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Abstract

Recursion is a prominent feature of human
language, and fundamentally challenging for
self-attention due to the lack of an explicit
recursive-state tracking mechanism. Conse-
quently, Transformer language models poorly
capture long-tail recursive structure and ex-
hibit sample-inefficient syntactic generaliza-
tion. This work introduces Pushdown Layers,
a new self-attention layer that models recur-
sive state via a stack tape that tracks estimated
depths of every token in an incremental parse
of the observed prefix. Transformer LMs with
Pushdown Layers are syntactic language mod-
els that autoregressively and synchronously up-
date this stack tape as they predict new tokens,
in turn using the stack tape to softly modu-
late attention over tokens—for instance, learn-
ing to “skip” over closed constituents. When
trained on a corpus of strings annotated with sil-
ver constituency parses, Transformers equipped
with Pushdown Layers achieve dramatically
better and 3-5x more sample-efficient syntac-
tic generalization, while maintaining similar
perplexities. Pushdown Layers are a drop-in
replacement for standard self-attention. We il-
lustrate this by finetuning GPT2-medium with
Pushdown Layers on an automatically parsed
WikiText-103, leading to improvements on sev-
eral GLUE text classification tasks.

1 Introduction

An important property of human language and
thought is recursion, which allows us to compose
and reason about complex objects in terms of sim-
pler constituents (Hauser et al., 2002). While ex-
tensively studied in natural language syntax and
semantics, recursion is also a key component of sev-
eral other aspects of intelligent behaviors including
mathematical reasoning, programming, and goal-
directed planning. Most recursion-capable systems
model recursive processes via a stack memory,
which is updated as new computation is performed.

Figure 1: (a) Pushdown Layers use a stack-tape to fea-
turize contents of an explicit stack, in terms of estimated
token depths, where the stack represents incremental
parses. (b) These depths map onto depth embeddings
(in blue) that are added to token keys before computing
attention scores, softly biasing attention towards a re-
cursive syntactic computation. (c) The stack is updated
synchronously with the newly predicted word, via an
attachment head that selects a constituent to reduce the
newly predicted word with, via attention.

For instance, a programming language may imple-
ment recursion by maintaining a run-time stack of
caller-callee frames, storing intermediate outputs
in the stack, and updating the stack as new func-
tion calls are made. Similarly, a shift-reduce parser
implements recursion through a stack of intermedi-
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ate constituents, shifting tokens onto the stack as
they are observed, and occasionally reducing stack
elements into constituents as they are completed.

In contrast, the self-attention mechanism under-
lying modern neural sequence models has no ex-
plicit mechanism to maintain a stack memory as it
generates strings, and instead relies on hidden rep-
resentations to implicitly but imperfectly encode
such information (Manning et al., 2020). While this
encoding can model bounded recursive structure in
formal languages (Yao et al., 2021), it is unclear if
it is sufficient for robust syntactic generalization,
especially under data-constrained settings.

In this work, we show that an explicit stack mem-
ory mechanism can improve syntactic generaliza-
tion in Transformer language models (LMs). We in-
troduce Pushdown Layers', a drop-in replacement
for standard self-attention that augments Trans-
former LMs with stack memory. This memory
is modeled using a stack tape that stores estimated
depths of every token in an incremental parse of the
observed prefix. The stack tape is updated autore-
gressively: as new tokens are predicted, Transform-
ers with Pushdown Layers (Pushdown Transform-
ers) synchronously make probabilistic attachment
decisions to either “shift”, thus assigning the newly
predicted token a depth of 0, or “reduce” with one
of the constituents in the prefix so far, updating to-
ken depths accordingly (see Fig. 1). This stack tape
is used to additively and softly modulate the atten-
tion of the Transformer over tokens—for instance,
Pushdown Layers may guide the LM to only attend
to head words of constituents, or skip over reduced
constituents by decreasing attention.

Pushdown Transformer LMs are syntactic lan-
guage models that learn joint probabilities of se-
quences and parses in terms of individual word
predictions and structure-building operations, and
can be trained on any text corpus annotated with
constituency parses. But unlike other syntactic lan-
guage models with structural supervision (Vinyals
et al., 2015; Choe and Charniak, 2016; Qian et al.,
2021; Sartran et al., 2022), Pushdown Layers do
not change the output space of the underlying se-
quence model, and impose no constraints on atten-
tion mechanisms—the manner in which Pushdown
Layers use syntactic structure for representation
building is learnt purely via gradient descent.

