.8 80.2 85.1 86.3 88.6
BoolQ 58.4 54.5 61.7 61.2 58.3 65.3 68.3 68.9 72.0

Table 2: Result for few-shot transfer (k = 4, 16, 32). We report the accuracy for all tasks over 10 random seeds.
The best result on each block is in bold. All of the models are trained on GLUE tasks with T5-Base backbone. †
denotes results reported from (Asai et al., 2022). ‡ denotes results reported from (Wang et al., 2023).

Figure 2: Results on GLUE for sample efficiency exper-
iments, which sample the various number or proportions
of training samples per task. AD, HF and HD denote
Adapter, HyperFormer and HyperDecoder.

strates the potential of our method to reduce the
negative interference between tasks better. In ad-
dition, we observe that FT performs the best in
all experimental methods, while it requires 220M
trainable parameters on a single task. We find that
our PHA is as competitive as that of the FT(85.5
vs. 84.9) and reduce the trainable parameters from
100% to 0.28%. We also analyze the effectiveness
of PHA in parameter efficiency, as detailed in Ap-
pendix B.

4.4.2 Low-data Adaptation
In our framework, we posit that the task proto-
types, which are estimated by instance-level fea-
tures, can better represent task information and
improve the performance of hypernetworks in a
sample-efficient manner during multi-task adapta-
tion. To verify that our proposed method general-
izes better when there are only limited available re-
sources, we conduct low-data adaption experiments
on the GLUE benchmark. Following Karimi Ma-
habadi et al. (2021b), we train all models(Fine-
tuning, Adapter, Hyperformer++, and Hyperde-
coder) for 15k steps. More details are in Sec-
tion 4.3.

As shown in Figure 2, PHA outperforms other
baselines consistently across different configura-
tions. We obverse that Fine-tuning performs the
worst in cases of limited available data. A poten-
tial reason is that tuning all parameters of the base
model makes it susceptible to keep the model in
the state of over-fitting, especially in the low-data
regimes. As for other experimental methods, we
observe that when the number of available sam-
ples is relatively smaller, the existing state-of-the-
art multi-task methods with hypernetworks close
to the performance of Adapter until the number
of available samples increases. This observation
indicates that hypernetworks struggle to generate
optimal parameters when using randomly initial-
ized task embeddings or instances as contextual
information under low-data regimes. Moreover,
to better simulate the training task distribution in
the GLUE benchmark, we randomly sample each
individual task in GLUE for different proportions.
Figure 2(b) shows the comparison between PHA
and adapter-based methods. Similar to the results
in Figure 2(a), our proposed method outperforms
others by a large margin. We also conduct experi-
ments on 4 datasets (BoolQ, WiC, CB, WSC) from
SuperGLUE, as detailed in Appendix C.

The superior performance of PHA over all com-
peting methods indicates that our proposed task
prototype efficiently captures contextual informa-
tion to enable hypernetwork to generate the param-
eters of adapter layers.

4.4.3 Few-shot Adaptation
We explore how our proposed method performs
when adapting to new tasks with sample-efficient.
Specifically, following Wang et al. (2023), we con-
duct few-shot experiments on BoolQ, CB, SciTail
and compare PHA with the strong baselines, includ-
ing Fine-tuning, Adapter, Prompt tuning, SPoT, Hy-
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Prototype Retriever GLUE Score

× × 84.0
× √

84.3√ × 84.7√ √
85.5

Table 3: Ablation study on GLUE.

Figure 3: The comparison of PEFTs (Adapter, Hyper-
former++, Hyperdecoder, and our proposed PHA) and
FT on GLUE with three scale pre-trained models under
low-data regimes and full-data regimes.

performer, ATTEMPT, HyperDecoder, and MPT.
The results in Table 2 are obtained by training an
8-task adaptation for GLUE and fine-tuned with
few-shot samples from BoolQ, CB, and SciTail.
More details are in Section 4.3.

