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Abstract

Distributed representations of words encode
lexical semantic information, but what type of
information is encoded and how? Focusing on
the skip-gram with negative-sampling method,
we found that the squared norm of static word
embedding encodes the information gain con-
veyed by the word; the information gain is de-
fined by the Kullback-Leibler divergence of
the co-occurrence distribution of the word to
the unigram distribution. Our findings are ex-
plained by the theoretical framework of the
exponential family of probability distributions
and confirmed through precise experiments that
remove spurious correlations arising from word
frequency. This theory also extends to contex-
tualized word embeddings in language models
or any neural networks with the softmax output
layer. We also demonstrate that both the KL
divergence and the squared norm of embedding
provide a useful metric of the informativeness
of a word in tasks such as keyword extraction,
proper-noun discrimination, and hypernym dis-
crimination.

1 Introduction

The strong connection between natural language
processing and deep learning began with word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017; Schnabel et al.,
2015). Even in today’s complex models, each
word is initially converted into a vector in the first
layer. One of the particularly interesting empir-
ical findings about word embeddings is that the
norm represents the relative importance of the word
while the direction represents the meaning of the
word (Schakel and Wilson, 2015; Khodak et al.,
2018; Arefyev et al., 2018; Pagliardini et al., 2018;
Yokoi et al., 2020).

This study focuses on the word embeddings ob-
tained by the skip-gram with negative sampling
(SGNS) model (Mikolov et al., 2013). We show
theoretically and experimentally that the Euclidean

Top 10 Bottom 10
word KL(w) word KL(w)

rajonas 11.31 the 0.04
rajons 10.82 in 0.04

dicrostonyx 10.31 and 0.04
dasyprocta 10.27 of 0.05

stenella 10.24 a 0.07
pesce 10.22 to 0.09
audita 10.09 by 0.09

landesverband 10.05 with 0.10
auditum 9.96 for 0.10
factum 9.84 s 0.10

Table 1: Top 10 words and bottom 10 words sorted
by the value of KL(w) in the text8 corpus with word
frequency nw ≥ 10.

norm of embedding for word w, denoted as ∥uw∥,
is closely related to the Kullback-Leibler (KL) di-
vergence of the co-occurrence distribution p(·|w)
of a word w for a fixed-width window to the uni-
gram distribution p(·) of the corpus, denoted as

KL(w) := KL(p(·|w) ∥ p(·)).

In Bayesian inference, the expected KL divergence
is called information gain. In this context, the prior
distribution is p(·), and the posterior distribution is
p(·|w). The information gain represents how much
information we obtain about the context word dis-
tribution when observing w. Table 1 shows that the
10 highest values of KL(w) are given by context-
specific informative words, while the 10 lowest
values are given by context-independent words.

Fig. 1 shows that ∥uw∥2 is almost linearly re-
lated to KL(w); this relationship holds also for
a larger corpus of Wikipedia dump as shown
in Appendix G. We prove in Section 4 that the
square of the norm of the word embedding with
a whitening-like transformation approximates the
KL divergence1. The main results are explained

1Readers who are interested in information-theoretic mea-
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Figure 1: Linear relationship between the KL diver-
gence and the squared norm of word embedding for the
text8 corpus computed with 100 epochs. The color rep-
resents word frequency nw. Plotted for all vocabulary
words, but those with nw < 10 were discarded. A re-
gression line was fitted to words with nw > 103. Other
settings are explained in Section 4.2 and Appendix A.

by the theory of the exponential family of distribu-
tions (Barndorff-Nielsen, 2014; Efron, 1978, 2022;
Amari, 1982).

Empirically, the KL divergence, and thus the
norm of word embedding, are helpful for some
NLP tasks. In other words, the notion of informa-
tion gain, which is defined in terms of statistics
and information theory, can be used directly as a
metric of informativeness in language. We show
this through experiments on the tasks of keyword
extraction, proper-noun discrimination, and hyper-
nym discrimination in Section 7.

In addition, we perform controlled experiments
that correct for word frequency bias to strengthen
the claim. The KL divergence is heavily influenced
by the word frequency nw, the number of times
that word w appears in the corpus. Since the cor-
pus size is finite, although often very large, the
KL divergence calculated from the co-occurrence
matrix of the corpus is influenced by the quanti-
zation error and the sampling error, especially for
low-frequency words. The same is also true for the
norm of word embedding. This results in bias due
to word frequency, and a spurious relationship is
observed between word frequency and other quan-
tities. Therefore, in the experiments, we correct the
word frequency bias of the KL divergence and the
norm of word embedding.

The contributions of this paper are as follows:

sures other than KL divergence are referred to Appendix B.
The KL divergence is more strongly related to the norm
of word embedding than the Shannon entropy of the co-
occurrence distribution (Fig. 7) and the self-information
− log p(w) (Fig. 8).

• We showed theoretically and empirically that
the squared norm of word embedding obtained
by the SGNS model approximates the infor-
mation gain of a word defined by the KL di-
vergence. Furthermore, we have extended this
theory to encompass contextualized embed-
dings in language models.

• We empirically showed that the bias-corrected
KL divergence and the norm of word embed-
ding are similarly good as a metric of word
informativeness.

After providing related work (Section 2) and the-
oretical background (Section 3), we prove the the-
oretical main results in Section 4. In Section 5,
we extend this theory to contextualized embed-
dings. We then explain the word frequency bias
(Section 6) and evaluate KL(w) and ∥uw∥2 as a
metric of word informativeness in the experiments
of Section 7.

2 Related work

2.1 Norm of word embedding
Several studies empirically suggest that the norm of
word embedding encodes the word informativeness.
According to the additive compositionality of word
vectors (Mitchell and Lapata, 2010), the norm of
word embedding is considered to represent the im-
portance of the word in a sentence because longer
vectors have a larger influence on the vector sum.
Moreover, it has been shown in Yokoi et al. (2020)
that good performance of word mover’s distance
is achieved in semantic textual similarity (STS)
task when the word weights are set to the norm of
word embedding, while the transport costs are set
to the cosine similarity. Schakel and Wilson (2015)
claimed that the norm of word embedding and the
word frequency represent word significance and
showed experimentally that proper nouns have em-
beddings with larger norms than function words.
Also, it has been experimentally shown that the
norm of word embedding is smaller for less in-
formative tokens (Arefyev et al., 2018; Kobayashi
et al., 2020).

2.2 Metrics of word informativeness
Keyword extraction. Keywords are expected to
have relatively large amounts of information. Key-
word extraction algorithms often use a metric of
the “importance of words in a document” calcu-
lated by some methods, such as TF-IDF or word
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co-occurrence (Wartena et al., 2010). Matsuo and
Ishizuka (2004) showed that the χ2 statistics com-
puted from the word co-occurrence are useful for
keyword extraction. The χ2 statistic is closely re-
lated to the KL divergence (Agresti, 2013) since
χ2 statistic approximates the likelihood-ratio chi-
squared statistic G2 = 2nwKL(w) when each doc-
ument is treated as a corpus.

Hypernym discrimination. The identification of
hypernyms (superordinate words) and hyponyms
(subordinate words) in word pairs, e.g., cat and
munchkin, has been actively studied. Recent un-
supervised hypernym discrimination methods are
based on the idea that hyponyms are more informa-
tive than hypernyms and make discriminations by
comparing a metric of the informativeness of words.
Several metrics have been proposed, including the
KL divergence of the co-occurrence distribution
to the unigram distribution (Herbelot and Gane-
salingam, 2013), the Shannon entropy (Shwartz
et al., 2017), and the median entropy of context
words (Santus et al., 2014).

