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Abstract

When we transfer a pretrained language model
to a new language, there are many axes of vari-
ation that change at once. To disentangle the
impact of different factors like syntactic simi-
larity and vocabulary similarity, we propose a
set of controlled transfer studies: we system-
atically transform the language of the GLUE
benchmark, altering one axis of crosslingual
variation at a time, and then measure the result-
ing drops in a pretrained model’s downstream
performance. We find that models can largely
recover from syntactic-style shifts, but can-
not recover from vocabulary misalignment
and embedding matrix re-initialization, even
with continued pretraining on 15 million to-
kens. Moreover, good-quality tokenizers in the
transfer language do not make vocabulary align-
ment easier. Our experiments provide insights
into the factors of cross-lingual transfer that re-
searchers should most focus on when designing
language transfer scenarios.

1 Introduction

What makes it hard for neural networks to learn
new languages? Large language models (LLMs)
require vast datasets for pretraining, making it
challenging to train LLMs from scratch for low-
resource languages (Devlin et al., 2018; Liu et al.,
2019; Lacoste et al., 2019; Clark et al., 2020). For
such languages, an appealing approach is to trans-
fer knowledge from an LLM trained for a high-
resource language, especially since pretrained mod-
els can transfer knowledge across even extreme
shifts (Papadimitriou and Jurafsky, 2020; Tamkin
et al., 2020). A range of methods have been ex-
plored to enable such crosslingual transfer of En-
glish LLMs, using techniques such as adaptive
pretraining (Reimers and Gurevych, 2020), and
embedding retraining (Artetxe et al., 2020; Tran,
2020). To better understand the factors affecting

In Chinese, “Oolong” can refer to an unexpected change
or development. *Equal contribution. fCorresponding author.
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Figure 1: Controlled transfer studies paradigm. We
systematically transform GLUE tasks (t-GLUE) to tar-
get one linguistic factor, then finetune a pretrained lan-
guage model on that dataset. The resulting drop in
performance indicates the importance of that factor to
crosslingual transfer. See Table 1 for the list of transfor-
mations.
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successful transfer, we present a set of controlled
transfer studies to compare the effects of different
aspects of a cross-lingual shift.

Our controlled studies consist of transferring an
English model to a language that is transformed
from English on just one axis of variation. Realis-
tic transfer scenarios involve languages that differ
across multiple axes of variation at one time. Our
experiments serve to disentangle these effects, and
identify the issues that practitioners should most
focus on when doing cross-lingual transfer learn-
ing. We examine three factors that are salient in a
transfer learning context:

* Word-order syntactic differences: Lan-
guages vary greatly in the ways that their syn-
tax orders words. Syntactic topological simi-
larities are generally considered an important
factor when deciding transfer language pairs.
We test the effects of different levels of word-
order perturbation in transfer learning.

* Word identity alignments: Transferring to a
new language requires learning the meaning,
or word embeddings, of new words, and how
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their layer O embeddings correspond to the old
language. We experiment with the effect of re-
initializing or shuffling the rows of the layer O
word embedding matrix before transfer.

* Tokenizer quality We test the effect of bad
tokenizer quality by reinitializing the word
embedding matrix and transferring to English
data tokenized with French and Dutch tok-
enizers that are suboptimal quality for English
tokenization.

We test the effect of these factors on transfer
learning both by 1) directly fine-tuning on t-English
versions of the GLUE benchmark, as well as 2)
continuing masked language model pre-training on
15 million tokens of t-English wikitext. In all cases,
we find that word identity alignment provides the
greatest stumbling block for transfer learning. Re-
initializing or shuffling the rows of the embedding
matrix has a very negative effect on downstream
learning which we cannot reverse in the low-data
regime that we are simulating. If the embedding
matrix is reinitialized and a new tokenizer is used,
the effect of reinitialization overshadows any effect
that the quality of the new tokenizer might cause.
In the case of syntactic word-order transformations,
we find that even in the low-data transfer learning
regime, the models we test can adapt to word order
shifts as long as vocabulary information is kept.