Pushdown Transformers obtain strong general-

'We borrow this term from pushdown automata, which are
finite state machines augmented with stacks.

ization improvements over standard Transformer
LMs. When trained on depth-bounded Dyck strings
and evaluated on deeper Dyck strings, Pushdown
Transformers improve performance over baseline
LMs by over 25% (Section 4.1). When trained on
sentence-level language modeling on the BLLIP-
LG datasets of Hu et al. (2020), Pushdown Trans-
formers improve syntactic generalization over stan-
dard Transformer LMs by 5-13 points as well as
other joint models of strings and parses such as
Qian et al. (2021); Sartran et al. (2022) by 0.3—
4 points (Section 4.2). When trained on a new,
100-million-token dataset of parsed Wikipedia ar-
ticles we call WIKITREES, Pushdown Transform-
ers match the syntactic generalization of ordinary
Transformers with 3-5x less data. Finally, when
Pushdown Layers are inserted into a pre-trained
GPT-2 (medium) model and fine-tuned on WIK-
ITREES they yield improvements of 0.3—1 points
on several GLUE text classification tasks.

2 Background

Multi-Head Self-Attention. Transformer lan-
guage models (Vaswani et al., 2017) are a class
of neural sequence models that use multi-head
self-attention to obtain contextualized represen-
tations of tokens in a sequence, which are then
used to predict the next token. In particular, let
x = {x1,x9,...,z,} be an input sequence. Let
hi- € R? be the hidden representation of the i
token at the I™ attention block. Then, the hidden
representation of the i token is updated as
hitt =FF(O - [Ai(hLy), . Ak (h)),
ey

where O € R%*? ig a learnt matrix, FF denotes a
feed-forward + residual + layer-norm block, and
A, is the p™ self-attention head. Each attention
head performs a weighted average over its inputs,

Ap(hly) = ayWh R, )
j=1

where «;; is the attention weight assigned to the
4™ token by the i token. These attention weights
are computed as
j = soft WP R TWE Rl 3
Qj = SO max[( key j) query z] ( )
Each self-attention head introduces learnt param-
eters ery, Witery, WP, . € R/ K xd,

value
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Limitations of Self-Attention. When trained on
text corpora, transformers implicitly encode sev-
eral aspects of linguistic structure unsupervisedly
(Clark et al., 2019; Hewitt and Manning, 2019;
Murty et al., 2023). However, there is mounting
evidence that recursion, a key feature of human
language, remains a challenge. Hahn (2020) shows
theoretically that hard-attention cannot model sim-
ple recursive structures like 2DYCK (see Section 6
for an extended discussion). Empirically, Lakretz
et al. (2022) show that self-attention struggles on
center embedding phenomenon, and Zhang et al.
(2023) show poor performance on simple recursive
tree-traversal problems. We hypothesize that a key
reason for poor modeling of recursive structure in
self-attention is a lack of an explicit structural in-
ductive bias. One common way to add such an
inductive bias is via joint modeling of strings and
syntactic structure, which we introduce next.

Syntactic Language Models. Let y be the
ground-truth syntactic parse of x. A long line of
work (Vinyals et al., 2015; Dyer et al., 2016; Choe
and Charniak, 2016; Qian et al., 2021; Sartran et al.,
2022) considers learning joint distributions p(x, y)
to incorporate explicit syntactic structure into neu-
ral language models, by learning to output a se-
quence of transition actions,

p(z,y) = plag,) = Hp(ai laci) (@)

where actions a; correspond to both word-level pre-
dictions as well as structural actions corresponding
to opening and closing of constituents, building up
the parse tree in a top-down, left-to-right manner.
Recent work explores using Transformers to param-
eterize these joint distributions. For instance, Qian
etal. (2021); Sartran et al. (2022) train Transformer
LMs over transition actions (Parsing as Language
Modeling or PLM), sometimes with constrained at-
tention heads (PLM-mask), and Transformer Gram-
mars (TG; Sartran et al., 2022) model transition ac-
tions with Transformers, also with hard constraints
on attention to model shift/reduce actions.

These models have several limitations that moti-
vate our proposed approach. First, their outputs
are sequences of transition actions that include
both text and tree-building operations; as each con-
stituent in a parse tree has an opening and closing
transition action, and there are ~ n constituents for
x, this increases input length by a factor of 3, lead-
ing to significant computation and memory over-

head. Second, inference in neural models operat-
ing on transitions require bespoke decoding proce-
dures that carefully balance tradeoffs between high-
entropy word-level predictions and low-entropy
structural predictions (Stern et al., 2017). Finally,
to explicitly bias Transformer computations to mir-
ror the recursive structure of parse trees, some ap-
proaches like PLM-mask (Qian et al., 2021) and
TGs (Sartran et al., 2022) impose hard constraints
on attention patterns. Pushdown Layers provide a
softer syntactic bias that is amenable to gradient-
based learning, while having broader applicabil-
ity to phenomena beyond local tree-structuredness,
such as topical dependencies, coreference, etc.

