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Abstract
Human feedback is increasingly used to steer
the behaviours of Large Language Models
(LLMs). However, it is unclear how to col-
lect and incorporate feedback in a way that
is efficient, effective and unbiased, especially
for highly subjective human preferences and
values. In this paper, we survey existing ap-
proaches for learning from human feedback,
drawing on 95 papers primarily from the ACL
and arXiv repositories. First, we summarise
the past, pre-LLM trends for integrating hu-
man feedback into language models. Second,
we give an overview of present techniques and
practices, as well as the motivations for using
feedback; conceptual frameworks for defining
values and preferences; and how feedback is
collected and from whom. Finally, we encour-
age a better future of feedback learning in
LLMs by raising five unresolved conceptual
and practical challenges.

1 Introduction

Incorporating human feedback into Large Lan-
guage Models (LLMs) is a welcome development
to create models that are better aligned with hu-
man preferences or values, and exhibit traits such
as helpfulness, honesty and harmlessness (Askell
et al., 2021; Bai et al., 2022a) or safety, quality and
groundedness (Thoppilan et al., 2022). However,
learning from human feedback introduces new bi-
ases and challenges, and there are many unresolved
questions in this fast-moving field of research. It
is important to take stock of current practices, pos-
sible blindspots, and new frontiers of research, so
that tangible progress can continue to be made.
In this paper, we adopt the dual aim to both sur-
vey existing literature on human feedback learning,
then draw on the regularities, commonalities and

critiques of this survey to also provide recommen-
dations for future work. We review 95 articles
that use human feedback to steer, guide or tailor
the behaviours of language models. This includes
making models’ responses more coherent and en-
gaging (Lu et al., 2022); assisting models to infer
user intent (Ouyang et al., 2022); rejecting and re-
butting unsafe requests (Ganguli et al., 2022; Bai
et al., 2022a); or minimising the risk of halluci-
nation (Nakano et al., 2021; Glaese et al., 2022).
We source articles primarily from the ACL and
arXiv repositories, coding each according to a de-
tailed conceptual and methodological schema. Our
review makes three contributions:

• The Past: We include articles released both
before and after the advent of LLMs, which
avoids recency bias and allows us to track
developments through time.

• The Present: We summarise current practices
for incorporating human feedback learning
into LLMs, such as reinforcement learning
fine-tuning, supervised fine-tuning, and pre-
training. We also document how feedback is
collected and from whom.

• The Future: We draw on the findings of our
review to highlight five unresolved challenges
in the field; two challenges are conceptual
and three are practical. Conceptual challenges
revolve around the fundamental difficulty of
specifying a clear shared set of preferences
and values. And, even if the conceptual chal-
lenges can be resolved, practical challenges
remain for converting abstract concepts into
reliable signals to guide model behaviours.

We find that current processes of incorporating
human feedback into LLMs often rely on unsatis-
factory simplifying assumptions about the stabil-
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ity, universality and objectivity of human prefer-
ences and values. What counts as a “good”, “high-
quality”, “preferred” or “value-aligned” output is
only objective in the abstract (Kirk et al., 2023a);
so, we explicitly centre our review on subjective
human preferences and values because we believe
most text attributes retain some degree of contex-
tual subjectivity. With this in mind, we call for
more open, democratically-grounded and interdis-
ciplinary collaboration, supported by robust pro-
cesses of external scrutiny, to decide how different
voices shape current and future LLMs.

2 Methods

2.1 Selecting Articles
We use a semi-automated method, casting a wide
net of keywords to retrieve articles, then manually
assessing their relevance for our review (see Tab. 1
for keywords and Appendix A for a schema).

Initial set (S0) We retrieve articles from two cor-
pora. First, we download the ACL anthology as
a .bib file. Second, we use the arXiv API with
the computation and language subclass (cs.CL) to
find new or industry-led preprints that are not peer-
reviewed but have early impact on the field. We
match titles with ≥ 2 keywords (n = 187), and
deduplicate dual-posted articles (n = 175).1

Inclusion criteria Two authors read the abstract
and introduction of S0 articles, and included them
if all the following questions were answered ‘yes’:

1. Topic: Does the article seek alignment or
adaptation of AI systems to human preferences
and values? This criterion excludes articles
that functionally align aspects of language
models e.g., word embedding alignment or
sequence alignment.

2. Modality: Does the article discuss language
agents or language as its primary modality?
This criterion excludes any multimodal mod-
els, delegate agents or games-based RL.

3. Empirical: Does the article contain empiri-
cal analysis or artefacts (such as experiments,
datasets or models)? This criterion excludes
opinion papers, reviews or policy frameworks.

To ensure consistency, both authors coded the same
70 articles, finding 82% agreement in inclusion

1We match on title to increase relevancy and because some
ACL articles lack abstract metadata. In a sample of 100 re-
trieved articles, we determined that ≥ 2 keywords best bal-
anced relevancy with the size of the retrieved set. The cut-off
for our automated collection is 17/02/2023.

decisions. We then discussed and refined the cri-
teria before continuing. In total, 57 articles were
included from S0.

Snowballed set (S1) To address blindspots in our
keywords and corpora, we gather additional articles
referenced within S0 articles, regardless of where
they were published (n = 72), and then reapply the
inclusion criteria to ensure relevance. This results
in 38 additional articles from S1.

We further narrow our scope with two categori-
sations on the 95 articles from S0 + S1:

Dominant contribution types We categorise ar-
ticles into: (i) those that evaluate or benchmark
model’s capabilities, ethics or worldviews (n =
14); (ii) those that predict human preferences and
values from social media data using specialised
models not intended for other downstream genera-
tive or classification tasks (n = 9); and (iii) those
that train or seek to align models with a general
notion of human preferred or valued text (n = 72).
The last category is the focus of our review.2

Use of LLMs For the purposes of our review, we
define LLMs as any encoder-only, decoder-only or
encoder-decoder model that is pre-trained with self-
supervised learning over large internet corpora. As
a rule of thumb, we consider BERT (Devlin et al.,
2019) and ELMO (Peters et al., 2018) among the
first LLMs; so, any articles published before 2018
fall outside our definition. Of the 72 train articles,
we cover 22 articles published in the pre-LLM era
in our review of The Past (§3) and 50 articles using
LLMs in The Present (§4).

2.2 Coding Articles

We examine each article under two main themes.3

The Conceptual theme documents the motivations
for collecting human feedback; the definitions of
human preferences or values; whether these are
understood as universal or contextual/cultural; and
the level of interpretative freedom in applying pref-
erence or value concepts. The Methodological
theme covers sub-categories on (i) annotation or
labour force details, such as how feedback was col-
lected and from whom; and (ii) modelling details,
such as how feedback is integrated into training
and evaluation phases, and the target task. We also

2There is overlap between categories—papers that fine-
tune LLMs according to human preferences also evaluate
these trained models. See Appendix D for further detail.