We run experiments on RoBERTa, DeBERTa,
and XLM-R in order to test transfer learning be-
yond the training set languages for both monolin-
gual and multilingual models. Our method allows
us to disentangle the effects of correlated factors
by inspecting them one at a time.'

2 Related Work

As self-supervised pretraining advances the state
of NLP in high-resource languages, research into
widening these successes beyond high-resource
languages has become widespread and important.
Methodologies for best transferring a monolingual
or multilingual model to an unseen language are
widely explored. Ogueji et al. (2021) and Ogun-
remi et al. (2023), showcase the positive effects of
pretraining on closer and related languages to the
target language, even if this is less data than larger
pretrained models, in part because of the possibility
of shared vocabulary (Oladipo et al., 2022). Our

'Our code is available publicly at https://github.com/
frankaging/oolong-crosslingual.

experiments build off previous efforts that try to en-
able crosslingual transfer from pretrained monolin-
gual LLMs to new languages (Artetxe et al., 2018,
2020; Tran, 2020; Reimers and Gurevych, 2020;
Gogoulou et al., 2021).

With respect to vocabulary sharing and adap-
tation, Liang et al. (2023) show that training a
multilingual model with a massive vocabulary that
separates out languages outweighs the benefits of
vocabulary sharing between language (Patil et al.,
2022), while in the transfer regime Chronopoulou
et al. (2020) showcase the importance of main-
taining vocabulary overlap. Techniques mapping
subword embeddings to their new synonyms, or
keeping subwords in the same script across lan-
guages, prove effective for cross-lingual transfer
(Vernikos and Popescu-Belis, 2021; Pfeiffer et al.,
2021, 2020; Muller et al., 2021). The importance
of embedding intialization statistics is discussed in
(Raghu et al., 2019).

Results on the importance of syntactic shifts re-
main broad, with work on multilingual training
suggesting that syntactic shifts are significant com-
pared to vocabulary effects (K et al., 2020), and that
syntactic structure plays a role in developing par-
allel multilingual encodings (Dufter and Schiitze,
2020), while Deshpande et al. (2022) show inter-
secting effects of vocabulary and word order shifts.

Understanding the direct relationship between
the effect of syntactic shifts and the effect of vo-
cabulary and tokenizer shifts remains an important
problem in understanding transfer learning. Our
work creates a framework for decomposing and dis-
entangling the difficulties of transfer in controlled
studies, giving researchers pointers for what as-
pects of language variation make transfer difficult.

3 Methods

Our methodology consists of taking a pretrained
model, and transferring to a t-English: a system-
atically transformed version of English data that
differs from English on one axis of variation. The
different t-Englishes that we use are described and
motivated below, and examples are in Table 1. We
consider two low-data transfer environments: Di-
rect Fine-tuning, where we transfer the English
pretrained model directly to t-GLUE, transformed
GLUE datasets (Wang et al., 2018), and Contin-
ued Pretraining, where we first do masked lan-
guage modeling training on 15 million tokens of
the WikiText-103M corpus (Merity et al., 2016)
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Transformation Type Sentence / Sequence

Original English

Random Order
Reverse Order

{Nfr; Vfr}
{Nia, Via}
{an Vja}

RoBERTa Tokenizer
BERT Tokenizer
Albert Tokenizer
F1auBERT Tokenizer
it self .”
DutchBERT Tokenizer
revealsitsel f.”