3 Pushdown Layers

Transformer LMs with Pushdown Layers are syn-
tactic language models that generate strings while
simultaneously building a parse tree over these
strings from left to right. This parse tree is built
incrementally by tracking the recursive state of ev-
ery token, which is synchronously updated along
with word-level predictions. This recursive state
is represented via our stack tape as tree-depths of
every prefix token, and updates are realized with
a stack. The contents of the stack tape are used
to softly modulate attention over prefix tokens via
additive offsets to attention logits (Fig. 2).

3.1 Stack Tape

Like ordinary self-attention, Pushdown Layers take
a sequence of hidden states {h} } as input, and out-
put a sequence {h%:rl}. Additionally, Pushdown
Layers use a stack tape Wy, € {0, k}* to simulate a
pushdown automaton that performs shift/reduce op-
erations over tokens as they are predicted (Fig. 2).
The contents of the stack tape encode recursive
state by tracking the depth of each token within
reduced constituents in the stack. Concretely, af-
ter observing the prefix z<, = {z1,22,..., 2},
Wi [j] = 0 if token z; has not been reduced with
any other token, while W;[j] = p means that z;
has appeared in p reduce operations such that the
resulting constituent has token x; at depth p—in
Fig. 2, the stack tape encodes [1, 1, @] for the
incremental parse [The dog] is.

Updating the Stack Tape. As shown in Fig. 2,
along with predicting the next word happy, Trans-
formers with Pushdown Layers (Pushdown Trans-
formers) make an attachment decision to update
their stack tape. In our running example, this is
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The dog The dog | is The dog ' is happy
dog is happy
1 () 1
4 t 4
LAl b R L.
: The ! The dog i The dog | is
0 1 1 1 1 0

Figure 2: Illustration of how the parse [[The dog [is
happy]] is built as a unique sequence of stack-tape up-
dates in Pushdown LMs. Here, as the word happy is
predicted, the attachment head chooses a constituent
(bolded) from the current incremental parse, via atten-
tion. Attachment decisions are made to constituents by
attending to their rightmost token, and none of the other
tokens of a constituent can be attended to (shown as
dashed lines). These attachment decisions are used to
update depth values in the tape.

done by selecting a constituent from the incremen-
tal parse [The dog] is happy.

Concretely, given prefix x ., Pushdown Trans-
formers predict the next token xj as well as an
update to the stack tape Wy_1. This is done by se-
lecting a token 7 to reduce with, out of candidate
tokens {x1, z2, ..., x}, via attention over hidden
states {h hL, ... hE || il,é’}, where L is the fi-
nal layer of the Transformer, and ﬁ,f is a vector
representation for the newly predicted token xy,
obtained as hl = MLP(xy, hf_,). This vector
attends to all tokens to make a probabilistic attach-
ment decision,

P(rk =J | <k Wi—1)

(hJLTWTﬁi) if j # k, shift + reduce 5)
(ﬁ,%TWTiLi) shift only

where W € R%*? is a learnt parameter ma-
trix. We use these probabilities to select token
rr = argmaxp(j | T<p; Wg_1) to reduce xy
with, and the stack tape is updated accordingly
via Algorithm 1. Note that attachment decisions to
constituents are made by computing the attachment
score for the rightmost token in the constituent. In
our running example, the model selects the con-
stituent [The dog] by selecting the word dog, form-
ing the parse [[The dog] [is happy]] and updating
the stack tape from [1, 1, 0] — [2, 2, 2, 2].

Algorithm 1: Stack Tape Update
Input: W;._4, k, 7, stack
Output: Wy, stack

UpdateStackTape(W:._1, k, 1, stack)

Wi — Wi_1

constituent < [k]

if v, == k then
stack.push(constituent)

return
end

while True do
top < stack.pop()

/I Perform a reduce

constituent < top + constituent
/I Update depths in stack tape

forall d € constituent do
| Weld] +=1

end

if top == r;, then
| break

end

end
stack.push(constituent)

3.2 Computing Attention Scores

We map contents of W, onto a per-layer depth
embedding df,cj for every token j € {0,1,...,k}.
These depth embeddings are added to attention
keys, resulting in a locally additive modulation to
attention scores,

dé«j = softmax([hg + dfgj]TWgquueryhéc)'
(6)

Of course, since these logits are themselves part of
a softmax and non-linearities, the overall effect can
be arbitrarily non-linear. These modified attention
weights are used to compute contextualized vectors
using Eq 2 and Eq 1.

3.3 Training and Inference

Training. Given a corpus of strings annotated
with parses, we first extract ground-truth values of
W, for every prefix x<j. We also extract ground-
truth attachment decisions for g, given prefix x .
With these quantities precomputed, we can train
Pushdown Transformers in parallel, like standard
Transformers. Attachment probabilities (Eq 5) are
supervised with ground-truth attachments, along
with the standard LM objective, all using hidden
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states that are contextualized using the Pushdown
Layer attention mechanism that uses the precom-
puted stack tape.