3The full code book is presented in Appendix B.
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Keywords Stemmed Keywords

alignment, human, value, moral, ethic, feedback,
reinforcement, instruction, red teaming, red-teaming,
preferences, harm, honest, helpful, personalis, personaliz

align, human, value, moral, ethic, feedback, reinforc, instruct,
red team, red-team, prefer, harm, honest, helpful, personalis,
personaliz

Table 1: Keywords for retrieving articles from ACL and arXiv repositories. Highlighted keywords were not stemmed
due to irrelevant matches e.g., “value” as “valu” returns many false positives including the title word “evaluation”.

collect procedural details on academia vs industry
authorship, whether empirical artefacts (data and/or
models) are publicly available, and if (to the best of
our knowledge) the paper has been peer-reviewed.

3 The Past

In this section, we review 22 articles released be-
tween 2014-2019 that use human feedback but with
older generation model architectures. Highlighting
these works ensures that foundational research is
adequately attributed for advancements in today’s
models, and demonstrates the evolution from indi-
rect or proxied human feedback.

3.1 Conceptual Classification

None of the articles released in this period seek
alignment to human values. Instead, they generate
text according to human preferences in machine
translation (Mirkin et al., 2015; Mirkin and Meu-
nier, 2015; Lawrence et al., 2017; Nguyen et al.,
2017; Rabinovich et al., 2017; Kreutzer et al., 2018)
and dialogue (Li et al., 2016; Mo et al., 2016; Li
et al., 2017b; Wang et al., 2017; Liu et al., 2018;
Jaques et al., 2019). Preferences are defined in
both personal and universal contexts, reflecting the
persistent difficulties of separating the two. Ficler
and Goldberg (2017) focus on modulating formal-
ity depending on context, while others focus on
the personalisation of language models, such as
reflecting author personality in machine translation
(Mirkin et al., 2015; Mirkin and Meunier, 2015;
Rabinovich et al., 2017); providing financial recom-
mendations via chat bots (Den Hengst et al., 2019);
or enabling customised online shopping (Mo et al.,
2016). Most studies target human preferences as-
sumed to be commonly-held and stable, such as
word order (Futrell and Levy, 2019), sense making
(De Deyne et al., 2016; Seminck and Amsili, 2017)
and vocabulary matching (Campano et al., 2014;
Dubuisson Duplessis et al., 2017). In contrast,
Nguyen et al. (2017) and Kreutzer et al. (2017)
acknowledge the noisiness of human feedback but
attempt to extract a single, unified preference.

3.2 Methodological Classification

Most articles use pre-transformer recurrent neural
networks such as LSTMs (Hochreiter and Schmid-
huber, 1997; Vaswani et al., 2017). Few articles use
direct human feedback, mostly in information re-
trieval tasks. In two cases, humans answer a series
of yes/no questions to provide a more expressive
reward for reinforcement learning (RL) (Li et al.,
2017a; Lawrence and Riezler, 2018). Dhingra et al.
(2017) use requests for additional information to
form better queries with a binary ‘success/failure’
reward. Lawrence et al. (2017) and Lawrence and
Riezler (2018) compare forms of human feedback,
finding cardinal feedback to be more useful than
pairwise comparison.

Human feedback is an expensive and time-
consuming source of data to collect, which mo-
tivates efforts to find reliable proxies (Lawrence
et al., 2017; Nguyen et al., 2017). Implicit feed-
back methods attempt to utilise naturally-occurring
signals in human interactions, such as sentiment
(Wang et al., 2017; Jaques et al., 2019) and re-
sponse length (Campano et al., 2014). Other arti-
cles define rules on desirable dialogue properties,
such as length (Li et al., 2016), vocabulary align-
ment (Dubuisson Duplessis et al., 2017), or tone
(Ficler and Goldberg, 2017), and score the agent
for achieving them. Only Li et al. (2016) apply RL
to further train the model from the feedback.

Simulating human feedback is also a commonly-
used and cost effective approach where ‘feed-
back’ is generated by measuring similarity to
the gold standard in pre-existing, human-labelled
datasets. Parallel translation corpora are a com-
mon source of gold demonstrations, e.g., translated
TED talks (Mirkin et al., 2015; Mirkin and Meu-
nier, 2015; Nguyen et al., 2017) or European Parlia-
ment speeches (Kreutzer et al., 2017; Rabinovich
et al., 2017). User simulators typically use a ‘suc-
cess/failure’ score for RL (Mo et al., 2016; Liu
et al., 2018), while ‘gold standard’ approaches use
a more complex loss function on output similarity
(Mirkin and Meunier, 2015; Nguyen et al., 2017).

2411



4 The Present

Turning our attention to the heart of our review,
this section discusses the 50 papers that incorporate
human feedback to steer LLM behaviours.

4.1 Conceptual Classification

We first seek to understand why human feed-
back is collected. The motivations for eliciting
feedback form two groups. The first group gen-
erally seeks value alignment, i.e., some notion
of steering language models towards producing
societally-desirable text (Zhao et al., 2021; Liu
et al., 2021a). We note a variety of vague goals
such as to reduce “non-normative” (Peng et al.,
2020) or “immoral” text (Liu et al., 2023c); to
generate more “pro-social” (Liu et al., 2022) or
“legitimate” text (Bakker et al., 2022); or to en-
courage that LLM technologies have a “positive
impact on society” (Liu et al., 2023b). Specific
motivations include minimising toxic or offensive
language (Dinan et al., 2019; Xu et al., 2021a; Ju
et al., 2022; Scheurer et al., 2022; Korbak et al.,
2023); improving safety (Liu et al., 2021a; Xu et al.,
2021b; Thoppilan et al., 2022; Ganguli et al., 2022;
Jin et al., 2022); adapting to ethical or moral sce-
narios (Forbes et al., 2020; Jiang et al., 2022; Jin
et al., 2022); or achieving political ideological bal-
ance (Liu et al., 2021b). The broad definitions of
value alignment mostly assume some universality
of value dimensions.4 However, some do seek to
align LLMs to specific groups, sets of values or
according to cultural context (Solaiman and Denni-
son, 2021; Qiu et al., 2021; Bang et al., 2022).