“the film unfolds with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”

“an all all gradually beneath thriller with reveals . until tension tragedy mounting the it of the the expert , unfolds itself film”
“ itself reveals gradually all it beneath tragedy the until , thriller expert an of tension mounting the all with unfolds film the”

“the film with all the of an expert , until the beneath all gradually . itself reveals it tragedy thriller tension mounting unfolds”
“the film unfolds with all the tension of an thriller , until the tragedy beneath it all gradually itself . reveals expert mounting”
“the film unfolds with all the of an expert , until the beneath all gradually . itself reveals it tragedy thriller tension mounting”

“the film unfolds with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
“the film un fold s with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
“the film unfold s with all the mounting tension of an expert thriller , until the tragedy beneath it all gradually reveals itself .”
“the film un fol ds with all the mou n ting tension of an expert thriller , un til the tr age dy bene ath it all gradu ally re ve als

“the film u n f old s with all the mo unt ing te n sion of a n expert thriller , u n til the trage d y ben e ath i t all gra d u ally

Table 1: An example from the SST-2 dataset and its t-English variants. Tokenizer pre-fixes and post-fixes such as G,

#+4, _and (/w) are not shown for simplicity.

transformed to t-English. 2

3.1 Transformed English (t-Englishes)

Syntactic Shifts While syntax is a crucial aspect
of language (Garrett, 1976), how sensitive or in-
variant lanugage models are to syntactic informa-
tion is a complex topic (Pham et al., 2021; Sinha
et al., 2021; Papadimitriou et al., 2022; Abdou
et al., 2022). In the domain of transfer learning, we
investigate a set of syntactic transformations that
isolate syntactic word-order shifts from the other
factors that differ between languages. We bound
our syntactic transformation experiments with a
random shuffle control, where no word order in-
formation from the original language can be used
to decode the new language. We also do the sim-
ple, but drastic baseline of reversing the order of
all of the words in the input. In order to test the
effect of more realistic syntactic changes, we trans-
form the English data into t-Englishes that follow
the word-order statistics of other language. Us-
ing the Galactic Dependencies package (Wang
and Eisner, 2016) with Stanza (Qi et al., 2020)
to transform our corpora to match the ordering of
words in noun phrases and verb phrases of French
({Nt, Vi }) and Japanese ({Nja, Vja}) and also per-
form a mixed transformation with French noun
order and Japanese verb order ({Ng, Via}).

Word identity alignment Previous works have
consistently found that good embeddings are
crucial for enabling effective crosslingual trans-
fer (Tran, 2020; Artetxe et al., 2020). However,

?For comparison, the pretraining data for RoBERTa con-
tains 3.3B tokens, so 15M tokens is about 0.45% of its pre-
training data. This is comparable to the size of the OSCAR
corpus for Yiddish (Ortiz Sudrez et al., 2019).

these gains may due to several factors, including
better initialization statistics (Raghu et al., 2019),
or to a learned alignment between the learned em-
beddings and the pretrained transformer layers (Wu
et al., 2021). Here, we test the baseline effect of
reinitializing the embedding layer while transfer-
ring to the same language that the model was pre-
trained. We compare this to a scenario where the
rows of the embedding matrix are shuffled, mean-
ing that vector statistics are broadly similar but each
word has been swapped with another and the model
needs to find the mapping during fine-tuning.

Tokenizer How much does tokenizer quality mat-
ter, if the price of a better tokenizer is having to
reinitialize the whole word embedding matrix?
Though quality tokenizers undoubtedly play an
important role in multilingual NLP (Rust et al.,
2020), we wish to compare the effect of tokenizer
quality when the word identity alignment prob-
lem remains constant. While re-initializing the
embedding matrix, we compare the effects of the
original RoBERTa tokenizer, to two tokenizers that
produce low-quality tokenizations for English text:
the French F1auBERT (Le et al., 2020) and the
Dutch DutchBERT (de Vries et al., 2019). The non-
English tokenizers used to tokenize English text
simulate the effect of having a bad, non-language-
specific tokenizer in the low data regime (see Ap-
pendix B for statistics on how the different tokeniz-
ers work on English).