Inference. For any string x and parse y, joint
probability p(z,y) factorizes as a product of word-
level and attachment scores as

p(,y) = T (Pl | 2cn Wier)x
k=1

P | 2 W) (D)

While computing the full marginal p(xz) =
>, p(z,y) is computationally infeasible due to
the large space of possible parses, we approximate
this by marginalizing over a smaller subset with
beam search. Crucially, since our model predicts
words and structural actions in parallel rather than
sequentially, we do not need to use complex word-
synchronous decoding procedures (Stern et al.,
2017) that introduce additional hyperparameters.

3.4 Implementation Details

FLOPs and memory overhead. Consider query
and key matrices Q € R"*?¢ K ¢ R™*? where
ng and ng refer to destination (hidden states at-
tending) and source (hidden states being attended
to). Let S € R"*™s be the (lower-triangular)
matrix denoting pre-computed stack tape values
for every prefix. For each Pushdown Layer, we
use S to index into depth embeddings to obtain
D € RmaxnsXd which is added to K to obtain
Kp € Rraxnsxd Unplike standard self-attention
which multiplies @) and K directly, Pushdown Lay-
ers multiply @ (a 2D tensor) with Kp (a 3D ten-
sor). This is done by casting () into a 3D ten-
sor € R™*1%d and performing a batched ma-
trix multiplication with Kp, leading to the same
number of operations as standard self-attention 2.
However, since Pushdown Layers require storing
3D tensors for keys, this increases memory re-
quirements from O(ng - ns + ns - d + ng - d) to
O(ng-ns+mns-ng-d-+ng-d). We provide stan-
dalone code for implementing a Pushdown Layer
block in Appendix D.

Attending to hidden states with old memory.
Pushdown Transformers build parse trees incre-
mentally from left-to-right, and so, depth values of
prefix tokens change as new tokens are predicted.

2We note that standard self-attention is faster in practice
due to better GPU memory bandwidth management,

Thus, a token at position ¢ builds its representation
based on attending to x<; with a stack tape that may
soon become “‘stale" due to future transition opera-
tions that reduce tokens in x<; with new tokens. As
an example, suppose we have the incremental parse
[[The dog] [in [the park]]]. Here, the representation
for in attends to representations of The, dog and in
with depths [1, 1, O] while the representation for
park attends to these representations with updated
depths [2, 2, 2].

4 Experiments

4.1 Warm-up: Dyck Languages

We train 6 layer LMs with Pushdown Layers
(Pushdown-LLM) as well as standard LMs on 100k
strings sampled from DYCKa 10, the language of
well-nested brackets with 20 bracket types and
max-nesting depth of 10. To ensure that improve-
ments are not merely due to multi-task learning
with an attachment head, base-LLM is also trained
with an attachment loss in a standard multi-task
learning setup. To test generalization, models are
provided an input prefix from a separate DYCK
language, and evaluated on choosing the correct
closing bracket. Specifically, we test generalization
to DYCK strings with deeper nesting of 15-50, and
DyYCK strings with longer-range dependencies than
seen at training time (measured as the distance to
the matching bracket that needs to be closed). From
Table 1, we find that Pushdown-LM obtains over
25% accuracy point improvement over standard
language models at generalizing to deeper struc-
ture, as well as large improvements at generalizing
to longer-range dependencies.

Base-LM  Pushdown-LM

Long-Range Dependencies

Dyck (50) 90.0 96.5
Dyck (100) 81.0 88.0
Dyck (200) 40.6 61.2
Dyck (300) 14.1 42.9

Deeper Embedded Structure

Depth Gen. 40.6 68.3

Table 1: Evaluating LMs at closing Dyck prefixes with
longer dependencies (dep. length in brackets) and
deeper structure. We find significant improvements from
using Pushdown Layers over standard self-attention.
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Figure 3: Comparing Pushdown-LMs with baseline Transformer LMs and other syntactic LMs. While Pushdown-
LMs are comparable with Transformer Grammars (TG; Sartran et al., 2022) across all examples in SG test suites
(Table 2), they outperform TGs on 4 out of 6 tests, including the recursive center embedding tests.

4.2 Sentence-Level Language Modeling

Setup. Next, we train 16-layer Pushdown Trans-
former LMs on the BLLIP-LG dataset of Charniak
et al. (2000), with training splits from Hu et al.
(2020), and the same pre-processing as Qian et al.
(2021). We use the same hyperparameters (model
size, dropout, learning rate schedulers) as Sartran
et al. (2022). To measure syntactic generalization,
we evaluate on BLIMP (Warstadt et al., 2020) and
the SG test suites (Hu et al., 2020). In BLIMP,
models are provided with a grammatical and un-
grammatical sentence, and evaluated on assigning
a higher probability to the grammatical sentence.
SG test suites consist of an extensive set of hand-
crafted test cases, covering 6 fine-grained syntactic
phenomena. Each test case involves satisfying a
specific inequality constraint among surprisal val-
ues of various continuations given prefixes, where
these inequalities are grounded in theories of in-
cremental language processing—for instance, as-
signing a higher surprisal to the last verb in The
painting that the artist deteriorated painted vs. The
painting that the artist painted deteriorated. For
BLIMP, we obtain p(x) by approximate marginal-
ization via beam search. Since surprisal values
—log p(z¢ | x<¢) in SG test suites are meant to re-
flect incremental sentence processing, we perform
marginalization based on the beam state at time

step . We fix the beam size at 300.