The second group of articles is motivated by
more practical target concepts of improving model
capabilities, particularly when clear optimisation
metrics or programmatic rewards are lacking
(Ziegler et al., 2019; Wu et al., 2021; Glaese et al.,
2022; Bai et al., 2022b). Motivations often revolve
around generating high-quality or human-preferred
outputs (Gao et al., 2018; Böhm et al., 2019; Jaques
et al., 2020; Stiennon et al., 2020; Wang et al.,
2021; Scheurer et al., 2022; Nguyen et al., 2022; Xu
et al., 2022), without much discussion of why this
matters or whether humans agree amongst them-
selves what is “high-quality”. Specific target at-
tributes include minimising repetitiveness (Arora

4An example of a vague definition is that a “value-aligned
system should make decisions that align with human decisions
in similar situations and, in theory, make decisions which are
unlikely to be harmful” (Nahian et al., 2020, p. 1).

et al., 2022); increasing coherence (Lu et al., 2022),
usefulness (Liu et al., 2021a), engagingness (Gao
et al., 2020; Xu et al., 2021b; Lu et al., 2022), or
interest (Thoppilan et al., 2022); and producing
human-like conversations (Hancock et al., 2019;
Jaques et al., 2020). Some seek greater explainabil-
ity and factuality in generated text (Nakano et al.,
2021; Menick et al., 2022; Scheurer et al., 2022;
Thoppilan et al., 2022) or correctness in code (Kor-
bak et al., 2023). Preferences can also be elicited
for customisation and personalisation (Majumder
et al., 2019; Zhou et al., 2021; Deng et al., 2022).

The boundary between preference- and value-
motivated aims is not always clear-cut. Commonly-
adopted mixed motivations include helpful, hon-
est and harmless behaviours, introduced by Askell
et al. (2021) and adopted by others (Bai et al.,
2022b,a; Bakker et al., 2022; Menick et al., 2022).
Thoppilan et al. (2022) target safety, quality and
groundedness—concepts that similarly blur the
lines between practical preferences and value-laden
judgements. Even for instruction-tuning articles
motivated by inferring user intent, what Ouyang
et al. (2022) call “explicit” and “implicit” intent
is synonymous with the helpfulness versus hon-
esty/harmlessness distinction.5

4.2 Methodological Classification

We primarily discuss how feedback is collected
(§4.2.1) and integrated into LLMs (§4.2.2). We
additionally present an overview of target tasks and
evaluation methods in Appendix C.

4.2.1 Collecting Feedback
First, we address how feedback is collected. Ex-
plicit comparisons collected on model outputs are
used to reveal the preferences of human raters (Gao
et al., 2018; Ziegler et al., 2019; Askell et al., 2021;
Jaques et al., 2020; Stiennon et al., 2020; Gan-
guli et al., 2022; Glaese et al., 2022).6 More fine-
grained feedback includes binary or Likert scale
questions on text attributes (Nakano et al., 2021;

5Ouyang et al. (2022, p.2) include “explicit intentions
such as following instructions and implicit intentions such
as staying truthful, and not being biased, toxic, or otherwise
harmful.”

6Usually, ratings are collected between two outputs (Bai
et al., 2022b; Ganguli et al., 2022) but others use four (Ziegler
et al., 2019) or even up to 9 items for comparison (Ouyang
et al., 2022). A null vote is predominately not included (nei-
ther of these outputs are good) which may be a particular
problem for harm assessment (Ganguli et al., 2022)—though
some address ties in preference strength (e.g., Bai et al., 2022a;
Menick et al., 2022).
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Menick et al., 2022; Thoppilan et al., 2022); natu-
ral language comments (Ju et al., 2022; Scheurer
et al., 2022); or edits (Hancock et al., 2019; Lu
et al., 2022; Liu et al., 2023c). Ideal demonstra-
tions are used to ground norm-dependent or ethical
judgements (Forbes et al., 2020; Zhao et al., 2021;
Pyatkin et al., 2022; Jiang et al., 2022; Jin et al.,
2022), or in combination with ratings to prime
model behaviour (Nakano et al., 2021; Wu et al.,
2021; Ouyang et al., 2022; Bakker et al., 2022).
Several articles collect negative feedback via ad-
versarial examples (Dinan et al., 2019; Xu et al.,
2021a,b; Glaese et al., 2022). Xu et al. (2022) test
various feedback types including binary, free-form
conversation, and fine-grained failure modes.

Human input can be further removed from di-
rectly assessing model outputs. For example, simu-
lating feedback with an “oracle” assumed to prefer
specific text attributes measured via automated met-
rics (Wang et al., 2021; Nguyen et al., 2022; Korbak
et al., 2023) or predictions from a separate classifier
(Peng et al., 2020; Liu et al., 2021b). In Bai et al.
(2022b) human input defines the constitution but
AI feedback is used to implement it during training.
A seed of human generated examples guiding syn-
thetic data generation also applies elsewhere (Bang
et al., 2022; Castricato et al., 2022; Honovich et al.,
2022; Wang et al., 2022). Other articles adopt hu-
man labels on pre-existing datasets (Böhm et al.,
2019; Liu et al., 2021a; Arora et al., 2022; Jiang
et al., 2022), or leverage implicit feedback data
from stories (Nahian et al., 2020) and social media
such as Reddit or StackOverflow (Gao et al., 2020;
Askell et al., 2021; Bai et al., 2022a). Feedback
can also be inferred from certain language patterns
or emotive attributes in conversations with human
partners (Hancock et al., 2019; Zhou et al., 2021).

Second, we address who feedback is collected
from. Almost all articles use crowdworkers for
training and/or evaluation, recruited from a variety
of sources—including MTurk (Nahian et al., 2020;
Peng et al., 2020; Jaques et al., 2020; Liu et al.,
2021a,b; Qiu et al., 2021; Bai et al., 2022a; Gan-
guli et al., 2022; Jin et al., 2022; Xu et al., 2022;
Ju et al., 2022); Upwork (Stiennon et al., 2020;
Bai et al., 2022a; Ganguli et al., 2022); ScaleAI
(Ouyang et al., 2022; Stiennon et al., 2020; Ziegler
et al., 2019); and SurgeAI (Solaiman and Denni-
son, 2021; Nakano et al., 2021; Bai et al., 2022b).
With ‘in-the-wild’ social media data, social me-
dia users unknowingly become the ‘raters’ (Gao

et al., 2020; Askell et al., 2021; Bai et al., 2022a).
Ouyang et al. (2022) include OpenAI API users as
“demonstrators”. At least 13 articles rely on their
authors for a variety of tasks:7 writing seeds to
scale synthetic data (Honovich et al., 2022; Wang
et al., 2022); hand-crafting conditioning prompts
(Askell et al., 2021; Glaese et al., 2022); defining a
constitution (Bai et al., 2022b); specifying topics
or starter questions (Solaiman and Dennison, 2021;
Bakker et al., 2022), and ethical scenarios (Zhao
et al., 2021); conducting evaluation (Stiennon et al.,
2020; Ganguli et al., 2022; Lu et al., 2022) or gen-
erating benchmarks (Bai et al., 2022a); and com-
piling training tasks for crowdworkers (Qiu et al.,
2021; Glaese et al., 2022). Even without direct
involvement, authors can influence feedback col-
lection by writing annotator guidelines.