4 Results

We present the main results of our transfer exper-
iments. Our experimental details (e.g. hyperpa-
rameter choices) with a per-task breakdown of t-
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Figure 2: Models are largely able to adapt to syntactic shifts with minor drops in performance. Averaged GLUE
scores for t-Englishes with syntactic shifts. Realistic syntactic shifts slightly impact downstream performance, while
reverse and random order impact performance more significantly. Error bars represent 95% confidence intervals over
3 random seeds. Results are depicted for ROBERTa, but are consistent for all 3 models that we tested: ROBERTa,

DeBERTa, and XLM-R (all results in Figure 5 in Appendix A).
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Figure 3: Token embedding transformations are hard to recover from, regardless of tokenizer. Averaged GLUE
scores for t-Englishes with word identity perturbations. Any embedding reinitialization or shuffling, regardless of
the tokenizer ultimately used, has a drastic effect on downstream performance. Error bars represent 95% confidence
intervals over 3 random seeds. Results are depicted for ROBERTa, but are consistent for all 3 models that we tested:
RoBERTa, DeBERTa, and XLM-R(all results in Figure 6 in Appendix A).

GLUE performance as well as additional results on
DeBERTa and XLM-R are included in Appendix A.

4.1 Syntax matters, but training can mostly
recover

Word order permutations have an effect on model
performance, but the models that we test can
recover relatively well from linguistic word or-
der permutations when there are no vocabulary
confounders. As shown in Figure 2, simply
by fine-tuning on GLUE RoBERTa can recover
from linguistic-style syntactic shifts relatively well,
though this is significantly worse for random word
order permutations that have no consistency or syn-
tactic backing. These differences are all lessened

with continued pretraining on 15M tokens of the
transformed t-English data. These results suggest
that syntactic shifts have real but limited impact
on crosslingual transfer when disentangled from
vocabulary learning effects.

4.2 Good embeddings matter most, bad
embeddings can ruin a good tokenizer

Looking at the isolated effect of vocabulary, we find
that in the low-data transfer regime the model has a
hard time reconstructing a reinitialized embedding
matrix. As shown in Figure 3, reinitializing the
embedding matrix causes huge failures for the di-
rect fine-tune case, and the quality of the tokenizer
(language-bespoke versus not) do not have an effect
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Fine-tune XLM-R on different
XNLI test sets
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Figure 4: Our findings generalize to fine-tuning on
non-English datasets. Fine-tuning on three different
XNLI datasets yields similar findings the English GLUE
findings: models can recover from the most extreme
syntactic case (random ordering) much more effectively
than from any of the embeddings-related perturbations.
This indicates that our findings are not related to proper-
ties specific to the English language.

beyond this. Our results suggest that tokenization
may thus be a “lower-order bit” for crosslingual
transfer, which has little impact until good word
embeddings are learned. In the direct fine-tuning
case, shuffling the word embedding matrix is sig-
nificantly better than reinitializing the embeddings,
though this difference disappears with continued
pretraining.

5 Conclusions

In this paper, we propose a paradigm to
study crosslingual transfer through transforma-
tions which simulate and disentangle the linguistic
changes across languages. Our results suggest that
solving the embedding alignment problem is the
"high-order bit" for crosslingual transfer: it has the
largest impact on finetuning performance and is the
least improved by continued pretraining. Thus, fu-
ture progress on solving this problem in large-scale
transformers may have outsized impact.

Limitations

Our paper is about multilinguality in NLP. How-
ever, using multiple natural languages would make
it impossible to disentangle different factors. By us-
ing controlled variants of a single language, we can
create a controllable environment to investigate and
understand the factors that affect real cross-lingual
transfer in a multilingual setting.

Despite looking at general factors that differ be-
tween languages, and using empirical syntactic pat-
terns from non-English languages, the fact remains
that all of our experiments are centered on English
and t-Englishes, and this may introduce English-
centric biases.

Our scope is mainly restricted to English LLMs
(vs other languages), three components of crosslin-
gual shifts (vs other potential factors), and GLUE
tasks (vs other kinds of NLP tasks). While our
experiments are not an exhaustive list of linguistic
properties that affect cross-lingual transfer, we aim
to focus on crucial factors that change between lan-
guages, grounded by the literature. Our paradigm is
extensible to other model architectures while we fo-
cus on RoBERTa in this paper with additional results
on DeBERTa and XLM-R included in Appendix A.