Results. We present results on SG test suites in
Figure 3. As baselines, we compare against a
standard 16 layer Transformer LM and prior struc-
tured models (TG, PLM) from Sartran et al. (2022).
As expected, all models with an explicit notion
of structure have much better syntactic general-
ization across all test suites. Next, we note that
Pushdown-LM, a 16 layer Transformer LM with
all self-attention blocks replaced with Pushdown
Layers, outperforms prior approaches—Pushdown-
LM beats TG on 4/6 tests and PLM on 3/6 tests
with similar performance on licensing. Next, we
present results (averaged across 3 seeds) on BLIMP
as well as aggregate SG test suite results and per-
plexity on the BLLIP test set in Table 2. Here,
we note that Pushdown-LM achieves better syn-
tactic generalization than prior structured models
(including the PLM-mask model from (Qian et al.,
2021)) on BLIMP. Finally, we find that Pushdown-
LM achieves slight gains in perplexity compared
to Base-LM.

4.3 Language Modeling with WIKITREES

Can Pushdown Layers continue to offer improve-
ments on larger-scale language modeling? We con-
struct WIKITREES, a dataset of over 100 million to-
kens extracted from Wikipedia Articles (WikiText-
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Model BLIMP 1 SG test suites T PPL |
Models that add structural tokens to inputs

PLM 75.1 80.2 29.8%

PLM-Mask 75.3 78.3 49.1%

TG - 82.5" 30.34

Models that do not add extra tokens to inputs

Base-LM 70.1 69.5 20.1
Pushdown-LM (ours) 75.6 82.3* 19.9

Table 2: Syntactic Generalization on BLIMP and SG
test suites. All results for PLM-Mask are taken from
Qian et al. (2021) and results for PLM and TGs are taken
from Sartran et al. (2022). * denotes differences that
are not significant. PPL results marked with { are taken
from prior work and not comparable due to differences
in tokenization.

103; Merity et al. (2017)), parsed automatically
using a state-of-the-art neural constituency parser
(Kitaev et al., 2019). Typically, LMs trained on
web-scale data are given multi-sentence contexts
with large window sizes as inputs, and to adapt
this to Pushdown-LMs we make a small number of
modifications (see Appendix B for details).

Sample-Efficient Generalization. To measure
sample efficiency in Pushdown Transformers, we
train LMs on [10M, 50M, 100M] tokens from WIK-
ITREES. To ensure stable training under low data
regimes, we train a 12 layer GPT2 using the exact
configuration and tokenization scheme as GPT2-
small (Radford et al., 2019), and additionally use
dropout to prevent overfitting. For these experi-
ments, we compare Base-LM with an LM where
the final 6 self-attention blocks are Pushdown Lay-
ers (Pushdown-LM). To measure syntactic gener-
alization, we compute aggregate performance on
the SG test suites. From results in Fig. 4, we
find that Pushdown-LMs exhibit drastically more
sample-efficient syntactic generalization—for in-
stance, syntactic generalization of Pushdown-LM
trained on 10M tokens requires over 40M tokens
for the Base-LLM to surpass.

Finetuning for text classification. Can Push-
down Layers offer improvements on language un-
derstanding tasks, beyond syntactic generalization?
To answer this, we perform staged finetuning of
GPT2-medium with Pushdown Layers. Specifi-
cally, we finetune GPT-2 medium with the final
12 self-attention blocks replaced with Pushdown
Layers (Pushdown-GPT?2), as a language model on

GPT2-small (~9B tokens) --
80 /"
C 0
kel
2754
N
g 70
C
&e5- o
O
C 60
©
i}
S,
a 55
=—e— Pushdown-LM
50 Base-LM
T T T T T
0.2 0.4 0.6 0.8 1.0
Number of Tokens le8

Figure 4: Comparing a standard GPT-2 small archi-
tecture (Base-LM) with a model where the last 6 self-
attention blocks use Pushdown Layers, trained on vari-
ous amounts of tokens from WIKITREES. We find that
Pushdown Layers greatly improve sample efficiency of
syntactic generalization. For reference, we also include
GPT2-small, which is trained on over 9 billion tokens.