4.2.2 Integrating Feedback
RL with Direct Human Feedback A reward
signal can first be extracted by asking actual hu-
mans about their preferences for model outputs
then embedded into the LLM via RL fine-tuning.
The general recipe is as follows: (Step 1): Either
take an “off-the-shelf” pre-trained LLM (Lu et al.,
2022); Or adapt this model via prompt-guiding
(Askell et al., 2021; Bakker et al., 2022; Bai et al.,
2022a; Glaese et al., 2022) or supervised fine-
tuning and behavioural cloning over ideal demon-
strations (Ziegler et al., 2019; Stiennon et al., 2020;
Nakano et al., 2021; Ouyang et al., 2022; Menick
et al., 2022).8 (Step 2): Generate multiple out-
puts from this model, and employ crowdworkers
to create a comparisons dataset. (Step 3): Train
a preference reward model (PM) on this feedback
so “better” items are assigned higher score (Bai
et al., 2022a)—either a scalar reward for a given
item or an ELO score i.e., the log odds that A
≻ B (Stiennon et al., 2020; Nakano et al., 2021;
Glaese et al., 2022). The PM can be pre-trained

7In Scheurer et al. (2022), the article relies on two authors
to provide the feedback data and two other authors to do the
human evaluation experiments.

8For example, Lu et al. (2022) use a SOTA chinese chat-
bot; Nakano et al. (2021) start with GPT-3 architecture (760M,
13B, 175B); Bai et al. (2022a) use the Context-Distilled LM
(52B) from Askell et al. (2021); Glaese et al. (2022) hand-
author prompts to demonstrate ‘good’ behaviour in a Dialogue
Prompted Chincilla model (70B); Stiennon et al. (2020) start
with versions of GPT-3 (1.3B, 6.7B) fine-tuned on filtered
TL;DR Reddit dataset; Ziegler et al. (2019) use a fine-tuned
GPT-2 model; Menick et al. (2022) use supervised fine-tuning
on Gopher family models with examples rated positively by
labellers; and Ouyang et al. (2022) fine-tune GPT-3 on demon-
strations of desired behaviours.
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on naturally-occurring text and ratings e.g., from
Reddit or Stackoverflow (Askell et al., 2021; Bai
et al., 2022a). (Step 4): Fine-tune a RL policy
(another LM) that generates text autoregressively,
whilst the PM provides a reward signal. Often, the
policy is updated using the PPO algorithm (Ziegler
et al., 2019; Stiennon et al., 2020; Nakano et al.,
2021) and a KL-penalty term is applied to control
deviations from the base model (Jaques et al., 2019;
Ziegler et al., 2019; Stiennon et al., 2020; Nakano
et al., 2021; Menick et al., 2022; Ouyang et al.,
2022; Liu et al., 2023c). This pipeline can be im-
plemented in offline, online or batched settings (see
Ziegler et al., 2019). Modifications to the recipe
include using recursive subtasks (Wu et al., 2021);
applying a rule reward model in addition to the PM
to penalise undesired outputs (Glaese et al., 2022);
or using the PM to re-rank or reject sample gen-
erations from the supervised model (Askell et al.,
2021; Nakano et al., 2021; Glaese et al., 2022; Gan-
guli et al., 2022; Bai et al., 2022a; Xu et al., 2022;
Bakker et al., 2022), which can match or outper-
form optimising a model via RL (Menick et al.,
2022; Thoppilan et al., 2022).

RL with Indirect Human Feedback A reward
can be inferred without directly asking humans
about their preferences over model outputs. These
articles skip the step of training a PM from compar-
isons data, and instead infer preferences from tex-
tual attributes of outputs (Jaques et al., 2020; Zhou
et al., 2021). It varies how far removed the human
input is, for example in designing the constitution
(Bai et al., 2022a), in determining the automated
metric (Nguyen et al., 2022; Korbak et al., 2023) or
in compiling the word lists to measure political bias
(Liu et al., 2021b). Often another model is treated
as the ‘oracle’ to simulate human rewards—Gao
et al. (2018), for example, simulate preferences
on two summaries with perfect, noisy and logistic
noisy “oracles” based on ROGUE scores; Wang
et al. (2021) take the reward as human revisions
from parallel machine translation corpora; while
others deploy the rewards from a value, moral or
toxicity classifier trained on crowdworker labels to
reinforce a generator (Qiu et al., 2021; Liu et al.,
2022; Castricato et al., 2022; Pyatkin et al., 2022).

Generator and Discriminator Some use a uni-
fied generator and classifier step to steer the LLM
away from undesirable text (Arora et al., 2022), for
example using other fine-tuned LLMs to modify

the predicted probability in a base model for the
next token at decoding time (Liu et al., 2021a). A
combined model that functions as a generator and
a discriminator can be trained sequentially (Thop-
pilan et al., 2022) or jointly (Lu et al., 2022).

Preference Pre-training Korbak et al. (2023)
argue that incorporating human feedback in super-
vised or RL fine-tuning phases is suboptimal. In-
stead, they approach alignment in the pre-training
phase of GPT-2, finding that conditional training
is the most effective pre-training objective, and is
more robust than later fine-tuning an already pre-
trained model.

Preference Fine-Tuning Human feedback can
be incorporated via supervised fine-tuning (Han-
cock et al., 2019; Nahian et al., 2020; Jiang et al.,
2022). For example, Gao et al. (2020) apply
contrastive learning with a GPT-2 based dialogue
model over 133M pairs of human feedback data
with a loss designed to simultaneously maximise
the positive sample score and minimise the negative
score. Liu et al. (2023b) use “chain of hindsight”
fine-tuning to include both positive and negative
feedback. Fine-tuning data is often filtered rela-
tive to the value or preference goal (Solaiman and
Dennison, 2021; Xu et al., 2022; Bang et al., 2022).
Peng et al. (2020) instead train a reward model
(normative text classifier) but this reward is applied
to the loss and backpropagated during fine-tuning.

Prompting Prompting is a simple way to align
LLMs with specified human preferences and values.
Jin et al. (2022) cast moral situations as multi-step
prompts to elicit chain of thought reasoning in In-
structGPT, while Zhao et al. (2021) use zero- and
few-shot prompts for responsive questioning on
unethical behaviours. Askell et al. (2021) show
that using a long prompt (4,600 words) from ideal
author-written conversations is an effective alter-
native to fine-tuning in data-constrained scenarios.
They also use context distillation by training a new
LLM to replicate the behaviour of another LLM
that is using a specific prompt.

5 Challenges and Recommendations for
the Future

Drawing on our analysis of the reviewed papers, we
identify five key challenges for future researchers.
These challenges are divided into conceptual and
practical issues. The conceptual challenges (C1-
C3) revolve around the difficulty of specifying a
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clear set (or sets) of preferences and values. Even
assuming the resolution of the conceptual chal-
lenges, practical challenges remain in converting
conceptual ideals into empirical signals, which in
turn steer language model behaviours.