Table 2 summarizes the results on the few-shot
adaption setting. Among Adapter-based transfer
methods, PHA brings around 3% ∼ 20% absolute
improvements over the Adapter across different
settings. While Hyperformer achieves better gener-
ation for new tasks, it requires us to have a precise
understanding of target tasks. PHA significantly
improves the performance of Hyperformer with-
out requiring task-specific prior knowledge. In
addition, our proposed method significantly outper-
forms other prompt-based transfer methods in most
settings.

Our results demonstrate that our approach effec-
tively generalizes to new tasks despite the limited
availability of training samples.

4.4.4 Ablation Study
We perform an ablation study on the GLUE bench-
mark to evaluate the effectiveness of the proposed
modules. The prototype design and the instance-
dense retriever are removed independently for this
purpose. As shown in Table 3 (row 2), when we
remove the prototype design and use the retrieval
instances to train, we observe the performance has a
significant drop. This shows that the instance-level

Figure 4: t-SNE visualizations for samples w/ (right)
and w/o (left) retriever.

information hinders the positive transfer across
tasks under the limitation of hypernetwork capacity,
while our design of task prototypes allows hyper-
network to capture shared-task information well,
which is vital for enabling positive transfer across
tasks. Table 3 (row 3) removes the retriever. The
task prototypes are estimated by the originally en-
coded instances. This results in intertwined task
prototypes due to the relative dispersion of instance
information in the embedding space. The decrease
in performance suggests that adding the instance-
dense retriever enables the prototype to encode
task-specific knowledge better. Furthermore, we
provide a visualization of the encoded instances
from the GLUE benchmark to compare the effect of
adding and removing the instance-dense retriever,
as shown in Figure 4. While samples belonging to
the same task tend to be located near each other
in the latent space, samples from different classes
(e.g., STS-B, MRPC, RTE) still interleave with
each other. After the retriever is added, instances
from the same task are tightly clustered, while dif-
ferent tasks are widely separated.

4.4.5 Impact of Model Scale

To verify that our method is applicable to differ-
ent pre-trained model sizes, we also experiment
T5 with sizes from Small (60M) to Large (770M)
on GLUE datasets, while reporting the average
result of PHA as well as fully Fine-tuning (FT),
Adapter (AD), Hyperformer++ (HF) and Hyper-
decoder(HD). As shown in Figure 3, under three
scales of pre-trained model, we find that PHA
achieves superior and competitive performances in
low-data and full-data regimes, respectively. This
indicates that our proposed prototypical strategy
is still able to achieve the best sample efficiency
when the size of large-scale transformer models
increases.
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Figure 5: Visualization of the similarity scores, which
are calculated by the dense retriever, between the in-
stances and task prototype in GLUE (a) and between
pre-trained prototypes and the task-agnostic instances in
three datasets (b). Darker colors indicate higher scores.

4.4.6 Effect of Retriever for Generalization.
The retriever plays an important role in adapting to
new tasks. To explore how the retriever works af-
ter training under a multi-task setting, we consider
the similarity scores, described in Eq. 10, to mea-
sure retrieval results. Specifically, we randomly
sample each individual task in GLUE and calcu-
late the similarity scores through the trained task
prototypes and retrieval vectors transferred by the
trained retriever. Figure 5(a) shows a visualiza-
tion of similarity scores. We find that the retriever
precisely retrieved the task identity of the corre-
sponding task instance. This suggests that task
prototypes and instance vector has aligned in em-
bedding space to enable more efficient capture of
single-task common features.

We also demonstrate that the retriever has the
ability to match the corresponding task prototype to
target tasks that require generalization. Figure 5(b)
illustrates that the similarity score is relatively high
for related tasks such as CB and MNLI, SciTail,
and STSB, all of which belong to the NLI task
family. As for QNLI and BoolQ, since the task pro-
totype trained on GLUE does not include Boolean
Question Answering (QA) tasks, the retriever has
matched QNLI prototype, which is in the same do-
main as BoolQ. Therefore, our proposed method
can naturally generalize to new tasks when the re-
lated task prototype and the hypernetwork contain-
ing cross-task knowledge are both available.