WIKITREES. We use this model to obtain parses
on 4 text classification tasks: RTE, SST5, MRPC
and STS-B from GLUE (Wang et al., 2019a), and
use these parses to pre-compute the stack tape for
every token. Then, in a second finetuning step,
Pushdown-GPT?2 is trained to perform text classi-
fication over these datasets by reducing each task
into language modeling via prompting (See Ap-
pendix A for prompt details). As a comparison,
we also perform the same staged finetuning for the
standard GPT2-medium architecture. We report
averaged results across 3 seeds in Table 3. We find
that Pushdown Layers offer improvements on 3 out
of 4 text classification tasks.

Model RTE SST5 MRPC STS-B
GPT2 722 54.8 88.4 89.6/89.8
Pushdown-GPT2 729  54.5 89.3 89.8/90.1

Table 3: Finetuning models on various semantic text
classification/regression tasks. We report accuracy for
RTE and SSTS5, F1 for MRPC, and Spearman/Pearson
Correlation for STS-B.

S Analysis

For all analyses, we use the 16 layer Pushdown-LM
trained on BLLIP-LG from Section 4.2.

Parsing. Since Pushdown-LM is a syntactic lan-
guage model, we obtain parses via beam search
(beam size = 300) to approximately recover the
most likely parse y* = arg max, p(z,y) under our
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Figure 5: For the three subject-verb agreement tasks
from (Marvin and Linzen, 2018), we compute average
attention over the distractor noun when the verb is be-
ing predicted, for both the Base-LM and Pushdown-LM
(ours). Across all variants, we find that our model con-
sistently pulls attention away from distractor nouns.

model. However, since this parse is (a) unlabeled
and (b) binarized, we perform an unlabeled F1 eval-
uation (using EVALB; Collins, 1997) over binarized
ground-truth parses from the PTB test set. We also
remove instances consisting of unknown words for
our model, since our model is trained without any
UNK tokens, giving us 2335 out of 2416 sentences.
We compare our model against Kitaev et al. (2019),
the parser that was used to annotate training data
for Pushdown-LM. We also present unlabeled F1
on the auto-parsed BLLIP-LG test set. From re-
sults in Table 4, we note that our model achieves a
very competitive unlabeled F1 score of 95.3, out-
performing the official implementation of Kitaev
et al. (2019)3. We also find that our model obtains
a high F1 score of 97.3 on the BLLIP-LG test set.

Model PTB BLLIP-LG

Pushdown-LM 95.3 97.3
(Kitaev et al., 2019)  94.7 .

Table 4: Unlabeled F1 scores against binarized ground-
truth parses from the PTB and BLLIP test sets. We filter
all examples from the PTB test set with unknown words,
giving us 2335 out of 2416 sentences. Annotations on
BLLIP-LG are obtained using Kitaev et al. (2019).

Case Study: Analyzing attention patterns on
subject-verb agreement tasks. We consider
the 3 Subject-Verb agreement tasks (Marvin and
Linzen, 2018) from the SG test suites. On these

3We use the benepar_en_large model from https://
github.com/nikitakit/self-attentive-parser which
reports a score of 96.29 on the full PTB test set, while we
obtain 95.66 (labeled F1, using the standard EVALB script).

tasks, models are presented with a prefix consist-
ing of a main subject and a distractor embedded
subject, where these items conflict in number. The
objective is to assign a higher logprob to the verb
that agrees with the main subject rather than the
distractor subject. For instance, for prefix The au-
thor that hurt the senators, the model must assign
a higher probability to is than are.

From Fig. 3, we find that Pushdown-LM sig-
nificantly outperforms other models with close to
80% accuracy while Base-LM achieves less than
60% accuracy. To understand how Pushdown Lay-
ers modulate attention on these examples, we ob-
tain attention scores over all prefix tokens (aver-
aged across all layers). We present the average
attention assigned to the distractor token for both
Pushdown-LM and Base-LLM in Fig. 5 where we
observe that Pushdown-LM pulls attention away
from the distractor noun, allowing it to predict the
correct verb. Finally, we plot some (averaged) at-
tention heatmaps in Fig. 6.

6 Other Related Work

While recursive structure is fundamental to natu-
ral language, modeling such structure is difficult
for self-attention. Hahn (2020) considers DYCK,
the simplest formal language with recursive struc-
ture, proving that hard attention cannot recognize
DycK and soft attention cannot recognize DYCK
with low cross-entropy. In practice, we find that
even simpler languages like PARITY are challeng-
ing for encoder-only Transformers (Chiang and
Cholak, 2022; Bhattamishra et al., 2020). On the
other hand, Transformers with decoders have been
shown to be Turing-complete (Perez et al., 2021),
but these constructions rely on the impractical as-
sumption of running the decoder for an unbounded
number of steps. In practice, we find that Trans-
former LMs struggle with generalization beyond
regular languages and tend to learn shortcuts in-
stead (Deletang et al., 2023; Liu et al., 2023).
Given these limitations, there is significant in-
terest in inductive biases that encourage recursive
structure in Transformers. One line of work con-
siders constraining self-attention patterns accord-
ing to syntactic parses (Strubell et al., 2018; Wang
et al., 2019b; Peng et al., 2019; Deshpande and
Narasimhan, 2020, among others). A second line
of work adds structure to language modeling by
learning joint probabilistic modeling of structure
and strings (Chelba, 1997; Mirowski and Vlachos,
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Base-LM