(C1) Preferences and values are not universal
‘Aligning’ a language model requires a set of de-
sired preferences or values to align with; but spec-
ifying such a set is an unresolved problem. One
popular approach is to specify a minimal set of
ostensibly unobjectionable and widely-shared val-
ues, such as helpfulness, honesty and harmless-
ness (Bai et al., 2022a,b; Thoppilan et al., 2022).
However, these values are only unobjectionable be-
cause they are abstract and not precisely defined
(Kirk et al., 2023a). These terms can be considered
what Levi-Strauss and Laclau call ‘empty signi-
fiers’ (Lévi-Strauss, 1987; Laclau, 2005); terms
that are viewed positively but are inscribed with
different meanings by different people. For exam-
ple, when Bai et al. (2022a) design a constitution to
produce outputs as “ethical and harmless as possi-
ble”, this can have varying interpretations based on
an individual’s own ethical frameworks and socio-
cultural background. Establishing priorities over
sets of preferences or values to embed in LLMs,
and ensuring consistent interpretation of conceptual
meaning across people, is a persistent challenge
which cannot alone be resolved via purely techni-
cal solutions. One possible approach is to draw on
legal theory, and values protected in human rights
law (Solaiman and Dennison, 2021). Translating
abstract shared values into decisions is a core func-
tion of legal systems and legal theory offers a long
history of scholarship which combines the philo-
sophical and practical. One approach along these
lines was proposed by Kirk et al. (2023b) which
applies a principle of subsidiarity to govern the per-
sonalisation of generative AI systems for different
use cases. We also advocate for anchoring closely
to existing legal systems as a matter of democratic
principle: it is dangerous for moral and value judge-
ments with broad societal impacts to be made by
small independent groups.

(C2) Preferences and values are inconsistently
defined Although the terminology of ‘prefer-
ences’ and ‘values’ implies some difference be-
tween the two, the conceptual basis and norma-
tive implications of this distinction is often unclear.
Colloquially, values are understood to be stronger

than preferences, and potentially carry greater nor-
mative weight as guiding principles or life goals
(Fischer, 2017). As such, users may have greater
concerns about an LLM misaligned with their val-
ues than with their preferences; So, it is important
to be clear about which is being discussed. Within
the broad terms, there are many meanings: ‘pref-
erences’ have been defined as ‘instrumental util-
ity’ (Dubuisson Duplessis et al., 2017; Gao et al.,
2018; Nguyen et al., 2022), ‘stylistic taste’ (Mirkin
and Meunier, 2015; Seminck and Amsili, 2017;
Jaques et al., 2020), and ‘behavioural principles’
(Bai et al., 2022b; Castricato et al., 2022). ‘Val-
ues’ definitions are based on ‘instrumental and in-
trinsic value’ (Askell et al., 2021), ‘acceptable so-
cial behaviours’ (Forbes et al., 2020; Bang et al.,
2022), or ‘making decisions which are unlikely to
be harmful’ (Nahian et al., 2020). The differences
between individual (subjective) and global (objec-
tive) preferences is often blurred—for example,
which properties of a “better” summary are univer-
sal, and which depend on subjective appreciation,
like writing style and tone. Clearer definitions of
preferences and values in the context of alignment
would serve to motivate and clarify what we are
aligning LLMs to.

(C3) Human feedback is inherently incomplete
Alignment via human feedback ultimately relies on
LLMs being capable of successfully generalising
from few examples to new cases and domains. This
is because the space of possible behaviours over
which to collect feedback is prohibitively large and
is not fully known. An open question is the extent
to which models generalise from partial human
feedback, especially when presented with data that
is completely out-of-domain for their training or at
the margins of its distribution. For instance, if an
LLM is trained with examples of safe responses to
user prompts which deny the Holocaust, it may gen-
eralise to different expressions of the same canoni-
cal request. However, it will not necessarily learn
how to handle denials that the earth is round and
denials of vaccine efficacy, or have domain exper-
tise for other harmful requests, such as users who
ask how to make a bomb or bio-weapon. Human
values are considered to be fairly stable guiding
principles that manifest similarly across situations
for a given individual (Fischer, 2017) but the same
generalisation cannot be guaranteed of LLMs.

Several related epistemological issues arise from
technical details of the methods being used. Rein-
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forcement learning introduces a path-dependence
problem, where the particular order in which feed-
back is given may change the quality of the final
results. As a result, it is difficult to know whether a
local optimum is reached which is notably worse
than the global optimum. With any form of learning
from feedback, language models may also overfit
or appear to be aligned externally, but have per-
sistent internal misalignment which manifests sub-
tly in cases more distant from the training data
(Perez et al., 2022). These challenges become yet
more convoluted when dealing with more complex
tasks—an issue that Bowman et al. (2022) examine
in their discussion of scalable oversight.

(C4) Operationalising a “good” output is
difficult Even if a shared set of values could be
agreed upon, converting these thick normative con-
cepts into signals that models can use, such as by
collecting annotator ratings, is hard. Complex goal
operationalisation is itself a motivator for collect-
ing feedback—when humans may not be able to
articulate their preferences or write ideal demon-
strations but can rate outputs, a kind of “I know it
when I see it” logic. However, training with human
feedback involves moving values and preferences
from the abstract to particular survey or rating in-
struments, reinforcing differences in interpretation.
To reduce disagreements, some authors write very
prescriptive and/or comprehensive guidelines for
the task in order to “make comparisons as unam-
biguous as possible” (Nakano et al., 2021, p.18).
Several papers still find low inter-annotator agree-
ment with such prescriptive approaches (Stiennon
et al., 2020; Glaese et al., 2022; Bai et al., 2022a;
Ouyang et al., 2022). In other cases, annotators
are explicitly allowed to use their own subjective
assessment, to “interpret these concepts as they see
fit” (Bai et al., 2022a, p.4), but then agreement
between annotators is no longer ensured. When
multiple text attributes affect annotators’ prefer-
ences, it is hard to pin down what we are actually
measuring. For example, Stiennon et al. (2020) and
Wu et al. (2021) condition their evaluation question
as “how good is this summary, given that it is X
words long?”. Hypothetically, if “good” is subjec-
tive then the question should be “how good is this
summary for individual Y?”. Some guidelines do
ask annotators to role-play or put themselves in the
shoes of others, for example to infer the intent of a
prompt (Ouyang et al., 2022) or question (Nakano
et al., 2021), but this may introduce further prob-

lems, especially for value-laden judgements where
the rater may have a biased interpretation of how
to apply another person’s values (Qiu et al., 2021).