5 Related Work

Multi-task Learning and Transfer. Multi-task
learning(MTL) aims to take advantage of the

shared information between the different tasks and
train a unified model to simultaneously solve mul-
tiple tasks. In the context of NLP, this is typi-
cally achieved by sharing certain layers across all
tasks while using task-specific layers for specific
tasks (Liu et al., 2019). With the popularization of
large language models (LLMs), Raffel et al. (2020)
explores the training of LLMs on various tasks
which are transformed into a unified format, and
some works (Aghajanyan et al., 2021; Aribandi
et al., 2022; Sanh et al., 2022; Wei et al., 2022)
indicate that the LLMs can be better generalized to
new tasks through large-scale multitasking training.
More recent work (Pfeiffer et al., 2021; Vu et al.,
2022; Asai et al., 2022; Wang et al., 2023) focuses
on multi-task transfer with parameter-efficient fine-
tuning as the increasing LM size. Though the ef-
fectiveness of multitask learning is improved, they
need to finetuning the LLMs twice on source tasks,
which are carefully selected, and multiple target
tasks. This limits the applicability of the methods.
Differently, our proposed method only requires a
pre-trained model to achieve multi-task learning
and transfer to a new task.

Several works (Jin et al., 2020; Karimi Mahabadi
et al., 2021b; Ivison and Peters, 2022; He et al.,
2022b) introduce hypernetworks (Ha et al., 2017)
to share the cross-task information by generating
the parameters of adapter layers (Houlsby et al.,
2019) from specific embeddings during multi-task
learning. Our work is motivated by Ivison and
Peters (2022), but proposes to use task-level infor-
mation represented by prototypes to optimize the
embedding distribution of hypernetworks, which
reduces negative transfer between different tasks
and improves the performance of adaption across
tasks, especially in low-resource regimes.

Prototype Learning. Prototype learning is widely
used to improve the representation ability of net-
works for few-shot learning. Some works (Gao
et al., 2019; Caron et al., 2020; Ding et al., 2021;
Li et al., 2021) indicate that the prototype is forced
to learn some common features of samples within
the class by prototype estimation. Cui et al. (2022)
propose to construct a verbalizer for prompt-based
few-shot tuning by estimating prototypes with con-
trastive learning. This differs from our method,
which uses a prototypical strategy to explore the
specific information for corresponding tasks.
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6 Conclusion

We introduce Prototype-based HyperAdapter
(PHA), a novel framework built on adapter-tuning.
PHA achieves both multi-task adaption and adap-
tion to a new task in a sample-efficient manner. It
generates parameters of adapter layers conditioned
on task-specific prototypes which are calculated
by the corresponding instance-level features. In
addition, the specific prototype is retrieved and
transferred to new tasks to be further tuned. The
resulting method significantly outperforms previ-
ous SOTA on full/low-data multi-task adaption and
few-shot adaption.

Limitations

Our work has demonstrated strong experimental
results and sample efficiency in multitasking adap-
tion. However, there are several limitations: Firstly,
in few-shot adaption, the method we proposed,
which tunes the base model on 8 NLP tasks, can
generalize to new target tasks efficiently. But tun-
ing on more large-scale tasks may result in better
generalization improvements. Secondly, as shown
in Figure 5, a new task may be related to multi-
ple task prototypes, rather than a single one. In
our method, we only select the most relevant pro-
totypes, which may ignore the transfer of some
weakly related knowledge. In addition, we use
adapters in this work, but our method could pos-
sibly also benefit from other parameter-efficient
approaches (Lester et al., 2021; Mahabadi et al.,
2021; Li and Liang, 2021; Hu et al., 2022; Liu
et al., 2022).
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A Implementation Details

We set the dimension of the retrieval vector (zi), the
task prototype (ki), and the layer embedding zm to
128. For the instance-dense retriever G(·) with bot-
tleneck architecture, we select the bottleneck size to
128. For the mixed embedding Imi , the dimension
of Imi is selected as 32 for multi-task experiments
and 64 for other experiments. We use the default
hyperparameters by Ivison and Peters (2022) for
Adapter and Hyperdecoder. The hyperparameters
of other baselines are set according to the original
papers (Karimi Mahabadi et al., 2021b; Asai et al.,
2022; Wang et al., 2023). Following Karimi Ma-
habadi et al. (2021b); Ivison and Peters (2022), the
length of the sequence is 128 at the encoder and
the decoder. We use its HuggingFace (Wolf et al.,
2020) Pytorch (Paszke et al., 2019) implementation.
All data is obtained from huggingface datasets and
preprocessed into a ”seq2seq” format following
Raffel et al. (2020).