Word frequency bias. Word frequency is a
strong baseline metric for unsupervised hypernym
discrimination. Discriminations based on several
unsupervised methods with good task performance
are highly correlated with those based simply on
word frequency (Bott et al., 2021). KL diver-
gence achieved 80% precision but did not out-
perform the word frequency (Herbelot and Gane-
salingam, 2013). WeedsPrec (Weeds et al., 2004)
and SLQS Row (Shwartz et al., 2017) correlate
strongly with frequency-based predictions, calling
for the need to examine the frequency bias in these
methods.

3 Theoretical background

In this section, we describe the KL divergence (Sec-
tion 3.2), the probability model of SGNS (Sec-
tion 3.3), and the exponential family of distribu-
tions (Section 3.4) that are the background of our
theoretical argument in the next section.

3.1 Preliminary

Probability distributions. We denote the prob-
ability of a word w in the corpus as p(w) and the
unigram distribution of the corpus as p(·). Also,
we denote the conditional probability of a word w′

co-occurring with w within a fixed-width window
as p(w′|w), and the co-occurrence distribution as

p(·|w). Since these are probability distributions,∑
w∈V p(w) =

∑
w′∈V p(w

′|w) = 1, where V is
the vocabulary set of the corpus. The frequency-
weighted average of p(·|w) is again the unigram
distribution p(·), that is,

p(·) =
∑

w∈V
p(w)p(·|w). (1)

Embeddings. SGNS learns two different embed-
dings with dimensions d for each word in V : word
embedding uw ∈ Rd for w ∈ V and context em-
bedding vw′ ∈ Rd for w′ ∈ V . We denote the
frequency-weighted averages of uw and vw′ as

ū =
∑

w∈V
p(w)uw, v̄ =

∑

w′∈V
p(w′)vw′ . (2)

We also use the centered vectors

ûw := uw − ū, v̂w′ := vw′ − v̄.

3.2 KL divergence measures information gain
The distributional semantics (Harris, 1954; Firth,
1957) suggests that “similar words will appear in
similar contexts” (Brunila and LaViolette, 2022).
This implies that the conditional probability distri-
bution p(·|w) represents the meaning of a word w.
The difference between p(·|w) and the marginal dis-
tribution p(·) can therefore capture the additional
information obtained by observing w in a corpus.

A metric for such discrepancies of information
is the KL divergence of p(·|w) to p(·), defined as

KL(p(·|w) ∥ p(·)) =
∑

w′∈V
p(w′|w) log p(w

′|w)
p(w′)

.

In this paper, we denote it by KL(w) and call it the
KL divergence of word w. Since p(·) is the prior
distribution and p(·|w) is the posterior distribution
given the word w, KL(w) can be interpreted as
the information gain of word w (Oladyshkin and
Nowak, 2019). Since the joint distribution of w′

and w is p(w′, w) = p(w′|w)p(w), the expected
value of KL(w) is expressed as

∑

w∈V
p(w)KL(w)

=
∑

w∈V

∑

w′∈V
p(w′, w) log

p(w′, w)
p(w′)p(w)

.

This is the mutual information I(W ′,W ) of the
two random variablesW ′ andW that correspond to
w′ and w, respectively2. I(W ′,W ) is often called
information gain in the literature.

2In the following, w′ and w represent W ′ and W by abuse
of notation.
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3.3 The probability model of SGNS
The SGNS training utilizes the Noise Contrastive
Estimation (NCE) (Gutmann and Hyvärinen, 2012)
to distinguish between p(·|w) and the negative
sampling distribution q(·) ∝ p(·)3/4. For each
co-occurring word pair (w,w′) in the corpus, ν
negative samples {w′′

i }νi=1 are generated, and we
aim to classify the ν+1 samples {w′, w′′

1 , . . . , w
′′
ν}

as either a positive sample generated from w′ ∼
p(w′|w) or a negative sample generated fromw′′ ∼
q(w′′). The objective of SGNS (Mikolov et al.,
2013) involves computing the probability of w′

being a positive sample using a kind of logistic re-
gression model, which is expressed as follows (Gut-
mann and Hyvärinen, 2012):

p(w′|w)
p(w′|w) + νq(w′)

=
1

1 + e−⟨uw,vw′ ⟩ . (3)

To gain a better understanding of this formula, we
can cross-multiply both sides of (3) by the denomi-
nators:

p(w′|w)(1 + e−⟨uw,vw′ ⟩) = p(w′|w) + νq(w′),

and rearrange it to obtain:

p(w′|w) = νq(w′)e⟨uw,vw′ ⟩. (4)

We assume that the co-occurrence distribution sat-
isfies the probability model (4). This is achieved
when the word embeddings {uw} and {vw′} per-
fectly optimize the SGNS’s objective, whereas it
holds only approximately in reality.

3.4 Exponential family of distributions
We can generalize (4) by considering an instance of
the exponential family of distributions (Lehmann
and Casella, 1998; Barndorff-Nielsen, 2014; Efron,
2022), given by

p(w′|u) := q(w′) exp(⟨u, vw′⟩ − ψ(u)), (5)

where u ∈ Rd is referred to as the natural parame-
ter vector, vw′ ∈ Rd represents the sufficient statis-
tics (treated as constant vectors here, while tunable
parameters in SGNS model), and the normalizing
function is defined as

ψ(u) := log
∑

w′∈V
q(w′) exp(⟨u, vw′⟩),

ensuring that
∑

w′∈V p(w
′|u) = 1 for any u ∈ Rd.

The SGNS model (4) is interpreted as a special
case of the exponential family

p(w′|w) = p(w′|uw)

for u = uw with constraints ψ(uw) = − log ν
for w ∈ V ; the model (5) is a curved exponential
family when the parameter value u is constrained
as ψ(u) = − log ν, but we do not assume it in the
following argument.

This section outlines some well-known basic
properties of the exponential family of distribu-
tions, which have been established in the litera-
ture (Barndorff-Nielsen, 2014; Efron, 1978, 2022;
Amari, 1982). For ease of reference, we provide the
derivations of these basic properties in Appendix J.

The expectation and the covariance matrix of vw′

with respect to w′ ∼ p(w′|u) are calculated as the
first and second derivatives of ψ(u), respectively.
Specifically, we have

η(u) :=
∂ψ(u)

∂u
=

∑

w′∈V
p(w′|u)vw′ , (6)

G(u) :=
∂2ψ(u)

∂u∂u⊤
=

∑

w′∈V
p(w′|u)(vw′ − η(u))(vw′ − η(u))⊤. (7)

The KL divergence of p(·|u1) to p(·|u2) for two
parameter values u1, u2 ∈ Rd is expressed as

KL(p(·|u1) ∥ p(·|u2)) =
⟨u1 − u2, η(u1)⟩ − ψ(u1) + ψ(u2). (8)

The KL divergence is interpreted as the squared
distance between two parameter values when they
are not very far from each other. In fact, the KL
divergence (8) is expressed approximately as

2KL(p(·|u1) ∥ p(·|u2))
≃ (u1 − u2)

⊤G(ui) (u1 − u2) (9)

for i = 1, 2. Here, the equation holds approxi-
mately by ignoring higher order terms of O(∥u1 −
u2∥3). For more details, refer to Amari (1982,
p. 369), Efron (2022, p. 35). More generally, G(u)
is the Fisher information metric, and (9) holds for
a wide class of probability models (Amari, 1998).