Layer

[Sds] The authors that hurt the senator

Pushdown-LM

Layer

[SOS] The authors that hurt the senator

Figure 6: Given a prefix containing a main noun and
a distractor noun, Pushdown-LM pulls attention away
from the distractor (here senator), helping the model
predict the verb with the correct number. These attention
maps average across all the instances in the number_src
test of SG test suites, and we show the attention over all
prefix tokens when the main verb is predicted

2015; Choe and Charniak, 2016; Dyer et al., 2016,
among others). Both of these ideas are combined
in recent work of Qian et al. (2021); Sartran et al.
(2022), that proposes joint string, parse Trans-
former language models with constrained attention
patterns. While Pushdown Layers are also in this
modeling tradition, we do so without operating
on long transition actions, and enforce structural
constraints via gradient based learning.

A separate line of work proposes neural net-
works augmented with structured memory like
stacks (Das et al., 1992; Grefenstette et al., 2015;
Joulin and Mikolov, 2015; DuSell and Chiang,
2022) or random access memories (Kurach et al.,
2015). Such augmented neural networks are vastly
better at algorithmic generalization and learning
recursive structure (Suzgun et al., 2019; Deletang
et al., 2023). Our work is the first that designs a
structured memory (the stack-tape) for Transform-
ers, that is updated just like stacks in a shift/reduce

manner, but unlike prior work, the specific design
of Pushdown Layers makes training parallelizable.

Finally, there have been several efforts to add
syntactic inductive biases into sequence models
(typically RNNs) that can acquire and use parse
structures in an unsupervised manner (Bowman
et al., 2016; Shen et al., 2019; Drozdov et al., 2019;
Kim et al., 2019, among others). We leave unsuper-
vised training of Pushdown Transformers for future
work.

7 Conclusion

We propose Pushdown Layers, a new kind of self-
attention that augments Transformer language mod-
els with a stack based memory. Pushdown Layers
enable auto-regressive Transformers to softly bias
attention towards a recursive syntactic computation,
through an updatable stack-tape that stores token
depths in an incremental parse. When trained on
synthetic and natural languages, we find that Trans-
former LMs with Pushdown Layers achieve better
generalization to deep recursive structure, as well
as better and more sample-efficient syntactic gen-
eralization. When pre-trained LMs are finetuned
with Pushdown Layers, we obtain improvements
on some GLUE tasks.

8 Reproducibility

Code and data for these experiments is available at
https://github.com/MurtyShikhar/Pushdown-Layers.

Limitations

Pushdown Layers require constituency-parse anno-
tated datasets, which may not be available for many
languages due to a lack of high performing off-the-
shelf constituency parsers. This also limits appli-
cability to domains beyond natural and synthetic
languages, such as algorithmic reasoning. Finally,
Pushdown Layers can only be applied to languages
with constituency structure, and our experiments
are limited to English.
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A Model Hyperparameters

BLLIP. All our hyperparameters for BLLIP are
borrowed from the 16-layer Transformer LM used
in Sartran et al. (2022). This includes model hy-
perparameters (hidden state dimension, number of
attention heads, number of layers), dropout (input
dropout, output dropout, attention dropout), and
learning rate schedulers. We train for 300k steps,
evaluating every 3k steps and early stop based on
validation set perplexity.

WikiTrees. For experiments on WikiTrees, we
use the same model hyperparameters as GPT2-
small, and a context window of 512. We train
with a batch size of 480, and train till validation
loss stops decreasing, with a learning rate that lin-
early warms up from 0 to 6e-4 over 200 iterations,
followed by a cosine learning rate scheduler. For
sample efficiency experiments, we add dropout of
0.2 to prevent overfitting.

GPT2-medium finetuning. We use a batch size
of 256, and a constant learning rate of 3e-5. We
early stop based on validation set performance, and
report average of 3 runs. To convert text classifi-
cation tasks into language modeling, we use the
following prompts:

e RTE: Premise: {p}. Hypothesis: {h}. Label:
{1}, given a premise, hypothesis pair (p,h) with
label [ mapped into {Yes, No}.

* MRPC: Given the sentence pair (s, s2), we
create a prompt Sentencel: {s1}. Sentence2:
{s2}. Label: {1}. wherel € {0, 1}.

e SSTS: Sentence: {s}. Sentiment: {I} for an
input sentence s with label [.