To aid transparent communication, it should be
clearly documented whether researchers aspire to
follow the prescriptive or subjective paradigm of
data annotation, rather than leaving it unspecified
(Röttger et al., 2022; Kirk et al., 2023a). Increased
interdisciplinary communication with practitioners
in other fields would impart wisdom on measuring
the perspectives and behaviours of human subjects.
For example, Human-Computer Interaction litera-
ture shows how interfaces and incentives can be op-
timally designed to avoid participant response bias
(Deng and Poole, 2010; Dell et al., 2012; Hsieh and
Kocielnik, 2016); Experimental psychology and be-
havioural economics research show how the presen-
tation of scales and order effects influence ratings
(Friedman et al., 1994; Maeda, 2015; Westland,
2022) and that human preferences are unstable, in-
transitive and vulnerable to experimental artefacts
(Tversky, 1969; Lacy, 2001; Chiesa and Hobbs,
2008; Lee et al., 2009; Chuang and Schechter,
2015). Researchers should consider techniques to
model the noise and distribution of human feedback
(Ju et al., 2022) or establish post-hoc consensus
(Bakker et al., 2022), rather than ignoring disagree-
ment by aggregating responses. However, there are
trade-offs: the specific nuances and minutiae cap-
tured in fine-grained feedback might heighten bi-
ases and reduce generalisability when drawn from
unrepresentative samples—which we now discuss.

(C5) Crowdworkers and social media users are
neither representative nor sufficient A degree
of subjectivity persists even with prescriptive guide-
lines and well-designed experimental instruments;
So, outcomes critically depend on who is inter-
preting value or preference-based concepts. In
the majority of articles, fewer than 100 humans
are employed to guide or evaluate language model
behaviours (Jaques et al., 2020; Stiennon et al.,
2020; Nakano et al., 2021; Menick et al., 2022;
Bai et al., 2022a; Ouyang et al., 2022; Jin et al.,
2022; Pyatkin et al., 2022), which is concerning
for ethically or morally ambiguous scenarios. It
is striking that so few voices have so much power
in shaping LLM behaviours—in Bai et al. (2022a)
just 20 humans contributed 80% of the feedback
data, and in Nakano et al. (2021) the top 5 hu-
mans contributed 50%. Workforces employed
for evaluation are similarly small, with some em-
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ploying <25 workers (Scheurer et al., 2022; Cas-
tricato et al., 2022; Gao et al., 2018; Liu et al.,
2023b). Overwhelmingly, these humans are US-
based, English-speaking crowdworkers with Mas-
ter’s degrees and between the ages of 25-34. This
results in a non-democratic and non-diverse feed-
back process, termed “the tyranny of crowdworker”
by Kirk et al. (2023b), which has been shown to
introduce political and religious biases in model
behaviours (Perez et al., 2022). The limitations of
relying on the subjective interpretations of a small
and non-representative work force are exacerbated
by inadequate documentation. Only nine out of
50 papers provided solid documentation, such as
demographic breakdowns (Stiennon et al., 2020;
Thoppilan et al., 2022; Bai et al., 2022a; Ganguli
et al., 2022; Glaese et al., 2022; Jin et al., 2022; Liu
et al., 2022; Ouyang et al., 2022; Liu et al., 2023c).
Others provide high-level details of the rater pool
such as number of workers, hiring platform, or ag-
gregate demographics. The majority of articles do
not document their workforce, nor discuss sample
biases or annotator artefacts.

When soliciting human feedback, attempts
should be made to diversify who is given a voice,
such as by applying democratic or jury-based prin-
ciples in how these voices are weighted (Gordon
et al., 2022) and by employing bottom-up partici-
patory approaches (Martin Jr. et al., 2020; Birhane
et al., 2022; Zytko et al., 2022; Derczynski et al.,
2023); Or to seek top-down sampling that better
represents the population being studied (Bakker
et al., 2022). Mirroring the move in other areas of
NLP to document and explore annotator disagree-
ment (Aroyo and Welty, 2015; Geva et al., 2019;
Nie et al., 2020; Prabhakaran et al., 2021; Davani
et al., 2022), each item of feedback should be asso-
ciated with a pseudo-anonymised annotator ID. So
far as privacy allows, documentation of annotator
background should be provided in a data statement
(Bender and Friedman, 2018).

6 Conclusion

This review provided an overview of incorporating
human feedback into LLMs, with a focus on subjec-
tive preferences and values that lack ‘ground truth
alignment’. We have witnessed two notable shifts
in the field from past to present—first, a move away
from specialist systems towards general purpose
language agents capable of handling many NLP
subtasks via instruction or open-ended dialogue;

second, more use of direct human feedback which
surpasses the limitations of user simulations or au-
tomated metrics.

While the shift to incorporate human voices di-
rectly into LLM development is welcome, it in-
troduces new challenges that require careful nav-
igation. Some challenges are more tractable than
others—for example, practitioners will always have
to deal with the complexities and intricacies of
unstable and idiosyncratic preferences across end
users of their model, but can take practical steps to
better approximate this distribution by diversifying
the recruitment of feedback providers.

External scrutiny is crucial to ensure the in-
tegrity and reliability of research efforts. Our re-
view shows that many influential papers lack open
and externally-validated peer review, especially
those published by big industry labs like Google
DeepMind, Anthropic, Google, and OpenAI. Fur-
thermore, the majority of reviewed papers do not
release model artefacts, or only do so behind a
paywalled API. To foster progress, we advocate
for a greater degree of open, interdisciplinary and
democratically-grounded discussion on how hu-
mans can meaningfully shape future LLM be-
haviours in a way which is well-bounded, oper-
ationalisable, and equitable.

7 Limitations

We discuss limitations associated with our review:

Applying topic exclusion We exclude articles on
the basis of being unrelated to the topic of value
or preference alignment, but found it consistently
difficult to draw a clear distinction between arti-
cles in and out of scope. For validation purposes,
we had both reviewers read a portion of the arti-
cles, and found the cases of disagreement help-
ful to highlight this challenge. One such example
was with two articles using similar methods to ap-
proach translation which we initially classified dif-
ferently, Kreutzer et al. (2017) and Lawrence et al.
(2017). The papers primarily treat translation as
an objective task focused on BLEU scores, which
would make them out of scope. However, trans-
lation inherently involves stylistic and subjective
judgements, and the methods developed seek to
replicate these judgements from the training data,
blurring the distinction. Honesty is another target
concept with these issues—whether in-text claims
are referenced is fairly black and white, but whether
an end user ascribes more trust to the system be-
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cause of these references is subject to idiosyncratic
epistemology. We use this case to highlight the
weaknesses of creating a dichotomy between sub-
jective and objective preferences in practice.

Related NLP subfields A related issue is where
to draw the line for what is and is not in scope.
Some narrowing was needed to make the review
focused, feasible and instrumentally useful to fu-
ture practitioners. However, technically fairness
and bias are values of intrinsic utility—hence their
inclusion in many AI principles around the world
(Jobin et al., 2019). That said, there exists a very
wide and distinct literature on fairness and bias
in LLMs that would be too expansive for this re-
view (see, e.g., Chang et al., 2019; Lucy and Bam-
man, 2021; Abid et al., 2021; Nadeem et al., 2021;
Kirk et al., 2021; Smith et al., 2022). Similarly,
there are sub-literatures on other aspects of LLM
behaviours—such as toxicity (Gehman et al., 2020;
Welbl et al., 2021), truthfulness (Lin et al., 2022)
or hallucination (Ji et al., 2022). We explicitly fo-
cus on papers that target some notion of human
preferences and values in their motivations, but the
challenges raised from our review can be applied to
other fields which similarly suffer from subjectiv-
ity in interpretative scope—e.g., carefully deciding
who the human labellers are and what guidelines
govern their interpretation of concepts.