4 Squared norm of word embedding
approximates KL divergence

In this section, we theoretically explain the linear
relationship between KL(w) and ∥uw∥2 observed
in Fig. 1 by elaborating on additional details of the
exponential family of distributions (Section 4.1)
and experimentally confirm our theoretical results
(Section 4.2).
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4.1 Derivation of theoretical results
We assume that the unigram distribution is repre-
sented by a parameter vector u0 ∈ Rd and

p(w′) = p(w′|u0). (10)

By substituting u1 and u2 with uw and u0 respec-
tively in (9), we obtain

2KL(w) ≃ (uw − u0)
⊤G (uw − u0). (11)

Here G := G(u0) is the covariance matrix of vw′

with respect to w′ ∼ p(w′), and we can easily
compute it from (7) as

G =
∑

w′∈V
p(w′)(vw′ − v̄)(vw′ − v̄)⊤,

because η(u0) = v̄ from (2) and (6). However, it is
important to note that the value of u0 is not trained
in practice, and thus we need an estimate of u0 to
compute uw − u0 on the right-hand side of (11).

We argue that uw − u0 in (11) can be replaced
by uw − ū = ûw so that

2KL(w) ≃ û⊤wG ûw. (12)

For a formal derivation of (12), see Appendix K.
Intuitively speaking, ū approximates u0, because
ū corresponds to p(·) in the sense that ū is the
weighted average of uw as seen in (2), while p(·)
is the weighted average of p(·|uw) as seen in (1).

To approximate u0, we could also use uw of
some representative words instead of using ū. We
expect u0 to be very close to some uw of stop-
words such as ‘a’ and ‘the’ since their p(·|uw) are
expected to be very close to p(·).

Let us define a linear transform of the centered
embedding as

ũw := G
1
2 ûw, (13)

i.e., the whitening of uw with the context embed-
ding3 , then (12) is now expressed4 as

2KL(w) ≃ ∥ũw∥2. (14)

Therefore, the square of the norm of the word em-
bedding with the whitening-like transformation in
(13) approximates the KL divergence.

3Note that the usual whightening is Cov(u)−
1
2 ûw, but we

call (13) as “whitening” for convenience in this paper.
4(12) and (14) are equivalent, because ∥ũw∥2 = ũ⊤

w ũw =

(G
1
2 ûw)

⊤G
1
2 ûw = û⊤

wG
1
2
⊤G

1
2 ûw = û⊤

wGûw.

Figure 2: Confirmation of (11). The slope coefficient of
0.909, which is close to 1, indicates the validity of the
theory.

Figure 3: Confirmation of (12) and (14). The slope
coefficient of 1.384, which is close to 1, suggests the
validity of the theory.

4.2 Experimental confirmation of theory

The theory explained so far was confirmed by an
experiment on real data.

Settings. We used the text8 corpus (Mahoney,
2011) with the size of N = 17.0× 106 tokens and
|V | = 254 × 103 vocabulary words. We trained
300-dimensional word embeddings (uw)w∈V and
(vw′)w′∈V by optimizing the objective of SGNS
model (Mikolov et al., 2013). We also com-
puted the KL divergence (KL(w))w∈V from the
co-occurrence matrix. These embeddings and KL
divergence are used throughout the paper. See Ap-
pendix A for the details of the settings.

Details of Fig. 1. First, look at the plot of KL(w)
and ∥uw∥2 in Fig. 1 again. Although uw are raw
word embeddings without the transformation (13),
we confirm good linearity ∥uw∥2 ∝ KL(w). A
regression line was fitted to words with nw > 103,
where low-frequency words were not very stable
and ignored. The coefficient of determination
R2 = 0.831 indicates a very good fitting.
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Adequacy of theoretical assumptions. In Fig. 1,
the minimum value of KL(w) is observed to be
very close to zero. This indicates that p(·|w) for
the most frequent w is very close to p(·) in the
corpus, and that the assumption (10) in Section 4.1
is adequate.

Confirmation of the theoretical results. To con-
firm the theory stated in (11), we thus estimated u0
as the frequency-weighted average of word vectors
corresponding to the words {the, of, and}. These
three words were selected as they are the top three
words in the word frequency nw. Then the correct-
ness of (11) was verified in Fig. 2, where the slope
coefficient is much closer to 1 than 0.048 of Fig. 1.
Similarly, the fitting in Fig. 3 confirmed the theory
stated in (12) and (14), where we replaced u0 by ū.

Experiments on other embeddings. In Ap-
pendix G, the theory was verified by performing
experiments using a larger corpus of Wikipedia
dump (Wikimedia Foundation, 2021). In Ap-
pendix H, we also confirmed similar results using
pre-trained fastText (Bojanowski et al., 2017) and
SGNS (Li et al., 2017) embeddings.

5 Contextualized embeddings

The theory developed for static embeddings of the
SGNS model is extended to contextualized embed-
dings in language models, or any neural networks
with the softmax output layer.

5.1 Theory for language models

The final layer of language models with weights
vw′ ∈ Rd and bias bw′ ∈ R is expressed for contex-
tualized embedding u ∈ Rd as

yw′ = ⟨u, vw′⟩+ bw′ ,

and the probability of choosing the word w′ ∈ V
is calculated by the softmax function

psoftmax(w
′|u) = eyw′

∑
w∈V e

yw
. (15)

Comparing (15) with (5), the final layer is actu-
ally interpreted as the exponential family of dis-
tributions with q(w′) = ebw′/

∑
w∈V e

bw so that
psoftmax(w

′|u) = p(w′|u). Thus, the theory for
SGNS based on the exponential family of distribu-
tions should hold for language models.

However, we need the following modifications
to interpret the theory. Rather than representing

the co-occurrence distribution, p(·|u) now signi-
fies the word distribution at a specific token posi-
tion provided with the contextualized embedding
u. Instead of the frequency-weighted average ū =∑

w∈V p(w)uw, we redefine ū :=
∑N

i=1 ui/N as
the average over the contextualized embeddings
{ui}Ni=1 calculated from the training corpus of the
language model. Here, ui denotes the contextu-
alized embedding computed for the i-th token of
the training set of size N . The information gain of
contextualized embedding u is

KL(u) := KL(p(·|u) ∥ p(·)).

With these modifications, all the arguments pre-
sented in Sections 3.4 and 4.1, along with their
respective proofs, remain applicable in the same
manner (Appendix L), and we have the main result
(14) extended to contextualized embeddings as

2KL(u) ≃ ∥ũ∥2, (16)

where the contextualized version of the centering
and whitening are expressed as û := u − ū and
ũ := G

1
2 û, respectively.

5.2 Experimental confirmation of theory

Figure 4: Linear relationship between the KL diver-
gence and the squared norm of contextualized embed-
ding for RoBERTa and Llama 2. The color represents
token frequency.

We have tested four pre-trained language mod-
els: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), GPT-2 (Radford et al., 2019), and
Llama 2 (Touvron et al., 2023) from Hugging
Face transformers library (Wolf et al., 2020).
Since the assumption (10) may not be appropri-
ate for these models, we first computed u0 =
argminu∈{u1,...,uN}KL(u), and used p(·|u0) as a
substitute for p(·) when verifying the linear rela-
tionship between KL(u) and ∥u − u0∥2. Fig. 4
demonstrates that the linear relationship holds ap-
proximately for RoBERTa and Llama 2. All results,
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Figure 5: KL divergence computed with four different
procedures plotted against word frequency nw for the
same words in Fig. 1. ‘raw’, ‘shuffle’, and ‘round’ are
KL(w), KL(w), and KL0(w), respectively. ‘lower 3
percentile’ is the lower 3-percentile point of KL(w) at
each word frequency bin.

including those for BERT and GPT-2, as well as ad-
ditional details, are described in Appendix I. While
not as distinct as the result from SGNS in Fig. 1, it
was observed that the theory suggested by (16) ap-
proximately holds true in the case of contextualized
embeddings from language models.