Ethics Statement

Our experiments provide a controlled environment
to test hypotheses about what influences cross-
lingual transfer. However, English-based exper-
imentations affecting other languages should not
be used to determine courses of action for low-
resource NLP without supplementary in-language
experiments.
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A Results on other models

We present the results in Figures 2 and 3 for two
more models: DeBERTa and the cross-lingual
model XLM-R:

B Sequence Length Distribution

As described in Section 3.1, we try four differ-
ent tokenizers to substitute for our RoBERTa (Liu
et al., 2019) model that uses the Byte-Pair En-
coding (BPE) (Sennrich et al., 2015) tokenizer.
Specifically, we substitue with the WordPiece to-
kenizer (Wu et al., 2016) used by BERT (Devlin
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Figure 5: Models are largely able to adapt to syntactic shifts with minor drops in performance. Results for the
embedding transformations shown for ROBERTa in Figure 2, for all models that we tested: ROBERTa, DeBERTa,
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Figure 6: Token embedding transformations are hard to recover from. Results for the embedding transformations
shown for RoBERTa in Figure 3, for all models that we tested: ROBERTa, DeBERTa, and XLM-R.

et al., 2018) (i.e., BERT Tokenizer in Table 1) and
the SentencePiece tokenizer (Kudo and Richard-
son, 2018) used by Albert (Lan et al., 2019) (i.e.,
Albert Tokenizer in Table 1). Additionally, we
substitute with two new non-English tokenizers
including the French F1auBERT (Le et al., 2020)
(F1auBERT Tokenizer in Table 1) and the Dutch
DutchBERT (de Vries et al., 2019) (DutchBERT To-
kenizer in Table 1). As shown in Figure 7, we plot
the distributions of sequence lengths as a measure
of the heterogeneity introduced by new tokeniz-
ers to ensure variences across tokenized sequence
lengths. Specifically, we see there are inferior tok-
enizers such as F1auBERT Tokenizer with a 22.15%
increase in sequence length. Our results are con-
sistent with previous findings (Rust et al., 2020)
where sequence length distributions are closer.

C Training Set-up Details

Downstream Task. We use the GLUE bench-
mark (Wang et al., 2018) to evaluate model perfor-
mance, which covers nine different NLP tasks. We
report scores on the development sets for each task
by fine-tuning our pre-trained or mid-tuned models.
We fine-tune for 5 epochs for the smaller datasets
(WNLI and MRPC) and 3 epochs for the others.
For the performance metrics, we use Matthew’s
Correlation for CoLA, Pearson correlation for STS-
B, and accuracy for all the other datasets.

Hyperparameter and Infrastructure. For each
of the mid-tuning and fine-tuning experiments, we
collect averaged results from 3 runs with distinct
random seeds. We tune our models with two learn-
ing rates {2e75,4e75}, and report the best results
from these two learning rates. Fine-tuning with
9 GLUE tasks takes about 8 hours on 4 NVIDIA
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Figure 7: Distributions of sequence lengths by different
tokenizers.

Titan 12G GPUs. Mid-tuning with our subset of
WikiText-103M corpus takes about 18 hours with
the same infrastructure.

D Detailed GLUE Task Performance

Table 2 shows performance break-down for individ-
ual GLUE task under different transformations as
described in Section 3.1. The individual t-GLUE
and GLUE results are included in Table 2. We find
a consistent picture across most of the tasks, with
some interesting effects like CoLA (which is more
syntax-sensitive) being impacted more by syntactic
shifts.
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Original Token Swap Word Swap Reinit(Emb)  Bert Albert FlauBERT DutchBERT Random Reverse {Ng,Vg} {Nja.Vja} {Np, Vja}