Blindspots in reviewed articles Blindspots
come from a number of sources. First, keyword and
corpora blindspots: We ground our initial review
on articles from arXiv and ACL using a set of de-
fined keywords. We attempt to mitigate blindspots
by snowballing related and relevant articles out-
side our initial collection; however, it is almost
certain that we have missed some papers in the
field as a whole. Second, language blindspots: Our
review only contains articles written in English,
limited by the expertise of authors who acted as
the coders. This bias however reflects the domi-
nance of English in academic publishing in general,
but English language proficiency may gatekeep the
concepts and voices already contributing to LLM
development. Third, community blindspots: we
only look at academic papers—but issues surround-
ing large language model behaviours or alignment
have become a hot topic of conversation on blogs
and social media forums. We inherently exclude
such discussions from these other stakeholder com-
munities. Fourth, modality blindspots: there is a

rich history of using RL to align models in other
modalities, such as delegate agents acting in toy or
game worlds (see, e.g., Christiano et al., 2017). We
do not cover the insights from these related litera-
tures. Finally, temporal blindspots: research into
LLMs is a fast-paced field—in one week, there can
be as many as 500 articles posted on the cs.CL sub-
class of arXiv. Inevitably, other influential articles
have been released after the review was completed
and more were released during its peer review pe-
riod. A good example of this is Rafailov et al.
(2023) who introduce Direct Preference Optimisa-
tion, a technique that could substantially change
how people approach feedback learning in the fu-
ture. Other relevant papers that appeared after the
cut-off for this review include Dong et al. (2023);
Hosking et al. (2023); Liu et al. (2023d,a); Song
et al. (2023); Yuan et al. (2023); Wu et al. (2023);
Zhou et al. (2023). With the field’s rapid develop-
ments, any review paper runs the risk of lagging
behind the latest research. However, given the sub-
stantial number of articles that we did review, we
expect many of the general findings and highlighted
challenges to apply in upcoming future work.

External scrutiny of reviewed articles We con-
sciously made the decision to include articles which
have not yet been peer reviewed to stay ahead of
the curve with early-released pre-prints and also to
track industry contributions (which are often not ex-
ternally peer reviewed). In the 22 papers appearing
the The Past section, 18 were peer reviewed. Of the
50 papers appearing in The Present section, only 21
were clearly peer-reviewed. It is a contentious is-
sue that many influential papers lack standard prac-
tices of external scrutiny and rigorous academic
backstops, though often industry-authored papers
do undergo a process of internal review before a
preprint is released.
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A Flowchart of Articles for Scoping the
Review

In Fig. 1, we schematically summarise the process
of selecting articles for our review.

B Code Book

We present the full code book used for each article
in Tab. 3. These questions were inputted into an
online form then coded by two authors of the paper,
with frequent check-ins to ensure similarity of in-
terpretation on how the form should be used. The
first theme (conceptual) makes up our conceptual
comments in the main paper, while the laboural
and technical themes make up our methodological
comments in the main paper.

C Additional Information on Reviewed
Articles

C.1 Target Tasks

In Tab. 2, we summarise the core target tasks ap-
proached by each article. Reflecting the recent
movement away from specialist NLP systems to-
wards general purpose language agents, the major-
ity of articles work with generalised models that
can handle many other NLP subtasks via instruc-
tion or dialogue.

C.2 Evaluating Models

Even articles employing indirect or simulated hu-
man feedback usually conduct a human evalua-
tion stage (Peng et al., 2020; Liu et al., 2021b,
2022). Differently-trained models are often com-
pared via ELO scores or win rates (Ziegler et al.,
2019; Nakano et al., 2021; Bai et al., 2022b,a;
Scheurer et al., 2022; Bakker et al., 2022; Glaese
et al., 2022; Ouyang et al., 2022). Most evalua-
tions include fine-grained questions about model
outputs, including quality or usefulness (Wu et al.,
2021; Nakano et al., 2021; Liu et al., 2022; Bakker
et al., 2022); political bias (Liu et al., 2021b); co-
herence (Wu et al., 2021; Nakano et al., 2021; Liu
et al., 2022; Bakker et al., 2022); safety or harm-
lessness (Xu et al., 2021a; Lu et al., 2022; Gan-
guli et al., 2022; Thoppilan et al., 2022); informa-
tiveness, correctness or trustworthiness (Wu et al.,
2021; Nakano et al., 2021; Lu et al., 2022); cre-
ativity (Honovich et al., 2022); and alignment with
a human value or trait (Solaiman and Dennison,
2021; Liu et al., 2022; Castricato et al., 2022; Liu
et al., 2023b).

Others use automated metrics to quantitatively
compare models and outputs, with Böhm et al.
(2019) and Stiennon et al. (2020) performing a
comparison of how such automated metrics cor-
relate with human preferences. Metrics include
ROGUE (Böhm et al., 2019; Ziegler et al., 2019;
Stiennon et al., 2020; Liu et al., 2022; Nguyen et al.,
2022; Wang et al., 2022; Wu et al., 2021; Liu et al.,
2023c), summary length (Stiennon et al., 2020),
perplexity (Liu et al., 2021b, 2022, 2023c) or Sacre-
BLEU (Wang et al., 2021). Sometimes separate
discriminative classifier are deployed to measure
textual attributes (Thoppilan et al., 2022), such as
toxicity measured via Perspective API scores (So-
laiman and Dennison, 2021; Arora et al., 2022).
Scheurer et al. (2022) score how close feedback
and refinements are in the embedding space be-
cause they find written feedback often describes an
“ideal” output. Any prediction tasks – e.g., whether
an ethical judgement is fair or unfair (Jiang et al.,
2022), a situation is normative or non-normative
(Nahian et al., 2020; Forbes et al., 2020), a norm
exception is permissible or not permissible (Jin
et al., 2022) or an utterance is value aligned or
misaligned (Qiu et al., 2021) – use F1-score or
accuracy as evaluation metrics.