6 Word frequency bias in KL divergence

The KL divergence is highly correlated with word
frequency. In Fig. 5, ‘raw’ shows the plot of KL(w)
against nw. The KL divergence tends to be larger
for less frequent words. A part of this tendency
represents the true relationship that rarer words
are more informative and thus tend to shift the
co-occurrence distribution from the corpus distri-
bution. However, a large part of the tendency, par-
ticularly for low-frequency words, comes from the
error caused by the finite size N of the corpus.
This introduces a spurious relationship between
KL(w) and nw, causing a direct influence of word
frequency. The word informativeness can be better
measured by using the KL divergence when this
error is adequately corrected.

6.1 Estimation of word frequency bias

Preliminary. The word distributions p(·) and
p(·|w) are calculated from a finite-length corpus.
The observed probability of a word w is p(w) =
nw/N , whereN =

∑
w∈V nw. The observed prob-

ability of a context word w′ co-occurring with
w is p(w′|w) = nw,w′/

∑
w′′∈V nw,w′′ , where

(nw,w′)w,w′∈V is the co-occurrence matrix. We
computed nw,w′ as the number of times that w′

appears within a window of ±h around w in the

corpus. Note that the denominator of p(w′|w) is∑
w′′∈V nw,w′′ = 2hnw if the endpoints of the cor-

pus are ignored.

Sampling error (‘shuffle’). Now we explain how
word frequency directly influences the KL diver-
gence. Consider a randomly shuffled corpus, i.e.,
words are randomly reordered from the original
corpus (Montemurro and Zanette, 2010; Tanaka-
Ishii, 2021). The unigram information, i.e., nw
and p(·), remains unchanged after shuffling the
corpus. On the other hand, the bigram informa-
tion, i.e., nw,w′ and p(·|w), computed for the shuf-
fled corpus is independent of the co-occurrence
of words in the original corpus. In the limit of
N → ∞, p(·|w) = p(·) holds and KL(w) = 0
for all w ∈ V in the shuffled corpus. For finite
corpus size N , however, p(·|w) deviates from p(·)
because (nw,w′)w′∈V is approximately interpreted
as a sample from the multinomial distribution with
parameter p(·) and 2hnw.

In order to estimate the error caused by the di-
rect influence of word frequency, we generated 10
sets of randomly shuffled corpus and computed
the average of KL(w), denoted as KL(w), which
is shown as ‘shuffle’ in Fig. 5. KL(w) does not
convey the bigram information of the original cor-
pus but does represent the sampling error of the
multinomial distribution. For sufficiently large N ,
we expect KL(w) ≈ 0 for all w ∈ V . However,
KL(w) is very large for small nw in Fig. 5.

Sampling error (‘lower 3 percentile’). Another
computation of KL(w) faster than ‘shuffle’ was
also attempted as indicated as ‘lower 3 percentile’
in Fig. 5. This represents the lower 3-percentile
point of KL(w) in a narrow bin of word frequency
nw. First, 200 bins were equally spaced on a log-
arithmic scale in the interval from 1 to max(nw).
Next, each bin was checked in order of decreas-
ing nw and merged so that each bin had at least
50 data points. This method allows for faster and
more robust computation of KL(w) directly from
KL(w) of the original corpus without the need for
shuffling.

Quantization error (‘round’). There is another
word frequency bias due to the fact that the co-
occurrence matrix only takes integer values; it is
indicated as ‘round’ in Fig. 5. This quantization
error is included in the sampling error estimated by
KL(w), so there is no need for further correction.
See Appendix C for details.
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6.2 Correcting word frequency bias
We simply subtracted KL(w) from KL(w). The
sampling error KL(w) was estimated by either
‘shuffle’ or ‘lower 3 percentile’. We call

∆KL(w) := KL(w)−KL(w) (17)

as the bias-corrected KL divergence. The same
idea using the random word shuffling has been ap-
plied to an entropy-like word statistic in an existing
study (Montemurro and Zanette, 2010).

7 Experiments

In the experiments, we first confirmed that the KL
divergence is indeed a good metric of the word in-
formativeness (Section 7.1). Then we confirmed
that the norm of word embedding encodes the word
informativeness as well as the KL divergence (Sec-
tion 7.2). Details of the experiments are given in
Appenices D, E, and F.

As one of the baseline methods, we used the
Shannon entropy of p(·|w), defined as

H(w) = −
∑

w′∈V
p(w′|w) log p(w′|w).

It also represents the information conveyed by w
as explained in Appendix B.

Dataset random nw nwH(w) nwKL(w)

Krapivin2009 0.86 6.17 6.13 9.59
theses100 0.97 9.69 9.79 12.31

fao780 1.61 11.77 11.84 15.39
SemEval2010 1.67 9.52 9.50 11.10
Nguyen2007 1.90 10.56 10.57 12.84

PubMed 2.89 8.28 8.25 11.93
citeulike180 4.01 18.20 18.18 17.98

wiki20 4.15 9.32 9.23 19.90
fao30 4.92 15.92 17.05 36.88

Schutz2008 8.36 22.32 22.83 20.93
kdd 10.14 18.27 18.24 10.08

Inspec 10.54 16.31 16.22 14.61
www 12.08 21.20 21.11 12.76

SemEval2017 14.16 19.86 19.62 20.85
KPCrowd 39.64 25.73 25.82 40.47

Table 2: MRR of keyword extraction experiment. For
complete results on MRR and P@5, see Tables 6 and 7,
respectively, in Appendix D.

7.1 KL divergence represents the word
informativeness

Through keyword extraction tasks, we confirmed
that the KL divergence is indeed a good metric of
the word informativeness.

Settings. We used 15 public datasets for keyword
extraction for English documents. Treating each
document as a “corpus”, vocabulary words were or-
dered by a measure of informativeness, and Mean
Reciprocal Rank (MRR) was computed as an eval-
uation metric. When a keyword consists of two
or more words, the worst value of rank was used.
We used specific metrics, namely ‘random’, nw,
nwH(w) and nwKL(w), as our baselines. These
metrics are computed only from each document
without relying on external knowledge, such as a
dictionary of stopwords or a set of other documents.
For this reason, we did not use other metrics, such
as TF-IDF, as our baselines. Note that ∥uw∥2 was
not included in this experiment because embed-
dings cannot be trained from a very short “corpus”.

Results and discussions. Table 2 shows that
nwKL(w) performed best in many datasets. There-
fore, keywords tend to have a large value of
nwKL(w), and thus p(·|w) is significantly differ-
ent from p(·). This result verifies the idea that key-
words have significantly large information gain.

7.2 Norm of word embedding encodes the
word informativeness

We confirmed through proper-noun discrimination
tasks (Section 7.2.1) and hypernym discrimination
tasks (Section 7.2.2) that the norm of word em-
bedding, as well as the KL divergence, encodes
the word informativeness, and also confirmed that
correcting the word frequency bias improves it.

In these experiments, we examined the proper-
ties of the raw word embedding uw instead of the
whitening-like transformed word embedding ũw.
From a practical standpoint, we used uw, but ex-
periments using ũw exhibited a similar trend.

Correcting word frequency bias. In the same
way as (17), we correct the bias of embedding norm
and denote the bias-corrected squared norm as
∆∥uw∥2 := ∥uw∥2 − ∥uw∥2. We used the ‘lower
3 percentile’ method of Section 6.1 for ∆∥uw∥2,
because the recomputation of embeddings for the
shuffled corpus is prohibitive. Other bias-corrected
quantities, such as ∆KL(w) and ∆H(w), were
computed from 10 sets of randomly shuffled cor-
pus.