CoLA 58(.01)  .00(.00) .00(.00) 00(00)  .00(.00) .00(.00) .00(.00)  .00(.00)  .04(.05) .01(0I) .16(01)  21(.01)  .12(.01)
CoLA.p  .59(01)  .05(.07) 02(.02) 06(.05)  .00(.00) .00.00) .01CO1)  .00(.00)  .22(.04) .35(.01) 45(03)  47(01)  .44(.01)
MNLI 88(.00)  .34(.01) 50(.08) 53(03)  .54(01) .53(01) .67(01)  .68(.00)  .82(.00) .85(.00) .86(.00)  .86(.00)  .85(.00)
MNLI., ~ .88(.00)  .72(01) 72(.01) 73(00)  .73(01) .71(00) .71(01)  .69(.00)  .82(.00) .86(.00) .86(.00)  .86(.00)  .86(.00)
MRPC 88(.01)  .68(.00) .68(.00) 68(.00)  .68(.00) .68(.00) .76(.01)  .77(.01)  .77(01) .85(.02) .85(01)  .86(.01)  .83(.00)
MRPC.,, .87(00)  .83(.00) 80(.04) 79(01)  .82(.01) .80(.01) .83(.01)  .78(01)  .81(.01) .87(01) .87(01)  .87(.01)  .86(.00)
QNLI 93(.00)  .60(.01) 54(.02) 54(04)  55(.03) .52(.01) 79(01)  .79(.00)  .88(.00) .89(.00)  .90(.00)  .91(.00)  .90(.00)
QNLL,  .93(00)  .83(01) 82(.01) 82(00)  .83(.00) .82(.00) .82(.00)  .81(.00)  .88(.00) .91(.00) .91(00)  .92(.00)  .91(.00)
QQP 91(.00)  .77(.00) 77(.00) 77(00)  .76(.00) .75(.00) .85(.00)  .86(.00)  .90(.00) .91(.00) .90(.00)  .91(.00)  .90(.00)
QQP.,.  91(.00)  .87(.00) 87(.00) 87(00)  .87(.00) .87(.00) .86(.00)  .87(.00)  .90(.00) .91(.00) .91(.00)  .91(.00)  .91(.00)
RTE 65(.02)  .51(.03) 51(.03) 53(00)  .53(.00) .53(01) .54(.02)  .56(.02)  .57(.01) .60(.02) .60(.00)  .61(.01)  .59(.05)
RTEL,. 67(01)  .56(.01) 53(.01) 54(03)  57(01) .59(.02) .57(03)  .57(.02)  .59(.02) .58(.02) .69(01)  .64(.05)  .65(.03)
SST-2 94(.00)  .79(.01) 75(.02) 79(03)  .73(.04) .68(.05) 77(01)  .78(.00)  .86(.01) .91(.00) .92(.00)  .92(.00)  .92(.00)
SST-2.p,.  .94(00)  .83(.01) 85(.01) 85(01)  .83(.00) .82(.00) .82(.01)  .81(01)  .88(.00) .93(.00) .93(.00)  .93(.00)  .92(.00)
STS-B 89(.00)  .06(.01) .06(.00) 06(.02)  .09(.02) .08(.02) .74(01)  .77(.00)  .87(.00) .87(.00) .88(.00)  .88(.00)  .88(.00)
STS-Bep,  .89(.00)  .76(.01) 73(.03) 77(01)  .79(01) .78(.00) .77¢00)  .79(.00)  .88(.00) .87(.00)  .89(.00)  .89(.00)  .89(.00)
WNLI 56(.00)  .56(.00) 56(.00) 56(.00)  .56(.00) .58(.03) .56(.00)  .56(.01)  .55(.01) .56(.01) .56(.00)  .56(.00)  .56(.01)
WNLLp,  56(01)  .52(.06) 53(.05) 53(03)  .55(.02) .51(.07) .56(.00)  .56(.00)  .55(.01) .51(.07) .56(.01)  .56(.00)  .53(.05)

Table 2: GLUE scores for t-English with different types of interventions including scrambled word identities,
syntactic shifts, and tokenizer substitutions with standard deviation (SD) for all tasks across 3 distinct runs with
different random seeds. The scores with original English sentences are included for comparison. c.p. indicates
finetuning results with continued pretrained models.
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