Metrics or human evaluations that measure how
aligned a resultant model is with human prefer-
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Task References

Text generation
(Peng et al., 2020; Liu et al., 2021b; Solaiman and Dennison, 2021; Arora et al., 2022; Liu
et al., 2022; Korbak et al., 2023), including story generation (Castricato et al., 2022) and
code generation (Korbak et al., 2023)

Instruction following (Honovich et al., 2022; Ouyang et al., 2022; Wang et al., 2022)

Open-ended dialogue

(Hancock et al., 2019; Gao et al., 2020; Jaques et al., 2020; Askell et al., 2021; Qiu et al.,
2021; Thoppilan et al., 2022; Bai et al., 2022b,a; Ganguli et al., 2022; Lu et al., 2022;
Xu et al., 2022; Liu et al., 2023b), including information-seeking dialogue (Glaese et al.,
2022)

Open-book generative QA (Zhao et al., 2021; Deng et al., 2022; Nakano et al., 2021; Menick et al., 2022)

Summarization
(Gao et al., 2018; Böhm et al., 2019; Ziegler et al., 2019; Stiennon et al., 2020; Scheurer
et al., 2022; Nguyen et al., 2022; Liu et al., 2023b), including long-form book summarisa-
tion (Wu et al., 2021) and opinion consensus summarisation (Bakker et al., 2022)

Toxic language (Dinan et al., 2019; Peng et al., 2020; Liu et al., 2021a; Scheurer et al., 2022; Ju et al.,
2022; Bang et al., 2022; Liu et al., 2022)

Moral & normative judgements (Forbes et al., 2020; Nahian et al., 2020; Jiang et al., 2022; Liu et al., 2022; Jin et al., 2022;
Pyatkin et al., 2022; Liu et al., 2023c)

Others
Sentiment and style transfer (Ziegler et al., 2019; Peng et al., 2020; Liu et al., 2021a);
recipe generation (Majumder et al., 2019); predicting intent of emails (Zhou et al., 2021);
machine translation (Wang et al., 2021)

Table 2: Articles categorised by target task.

ences or values can be contrasted with general in-
vestigations of model capabilities to estimate the
so-called “alignment tax” (Liu et al., 2022). For
instance, Korbak et al. (2023) rely on two met-
rics: (i) misalignment score, calculated using the
same automated reward functions as training (tox-
icity score, number of PII instances per character,
number of PEP errors per character), and (ii) ca-
pability score, calculated as the KL divergence of
output distribution from a highly capable model
(GPT-3). Some articles assess the drop in other
performance measures on NLP benchmark tasks
measuring truthfulness, toxicity or bias (Bai et al.,
2022a; Ouyang et al., 2022).

D Articles with Other Contribution Types

In the main paper, we discuss papers that seek to
embed, train or align LLMs with human prefer-
ences and values. Here, we give a brief overview
of the other categories of papers which are excluded
from the main review.

Predict These articles include detecting moral
content from tweets (Hoover et al., 2020; Asprino
et al., 2022) or adapting to moral shifts (Huang
et al., 2022); predicting values and ethics from so-
cial media content (Maheshwari et al., 2017) or mu-
sic preferences (Preniqi et al., 2022); linking event

or entity extraction with moral values in knowledge
bases (Lin et al., 2017; Li et al., 2019); and iden-
tifying human values in arguments (Kiesel et al.,
2022).

Evaluate These articles include those that bench-
mark judgements in moral or ethical situations
(Tay et al., 2020; Hendrycks et al., 2020; Lourie
et al., 2021; Ziems et al., 2022; Mirzakhmedova
et al., 2023); assess social biases or social reason-
ing (Sap et al., 2019, 2020); evaluate performance
on personality-aware dialogue (Zhang et al., 2018)
or empathetic dialogue (Rashkin et al., 2019); and
detect non-human identity in conversations (Gros
et al., 2021). Others directly evaluate the values or
traits of existing models (Schramowski et al., 2019;
Jentzsch et al., 2019; Perez et al., 2022).
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Figure 1: Flowchart of the selection process for articles in our review. We first match on the keywords defined in
Tab. 1, keeping only articles with >1 matches in the title. We then de-duplicate articles posted on both arXiv and
ACL. This initial set is called S0. We apply the inclusion criteria listed in §2.1, and also add any possibly relevant
references to the snowballed set (S1) regardless of publishing venue. We also apply the inclusion criteria to S1.
Finally, we make two additional categorisations — the dominant contribution type of the article (predict, evaluate or
train) and whether it uses LLMs.
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METADATA
relevance Whether to include or exclude article from set single choice: [exclude, include]
exclusion criteria Reason for excluding the article single choice: [topic, modality, empirical, other]
exclusion detail Additional text summary of exclusion criteria

reasoning
free-text

snowball keys The bib keys of additional references free-text
contribution type Dominant contribution type of article single choice: [evaluate, predict, train, other]
contribution de-
tail

How are the main contributions of the article
described?

free-text

about LLMs Whether the article uses LLMs single choice: [yes, no]
short summary 1-3 sentence summary of the article free-text

CONCEPTUAL THEME
terminology Is feedback discussed using the terms ‘prefer-

ences’ or ‘values’?
single choice: [ preferences, values, mix, other]

motivation What is the motivation for feedback learning? free-text
target concepts Which human values or preferences are priori-

tised or included?
free-text

concept defs How are human values or preferences defined? free-text
theories What theories (if any) are used to define prefer-

ences/values?
free-text

concept scope Are concepts defined as universal or cultur-
ally/contextually understood?

free-text

interpretation
freedom

What level of freedom are humans given in
interpreting the in-scope target concepts, e.g.,
“helpfulness”?

single choice: [prescriptive paradigm, subjec-
tive paradigm, unclear]

LABOURAL THEME
feedback genera-
tion

How is feedback data collected? multi choice: [human-generated explicit,
human-generated implicit, model-generated,
combined, other]

feedback types What forms of feedback are collected? At what
stage, and if for training or for evaluation?

free-text

labour documen-
tation

Is the labour force documented? single choice: [yes, no, nan]

labour details What level of documentation or what details are
documented?

free-text

labour force Which human group(s) generate the feedback? multi choice: [crowdworkers, in-house team
authors, unknown]

labour force detail What further detail is provided on who gener-
ates feedback?

free-text

labour force size How many humans are involved in feedback
collection for training and/or evaluation?

free-text

TECHNICAL THEME
data size What is the size of the feedback dataset for

training and for evaluation?
free-text

intervention stage When and how is feedback integrated into the
model?

multi choice: [pre-training, fine-tuning, prompt-
ing, other]

metrics What metrics and which evaluation datasets are
used?

free-text

model approach Summarise the modelling methodology free-text
PROCEDURAL THEME

authorship Authorship composition of the article single choice: [academia, industry, mixed]
data availability Whether the data artifacts are publicly available single choice: [yes, no, unclear]
model availability Whether the model artifacts are publicly avail-

able
single choice: [yes, no, unclear]

peer review Whether the article is peer-reviewed single choice: [yes, no, unclear]

Table 3: Code book used for each article included in the review. We show the field name, the prompt or
instruction for the coder and the type of response variable (including options if it is a single or multiple choice
question). Frequent communication between two coders was established to ensure the fields were being applied
consistently.
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