7.2.1 Proper-noun discrimination
Settings. We used 10561 proper nouns, 123 func-
tion words, 4771 verbs, and 2695 adjectives that
appeared in the text8 corpus not less than 10 times.
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nw H(w) KL(w) ∥uw∥2 ∆H(w) ∆KL(w) ∆∥uw∥2

proper nouns vs. verbs 0.519 0.582 0.651 0.656 0.715 0.826 0.842
proper nouns vs. adjectives 0.543 0.581 0.613 0.626 0.645 0.699 0.728

Table 3: Binary classification of part-of-speech. Values are the ROC-AUC (higher is better). See Fig. 9 in
Appendix E for histograms of measures.

Figure 6: The bias-corrected KL divergence ∆KL(w) and the bias-corrected squared norm of word embedding
∆∥uw∥2 are plotted against word frequency nw. Each dot represents a word; 10561 proper nouns (red dots), 123
function words (blue dots), and 4771 verbs (green dots). The same plot for adjectives, which is omitted in the figure,
produced a scatterplot that almost overlapped with the verbs.

nhyper/nhypo

> 1 < 1 ave.

random 50.00 50.00 50.00
nw 100.00 0.00 50.00

WeedsPrec 95.05 7.61 51.33
SLQS Row 95.20 13.70 54.45
SLQS 82.69 42.82 62.76
KL(w) 96.46 17.84 57.15
∥uw∥2 94.07 24.89 59.48
∆WeedsPrec 46.53 51.88 49.20
∆SLQS Row 59.75 43.14 51.44
∆SLQS 50.41 69.06 59.74
∆KL(w) 65.90 62.94 64.42
∆∥uw∥2 75.86 61.81 68.84

Table 4: Accuracy of hypernym-hyponym classification;
the unweighted average over the four datasets. See
Table 9 in Appendix F for the complete result.

We used nw, H(w), KL(w), and ∥uw∥2 as a mea-
sure for discrimination. The performance of binary
classification was evaluated by ROC-AUC.

Results and discussions. Table 3 shows that
∆KL(w) and ∆∥uw∥2 can discriminate proper
nouns from other parts of speech more effec-
tively than alternative measures. A larger value
of ∆KL(w) and ∆∥uw∥2 indicates that words ap-
pear in a more limited context. Fig. 6 illustrates
that proper nouns tend to have larger ∆KL(w) and
∆∥uw∥2 values when compared to verbs and func-
tion words.

7.2.2 Hypernym discrimination
Settings. We used English hypernym-hyponym
pairs extracted from four benchmark datasets for
hypernym discrimination: BLESS (Baroni and
Lenci, 2011), EVALution (Santus et al., 2015),
Lenci/Benotto (Lenci and Benotto, 2012), and
Weeds (Weeds et al., 2014). Each dataset was di-
vided into two parts by comparing nw of hyper-
nym and hyponym to remove the effect of word
frequency. In addition to ‘random’ and nw, we
used WeedsPrec (Weeds and Weir, 2003; Weeds
et al., 2004), SLQS Row (Shwartz et al., 2017) and
SLQS (Santus et al., 2014) as baselines.

Results and discussions. Table 4 shows that
∆∥uw∥2 and ∆KL(w) were the best and the sec-
ond best, respectively, for predicting hypernym in
hypernym-hyponym pairs. Correcting frequency
bias remedies the difficulty of discrimination for
the nhyper < nhypo part, resulting in an improve-
ment in the average accuracy.

8 Conclusion

We showed theoretically and empirically that the
KL divergence, i.e., the information gain of the
word, is encoded in the norm of word embedding.
The KL divergence and, thus, the norm of word em-
bedding has the word frequency bias, which was
corrected in the experiments. We then confirmed
that the KL divergence and the norm of word em-
bedding work as a metric of informativeness in
NLP tasks.
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Limitations

• The important limitation of the paper is that
the theory assumes the skip-gram with nega-
tive sampling (SGNS) model for static word
embeddings or the softmax function in the
final layer of language models for contextual-
ized word embeddings.

• The theory also assumes that the model is
trained perfectly, as mentioned in Section 3.3.
When the assumption is violated, the theory
may not hold. For example, the training is not
perfect when the number of epochs is insuffi-
cient, as illustrated in Appendix G.
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Dimensionality 300
Epochs 100
Window size h 10
Negative samples ν 5
Learning rate 0.025
Min count 1

Table 5: SGNS parameters.

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki,
and Kentaro Inui. 2020. Word rotator’s distance. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2944–2960, Online. Association for Computa-
tional Linguistics.

A Settings for computation of word
embeddings and KL divergence

Corpus. We used the text8 (Mahoney, 2011),
which is an English corpus data with the size of
N = 17.0×106 tokens and |V | = 254×103 vocab-
ulary words. We used all the tokens6 separated by
spaces for word embeddings and KL divergence.

Training of the SGNS model. Word embeddings
were trained7 by optimizing the same objective
function used in Mikolov et al. (2013). Parameters
used to train SGNS are summarized in Table 5. The
learning rate shown is the initial value, which we
decreased linearly to the minimum value of 1.0×
10−4 during the learning process. The negative
sampling distribution was specified as

q(w) ∝ (nw)
3
4 .

The elements of uw were initialized by the uniform
distribution over [−0.5, 0.5] divided by the dimen-
sionality of the embedding, and the elements of vw
were initialized by zero.

6We manually checked that the words used in Table 1 and
Table 8 were not personally identifiable or offensive.

7We used AMD EPYC 7702 64-Core Processor (64 cores
× 2). In this setting, the CPU time is estimated at about 12
hours.

Figure 7: The Shannon entropy and the squared norm
of word embedding. Settings are the same as in Fig. 1.

Figure 8: The self-information and the squared norm of
word embedding. Settings are the same as in Fig. 1.

Computation of KL divergence. The value of
KL(w) was computed from p(·|w) and p(·) us-
ing the definition in Section 3.2 with the conven-
tion that 0 log 0 = 0. The word probability p(w′)
and the co-occurrence probability p(w′|w) were
computed from the word frequency nw and the co-
occurrence matrix (nw,w′)w,w′∈V , respectively, as
described in Section 6. The co-occurrence matrix
was computed with the window size h = 10.

Word set for visualization. We have used 47×
103 words with nw ≥ 101 for the plots of Figs. 1
to 5. Except for Fig. 5, extreme points, up to 0.5%
for each axis, were truncated to set the plot range.
Word embeddings and KL divergence are not very
stable for low-frequency words. For this reason,
we used 1820 words with nw > 103 to fit the sim-
ple linear regression model using the least squares
method.

B Other quantities of information theory

In addition to KL divergence, two other informa-
tion theoretic quantities are discussed here.
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B.1 Shannon entropy
The Shannon entropy of p(·|w), defined as

H(w) = −
∑

w′∈V
p(w′|w) log p(w′|w),

also represents information conveyed by w. In this
paper, we call it the Shannon entropy of word w.
H(w) is closely related to KL(w). The Shannon
entropy of p(·|w) can be written as

H(w) = log |V | −KL(p(·|w) ∥ unif(·)),

meaning that −H(w) measures how much the co-
occurrence distribution shifts from the uniform dis-
tribution (i.e., unif(w′) = 1/|V |). Thus, H(w)
and KL(w) have different reference distributions.

B.2 Self-information
A much naive way of measuring the information of
a word is the self-information of the event that the
word w is sampled from p(·), defined as

I(w) = − log p(w).

The expected value
∑

w∈V p(w)I(w) is the Shan-
non entropy of p(·). Since p(w) was computed as
p(w) = nw/N ,

I(w) = logN − log nw

actually looks at the word frequency nw in the log
scale.