» STS-B: Given the sentence pair (s1, s2), we
create a prompt Sentencel: {s1}. Sentence2:
{s2/, and use the final hidden state to featurize
a linear regressor, trained jointly with the LM.

B Training Pushdown-LM with
context-windows

In standard LMs, context windows for training are
arbitrary offsets into the entire corpora—a window
might start in the middle of some sentence. Be-
cause Pushdown-LMs always start with the stack
state initialized as all Os and make attachments only
to stack tape contents, a Pushdown-LM cannot start
in the middle of a sentence without the stack tape

appropriately initialized. We get around this by
simply sampling these context windows to always
start at sentence boundaries. We also prepend a spe-
cial token ROOT before the start of every sentence
such that the attachment decision of the final word
is made to this ROOT token.

C Parsing with Pushdown-LM.

Since the BLLIP-LG trained Pushdown-LM op-
erates over sub-word tokens, parses produced by
this model have subwords as leaf nodes. We pro-
cess this by recursively merging leaf siblings that
are part of the same word. For instance, given the
bracketing (ab, (ra, (ca, dabra))), we recursively
merge these to get a single node abracadabra. This
procedure deterministically converts the parse over
subwords into a parse tree over words.

D Implementation details: Pseudocode
for implementing Pushdown Layers

See Fig. 7 and Fig. 8 for reference implementations
of Pushdown Layers and the attachment head.
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class PushdownSelfAttention(nn.Module):

def forward(self, x, stack_tape):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)

# (B, nh, T (dest), hs)

g = gq.view(B, T, self.n_head, C // self.n_head).transpose(l, 2)
# (B, nh, T (src), hs)

k = k.view(B, T, self.n_head, C // self.n_head).transpose(1l, 2)
# (B, nh, T, hs)

v = v.view(B, T, self.n_head, C // self.n_head).transpose(l, 2)

augmented_keys = k.unsqueeze (2) + self.beta(stack_tape.int()).unsqueeze (1)

augmented_keys /= math.sqrt(k.size(-1))
# B x nh x T (dest) x T(src)

augmented_att = (q.unsqueeze(3) @ augmented_keys.transpose(-2, -1)).squeeze
— (3)
att = augmented_att.masked_fill(self.bias[:, :, :T, :T] == 0, float( ))

att = F.softmax(att, dim=-1)

att = self.attn_dropout(att)

# (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = att @ v

# re-assemble all head outputs side by side

y = y.transpose(1, 2).contiguous().view(B, T, C)

# output projection

y = self.resid_dropout(self.c_proj(y))

return y

Figure 7: Python implementation of a Pushdown Layer attention block.
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class AttachmentHead(nn.Module):

def forward(self, x, stack_tape, next_word):
B, T, C = x.size()

q, k = self.data_to_qgk(x).split(self.embd_dim,

# (B, T (dest), hs)

next_word_q = self.q_next_word_mlp(torch.cat([q,

# (B, T (dest), hs)

next_word_k = self.k_next_word_mlp(torch.cat([q,

# (B, T (dest), T (src), hs)

k = k.unsqueeze(1).repeat(1, T, 1, 1)

# B x T (dest) x T (src) x hs
depth_embds = self.beta(stack_tape.int())

k_with_write_info = self.key_and_stack_mlp(torch.cat([k, depth_embds],
< ==1))

# first, calculate attention score between query and keys

k_with_write_info /= math.sqrt(k.size(-1))

attach_logits = (next_word_q.unsqueeze(2) @ k_with_write_info.transpose(-2,
<~ =1)).squeeze(2)

# if no reduce, then we compute score with itself

next_word_k /= math.sqrt(k.size(-1))

logits_self = (next_word_q.unsqueeze(2) @ next_word_k.unsqueeze (3)).squeeze

= (2)

# now insert logits_self into the k+1th position of attach_logits for each k
pad_tensor = torch.zeros(attach_logits.shape[0],

< device=attach_logits.device)

dim=2)

attach_logits_1 = torch.cat([attach_logits, pad_tensor],

logits = attach_logits_l.scatter(
2,
(1 + torch.arange(T))
.unsqueeze (0)
.unsqueeze (-1)
.repeat(B, 1, 1)
.to(attach_logits_1.device),
logits_self,

)

next_word], dim=-1))

next_wordl, dim=-1))

attach_logits.shape[1],

dim=-1)

# B x T x T+1. => B x T+1 x T+1 by padding the first row with zeros

logits = torch.cat(

r
torch.zeros(
logits.shape[0],
1,
logits.shapel[2],
device=logits.device,
),
logits,
1,
dim=1,

)

# set upper triangular part to -inf
logits = logits.masked_fill(self.bias[:,:T+1,
return logits[:, 1:]

(T+1]

o,

float("-inf"))

Figure 8: Python implementation of the Attachment head in Pushdown Transformers.
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