B Parameter Efficiency

Our proposed method not only balances sample
efficiency and accuracy on stream tasks but also
achieves parameter efficiency. We compare the
trainable parameters of PHA with other baselines.
We assume that the basic model is a transformer
model with an L-layer encoder-decoder structure
for τ -tasks and d is the model dimension. The tasks-
share adapter is attached to the encoder layer and
the condition-generate adapter is attached to the de-
coder layer in our work. The bottleneck dimension
of Adapter is b. Adapter for the single layer costs
2db+ b+ d. Given bottleneck size d′, the instance-
dense retriever G(·) with bottleneck architecture to
construct the retrieval vector z ∈ Rd′ , which result
in dd′ + d′2 parameters. We have the task proto-
type ki ∈ Rd′ for i-th task and layer embedding
em ∈ Rd′ for m-th layer. These have a total of
τd′ + Ld′ parameters. The project network C(·) is
used for concatenating the task prototype ki ∈ Rd′

and layer embedding em ∈ Rd′ into a mixed em-
bedding Imi ∈ Rdh , which result in 2d′dh parame-
ters. The hypernetworks costs dh(2db+ b+ d) pa-
rameters. The total cost of PHA is dd′+d′2+(τd′+
Ld′)+ 2d′dh+ dh(2db+ b+ d)+L(2db+ b+ d).
There are a large number of tasks and transformer
layers in our work settings. For the adapter, its pa-
rameter count increases linearly with the task and
number of layers. For Hyperformer, its parameter
count is more than our method due to using two

samples/
task AD HF HD PHA

1% 57.8 50.4 57.7 59.2

3% 61.3 51.3 59.6 67.6

5% 60.3 54.3 59.9 69.3

Table 4: Results on 4 datasets (BoolQ, WiC, CB, WSC)
from SuperGLUE for the various proportions of training
samples per task (1%,3%,5%). We report the average ac-
curacy. AD, HF and HD denote Adapter, HyperFormer
and HyperDecoder.

Method XSUM Ro-En En-Ro Avg

Small
FT 7.2 24.1 20.1 17.1
AD 2.9 25.1 9.7 12.6

PHA 7.6 24.9 19.7 17.4

Base
FT 10.9 25.3 24.2 20.1
AD 8.2 26.5 19.5 18.1

PHA 10.8 26.6 24.8 20.7

Large
FT 12.3 24.7 29.7 22.2
AD 12.6 27.1 25.9 21.9

PHA 14.2 27.0 28.6 23.3

Table 5: Result for NLU task. We report the ROUGE2
score for XSUM and BLEU score for Ro-En/En-Ro.
The best result on each block is in bold.

hypernetworks. We used a bottleneck structured
retriever to reduce trainable parameters compared
to Hyperdecoder.

C Additional Results

Here, we conduct more experiments to demonstrate
the sample efficiency of our method on different
datasets (BoolQ, WiC, CB, and WSC) with T5-
Base pre-trained model. The result are included
in Table 4. The performance PHA with T5-Base
achieves the best performance in terms of accuracy
and sample efficiency in the 4 datasets from Super-
GLUE. In addition, to verify the effectiveness of
our method on NLU tasks, we conducted sample
efficiency experiments on three datasets: Xsum,
WMT16 Ro-En, and WMT16 En-Ro. Due to lim-
ited computation resources, we sampled 1% of the
data and conducted experiments on three backbone
models of different scales(small, base, and large).
The results are shown in Table 5.
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