B.3 Relation to word embedding
H(w) and I(w) were computed with the same set-
tings as in Section 4.2 and Appendix A. They were
plotted along with ∥uw∥2 as shown in Fig. 7 and
Fig. 8, respectively. Compared with KL(w), the re-
lationships are less clear with R2 ≈ 0.4. From this
experiment, we see that KL(w) better represents
∥uw∥2 than H(w) and I(w).

C Quantization error

The co-occurrence matrix (nw,w′)w,w′∈V is sparse
with many zero values at rows of w with small
nw. The effect of quantization error caused by
nw,w′ taking only integer values cannot be ig-
nored for low-frequency words. This effect is
part of the sampling error, but we try to iso-
late the quantization error here. Let us redefine
nw,w′ := round(2hnwp(w

′)) and compute the KL
divergence, denoted as KL0(w), which is shown

as ‘round’ in Fig. 5. If there is no rounding errors,
p(w′|w) = p(w′) so that KL0(w) = 0. In real-
ity, however, KL0(w) is non-negligible for words
with small nw, and this effect can be corrected by
KL(w)−KL0(w).

D Details of experiment in Section 7.1

In this experiment, we confirmed that human-
annotated keywords of documents were observed at
the top of the ranking calculated by the discrepancy
between p(·|w) and p(·).

Datasets. For the experiment of keyword extrac-
tion, we used 15 datasets in English8. Each entry
consists of a pair of document and gold keywords.
Table 6 includes information on the size (the num-
ber of documents) and the type of documents.

Preparation. Each document in the datasets
was tokenized by NLTK’s word_tokenize func-
tion. Then, each word was stemmed using NLTK’s
PorterStemmer, and all characters were converted
to lowercase. The same preprocessing of stem-
ming and lowercase was also applied to the gold
keywords. However, we did not remove stop-
words in preprocessing to see if the informativeness
measures could remove unnecessary stopwords by
themselves. The co-occurrence matrix for each
document was computed with the window size
h = 10. Note that only a subset V ′ ⊂ V of the
vocabulary set described below was used for stable
computation of p(w′|w), w′ ∈ V ′, w ∈ V . For
constructing V ′, all the words w ∈ V were sorted
in decreasing order of nw, and the cumulative fre-
quency ci =

∑i
j=1 nwj up to the i-th frequent

word were computed for i = 1, 2, . . . , |V |. Then
V ′ = {w1, . . . , wi} was defined with the smallest
i such that ci ≥ N/3.

Methods. In each document, word ranking lists
were created by sorting its vocabulary words using
the informativeness measures. For ‘random’, the

8Datasets for the keyword extraction experiment
were obtained from a public repository https://github.
com/LIAAD/KeywordExtractor-Datasets which includes
Krapivin2009 (Krapivin et al., 2009), theses100 (Medelyan,
2015), fao780 and fao30 (Medelyan and Witten, 2008),
SemEval2010 (Kim et al., 2010), Nguyen2007 (Nguyen
and Kan, 2007), PubMed (Aronson et al., 2000), citeu-
like180 (Medelyan et al., 2009), wiki20 (Medelyan et al.,
2008), Schutz2008 (Schutz, 2008), kdd (Gollapalli and
Caragea, 2014), Inspec (Hulth, 2003), www (Gollapalli and
Caragea, 2014), SemEval2017 (Augenstein et al., 2017), and
KPCrowd (Marujo et al., 2011).
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Dataset Size Type random nw nwH(w) χ2(w) nwKL(w)

Krapivin2009 2304 article 0.86 6.17 6.13 8.00 9.59
theses100 100 article 0.97 9.69 9.79 9.31 12.31

fao780 779 article 1.61 11.77 11.84 11.04 15.39
SemEval2010 243 article 1.67 9.52 9.50 8.40 11.10
Nguyen2007 209 article 1.90 10.56 10.57 9.78 12.84

PubMed 500 article 2.89 8.28 8.25 9.91 11.93
citeulike180 183 article 4.01 18.20 18.18 10.03 17.98

wiki20 20 report 4.15 9.32 9.23 12.82 19.90
fao30 30 article 4.92 15.92 17.05 29.47 36.88

Schutz2008 1231 article 8.36 22.32 22.83 13.14 20.93
kdd 755 abstract 10.14 18.27 18.24 9.71 10.08

Inspec 2000 abstract 10.54 16.31 16.22 13.75 14.61
www 1330 abstract 12.08 21.20 21.11 11.67 12.76

SemEval2017 493 paragraph 14.16 19.86 19.62 19.18 20.85
KPCrowd 500 news 39.64 25.73 25.82 39.02 40.47

Table 6: MRR of keyword extraction experiment.

ranking list is simply a random shuffle of the vocab-
ulary words. For nwH(w), words were ranked in
increasing order. For other measures, words were
ranked in decreasing order. We multiply nw to
KL(w) because G2 = 2nwKL(w) is appropriate
for testing the null hypothesis that p(·|w) = p(·).
nwH(w) is also interpreted as a test statistic for
testing the null hypothesis that p(·|w) = unif(·).
We also included the χ2 statistic (Matsuo and
Ishizuka, 2004), which is related to KL(w) as
χ2 ≈ G2 for sufficiently large nw.

Evaluation metrics. We used MRR and P@5 as
evaluation metrics for the keyword prediction task.

MRR is the average of the reciprocals of gold
keywords’ ranks. The numbers in the tables were
multiplied by 100. For each document, we used
the best-ranked keyword, i.e., the minimum value
of the ranks of correct answers. If a keyword is
given as a phrase consisting of two or more words,
the rank of the keyword is defined by the worst-
ranked word. For example, the rank of "New York"
is 10 if the ranks of "new" and "york" are 3 and 10,
respectively.

P@5 is the average percentage of correct an-
swers that appear in the top five words of the ranked
list. For each document, the number of gold key-
words in the top five words was computed and
divided by 5. For a keyword consisting of two
or more words, it is regarded as a correct answer
only when all the words are included in the top five
words. Thus the percentage can be larger than 100

if several gold keywords share the same words.

Results. Table 6 shows MRR, and Table 7 shows
P@5 of the experiment. Datasets were sorted in the
increasing order of MRR of the random baseline
in both tables. Table 2 in Section 7.1 is a summary
of Table 6. Small values of MRR or P@5 of the
random baseline indicate the extent of difficulty of
the keyword extraction. Datasets with the article
type are difficult, and the dataset with the news type
is the easiest. In the difficult datasets, nwKL(w)
performed best in almost all datasets.

E Details of experiment in Section 7.2.1

In this experiment, we confirmed that proper nouns
tend to have larger values of ∆KL(w) and ∆∥uw∥
compared to other parts of speech.

Datasets. We used 10561 proper nouns, 123
function words, 4771 verbs, and 2695 adjectives
that appeared in the text8 corpus not less than
10 times (nw ≥ 10). The parts of speech of
these words were identified by NLTK’s POS tagger.
Proper nouns are tagged as {NN, NNS}, verbs are
tagged as {VB, VBD, VBG, VBN, VBP, VBZ},
adjectives are tagged as {JJ, JJS, JJR}, and function
words are tagged as {IN, PRP, PRP$, WP, WP$,
DT, PDT, WDT, CC, MD, RP}. Proper nouns were
restricted to those found in the 61711 words of the
English Proper nouns database9.

9https://github.com/jxlwqq/
english-proper-nouns/
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Dataset Size Type random nw nwH(w) χ2(w) nwKL(w)

Krapivin2009 2304 article 0.11 0.80 0.83 2.37 3.12
theses100 100 article 0.16 3.40 3.60 3.80 5.40

fao780 779 article 0.28 3.70 3.72 3.75 5.52
SemEval2010 243 article 0.23 1.89 1.81 2.63 4.28
Nguyen2007 209 article 0.42 3.44 3.54 4.40 5.74

PubMed 500 article 0.54 2.08 2.00 2.96 3.76
citeulike180 183 article 0.90 12.02 11.69 4.37 8.52

wiki20 20 report 0.70 1.00 1.00 7.00 10.00
fao30 30 article 1.53 9.33 8.67 14.67 18.00

Schutz2008 1231 article 2.37 14.77 15.22 5.20 10.93
kdd 755 abstract 3.07 8.98 9.14 2.12 2.28

Inspec 2000 abstract 2.84 7.32 6.85 5.09 5.68
www 1330 abstract 3.78 10.98 10.89 2.33 3.07

SemEval2017 493 paragraph 4.10 13.35 12.78 8.88 9.33
KPCrowd 500 news 21.75 18.37 18.33 21.25 24.33

Table 7: P@5 of keyword extraction experiment.

∆KL(w) Word Examples

HONDA, INTERPOL,
Top Gabon, Yin, VAR, IMF,

(0% ∼ 10%) Benin, BO, Bene, GB

Pete, Dee, Wine, Tony,
Middle Bogart, Alice, Cliff,

(45% ∼ 55%) Madonna, Dover, Leopold

storm, haven, sale, miracle,
Bottom discover, Phillip, duty,

(90% ∼ 100%) prohibition, capitol, comfort

Table 8: Randomly sampled proper nouns for each range
of informativeness measured by the KL divergence.

Preparation. We computed nw, KL(w) and
∥uw∥2 from the text8 corpus as described in Ap-
pendix A. H(w) was also computed in the same
way as KL(w). For their bias-corrected versions,
we used the ‘shuffle’ method in Section 6.1 for
∆KL(w) and ∆H(w), and the ‘lower 3 percentile’
method for ∆∥uw∥2. We used these measures for
the binary classification of part-of-speech.

Methods. Proper nouns tend to have large values
of nw, KL(w) and ∥uw∥2, or small values ofH(w)
as seen in Fig. 9. Therefore, each word is classified
as a proper noun if a measure is larger (or smaller)
than a threshold value. We performed two sets
of binary classification experiments: proper nouns
vs. verbs, and proper nouns vs. adjectives.

Evaluation metrics. Since the classification de-
pends on the threshold value, we used ROC-AUC
to evaluate the classification performance. ROC-
AUC was computed by Scipy’s roc_curve function.

Results. Table 3 in Section 7.2.1 shows the ROC-
AUC of the classification task, confirming the good
performance of ∆KL(w) and ∆∥uw∥2.

Table 8 shows randomly sampled proper nouns
with 101 ≤ nw ≤ 103 and specific ranges of
∆KL(w); since our experiment is case-insensitive,
some selected words were actually considered as
common nouns, such as storm and haven. We ob-
served that common nouns tend to have small KL
values. On the other hand, words with large KL
values include context-specific nouns, such as com-
pany names, suggesting that they are more infor-
mative.

F Details of experiment in Section 7.2.2

In this experiment, we confirmed that ∆KL(w) and
∆∥uw∥2 tend to have a smaller value for hypernym
in hypernym-hyponym pairs.

Datasets. Among the hypernym-hyponym pairs
in each dataset, we used those consisting of words
that appear in the text8 corpus. Specifically, we
used 1336 pairs from the 1337 pairs of the BLESS
dataset (Baroni and Lenci, 2011), 3635 pairs from
the 3637 pairs of the EVALution dataset (San-
tus et al., 2015), 1760 pairs from the 1933 pairs
of the Lenci/Benotto dataset (Lenci and Benotto,
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Figure 9: Histogram of each measure used for binary classification of part-of-speech. Plotted for 10561 proper
nouns (red) and 4771 verbs (green) in the text8 corpus.

2012), 1427 pairs from the 1427 pairs of the Weeds
dataset (Weeds et al., 2014). Each dataset was di-
vided into two parts: the nhyper > nhypo part and
the nhyper < nhypo part.

Preparation. We computed nw, nw,w′ , H(w),
KL(w), ∥uw∥2, ∆H(w), ∆KL(w), and ∆∥uw∥2
from the text8 corpus as described in Appendices A
and E.

Methods. We considered the binary classifica-
tion of hypernym given a hypernym-hyponym pair.
Using KL(w), ∥uw∥2, ∆KL(w), or ∆∥uw∥2 as
a measure of informativeness, the word with a
smaller value of the measure was predicted as hy-
pernym.

Baseline methods to predict hypernym given a
word pair (w1, w2) are described below.

• Random is the random classification. The
accuracy is 50%.

• Word Frequency chooses the word with
larger nw as hypernym.

• WeedsPrec (Weeds and Weir, 2003; Weeds
et al., 2004) is based on the distributional
inclusion hypothesis that the context of hy-
ponym is included in the context of its hyper-
nym. The weighted inclusion of word w2 in
the context of word w1 is formulated as

WeedsPrec(w1, w2) =

∑
w′∈Vw1∩w2

nw1,w′
∑

w′∈V nw1,w′
,

where Vw1∩w2 = {w′ ∈ V | nw1,w′ > 0 ∧
nw2,w′ > 0}. w1 is predicted as hypernym if

WeedsPrec(w1, w2) <WeedsPrec(w2, w1).

• SLQS Row (Shwartz et al., 2017) compares
the Shannon entropy. w1 is predicted as hy-
pernym if

SLQSRow(w1, w2) := 1− H(w1)

H(w2)
< 0,

or equivalently H(w1) > H(w2).

• SLQS (Santus et al., 2014) compares the me-
dian entropy of context words defined as

E(w) = Medianc∈CwH(c).

w1 is predicted as hypernym if

SLQS(w1, w2) := 1− E(w1)

E(w2)
< 0,

or equivalently E(w1) > E(w2). Note that
Cw is the set of most strongly associated con-
text words of w, as determined by positive
local mutual information (Evert, 2005). We
used |Cw| = 50.

• ∆WeedsPrec is the bias-corrected
version of WeedsPrec computed
by the method in Section 6.2.
WeedsPrec(w1, w2) is the average of
WeedsPrec(w1, w2) for 10 randomly shuf-
fled corpora, and ∆WeedsPrec(w1, w2) =
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nhyper > nhypo nhyper < nhypo

BLESS EVAL LB Weeds BLESS EVAL LB Weeds average
size 763 2394 1324 1022 573 1241 436 405

random 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
frequency 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 50.00

WeedsPrec 93.97 94.78 96.45 95.01 4.54 8.30 8.49 9.14 51.33
SLQS Row 96.46 91.73 96.60 95.99 7.68 21.19 12.84 13.09 54.45
SLQS 87.94 84.04 83.16 75.64 52.53 46.25 40.14 32.35 62.76
KL(w) 98.43 94.74 96.98 95.69 16.93 21.11 16.51 16.79 57.15
∥uw∥2 98.17 93.69 94.49 89.92 28.27 27.56 22.25 21.48 59.48
∆WeedsPrec 35.78 46.07 50.83 53.42 57.77 49.88 50.00 49.88 49.20
∆SLQS Row 57.54 59.19 58.08 64.19 47.64 40.21 41.74 42.96 51.44
∆SLQS 55.83 55.93 50.45 39.43 73.30 66.00 72.25 64.69 59.74
∆KL(w) 84.80 71.39 58.61 48.83 71.38 56.16 61.24 62.96 64.42
∆∥uw∥2 91.87 75.23 72.73 63.60 74.69 58.26 55.05 59.26 68.84

Table 9: Accuracy of hypernym classification. For each method, ∆Method is the bias-corrected version. We
divided each dataset into two parts based on the word frequencies of hypernym (nhyper) and hyponym (nhypo).
Dataset EVAL denotes EVALution.

WeedsPrec(w1, w2) − WeedsPrec(w1, w2).
w1 is predicted as hypernym if

∆WeedsPrec(w1, w2)

< ∆WeedsPrec(w2, w1).

• ∆SLQS Row is the bias-corrected version
of SLQS Row. w1 is predicted as hypernym
if ∆H(w1) > ∆H(w2).

• ∆SLQS is the bias-corrected version of
SLQS. w1 is predicted as hypernym if
∆E(w1) > ∆E(w2), where

∆E(w) = Medianc∈Cw∆H(c).

Evaluation metrics. The classification accuracy
of each method was computed separately for the
nhyper > nhypo part and for the nhyper < nhypo
part of each dataset. Then, we calculated the un-
weighted average of the accuracy over the four
datasets for each part and for both parts.

Results. Table 9 shows the classification accu-
racy. Table 4 in Section 7.2.2 is a summary of
Table 9. Looking at the overall accuracy, ∆∥uw∥2
and ∆KL(w) were the best and the second best,
respectively, for predicting hypernym in hypernym-
hyponym pairs.

G Results on Wikipedia dump

We used the Wikipedia dump (Wikimedia Foun-
dation, 2021)10 with the size of N = 24.0 × 108

tokens and |V | = 645 × 104 vocabulary words,
which was preprocessed by Wikiextractor (Attardi,
2015). The training of the SGNS model and the
computation of KL divergence were performed as
in Appendix A using the same setting11. For plot-
ting the results, we used 50,000 words randomly
sampled from the 1,114,207 vocabulary words with
nw ≥ 10. For fitting the regression line, we used
2,662 words with nw > 103.

Fig. 10 shows the word embeddings of the
Wikipedia dump computed with the same setting as
that of the text8 corpus. The left panel of Fig. 10 is
very similar to Fig. 1, confirming that the result for
the text8 corpus is reproduced for the Wikipedia
dump. The right panel of Fig. 10 corresponds to
Fig. 8 with the axes exchanged and the log10 nw
axis rescaled. Again, the two plots are very similar.

However, the result changes when the epoch of
training is reduced, thus the optimization is insuffi-
cient. Fig. 11 shows the word embeddings of the
Wikipedia dump, but the epoch was reduced to 10.

10Wikipedia dump dataset is licensed under the GFDL and
the CC BY-SA 3.0.

11We used AMD EPYC 7763 (64 cores). For 10 epochs of
training, the CPU time is estimated at about 20 hours, and for
100 epochs of training, the CPU time is estimated at about 8
days.
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Figure 10: Word embeddings of Wikipedia dump computed with 100 epochs.

Figure 11: Word embeddings of Wikipedia dump computed with 10 epochs.

Figure 12: Two pre-trained word embeddings. Each regression line was fitted to all the points in the scatterplot.

Figure 13: Linear relationship between the KL divergence and the squared norm of contextualized embedding for
BERT, RoBERTa, GPT-2, and Llama 2. The color represents token frequency.
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In the left panel, the linear relationship was not
reproduced. Looking at the right panel, the norm
of embedding reduces for low-frequency words
with nw < 100; plots of the same shape are also
found in the literature (Schakel and Wilson, 2015;
Arefyev et al., 2018; Pagliardini et al., 2018; Kho-
dak et al., 2018). This is considered a consequence
of insufficient optimization epochs; the norm of
parameters tends to be smaller due to the implicit
regularization (Arora et al., 2019), thus the trained
parameters do not satisfy the ideal SGNS model (4)
very well, particularly for low-frequency words.

H Results on pre-trained word
embeddings

In this section, we show that the linear relationship
between the KL divergence and the squared norm
of word embedding holds also for pre-trained word
embeddings.

H.1 Pre-trained fastText embeddings

We used Wiki word vectors provided by Bo-
janowski et al. (2017). These 300-dimensional
embeddings are trained for 5 epochs on Wikipedia
with the fastText model. We used the same KL di-
vergence as in Appendix G, which was calculated
on the Wikipedia dump corpus. Results are shown
in the left panel of Figure 12, where we randomly
selected 10,000 words that appeared not less than
104 times in the Wikipedia dump.

H.2 Pre-trained SGNS embeddings

We used pre-trained SGNS vectors provided by Li
et al. (2017). These 500-dimensional embeddings
are trained for 2 epochs on Wikipedia with the
SGNS model. We used the same KL divergence
as in Appendix G, which was calculated on the
Wikipedia dump corpus. Results are shown in the
right panel of Figure 12, where we randomly se-
lected 10,000 words that appeared not less than 104

times in the Wikipedia dump.

I Results on contextualized embeddings

Settings. For the experiment of contextualized
word embeddings, we used embeddings obtained
from the final layer of BERT, RoBERTa, GPT-2,
and Llama 2. We obtained 2000 sentences from
One Billion Word Benchmark (Chelba et al., 2014)
and input them into each language model to get
contextualized embeddings of all tokens. Special

raw whitened

R2 cos R2 cos

BERT 0.183 0.952 0.003 0.898
RoBERTa 0.557 0.977 0.196 0.943

GPT-2 0.054 0.812 0.431 0.905
Llama 2 0.112 0.902 0.127 0.894

Table 10: Linear relationship strength between KL diver-
gence and squared norm of language model contextual
word embeddings. Presented are coefficients of deter-
mination (R2) and uncentered correlation coefficients
(cosine similarity) for both raw and whitened embed-
dings. Larger values indicate better performance.

tokens at the beginning and end of tokenized inputs,
if any, were excluded.

Results. Looking at the scatterplots in Fig. 13,
approximate linear relationships can be observed in
BERT, RoBERTa, and Llama 2, but in GPT-2, the
linear relationship is somewhat weaker. According
to the values in Table 10, whitening improves the
linear relationship for GPT-2 and Llama 2, but it
worsens for BERT and RoBERTa, and the effect of
whitening is not clear-cut. While there is still room
for discussion, overall, an approximate linear rela-
tionship between KL divergence and the squared
norm of contextual embeddings appears to hold.

J Basic properties of the exponential
family of distributions

The expectation and covariance matrix. The
first and second derivatives of ψ(u) are computed
as

∂ψ(u)

∂u
= e−ψ(u)

∂

∂u

∑

w′∈V
q(w′)e⟨u,vw′ ⟩

= e−ψ(u)
∑

w′∈V
q(w′)vw′e⟨u,vw′ ⟩

=
∑

w′∈V
p(w′|u)vw′ ,
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∂2ψ(u)

∂u∂u⊤
=

∂

∂u

(
e−ψ(u)

∑

w′∈V
q(w′)vw′e⟨u,vw′ ⟩

)⊤

= e−ψ(u)
∂

∂u

∑

w′∈V
q(w′)v⊤w′e⟨u,vw′ ⟩

+
∂e−ψ(u)

∂u

∑

w′∈V
q(w′)v⊤w′e⟨u,vw′ ⟩

= e−ψ(u)
∑

w′∈V
q(w′)vw′v⊤w′e⟨u,vw′ ⟩

− ψ(u)

∂u
e−ψ(u)

∑

w′∈V
q(w′)v⊤w′e⟨u,vw′ ⟩

=
∑

w′∈V
p(w′|u)vw′v⊤w′ − η(u)η(u)⊤

=
∑

w′∈V
p(w′|u)(vw′ − η(u))(vw′ − η(u))⊤,

showing (6) and (7), respectively.

KL divergence. For computing the KL diver-
gence, first note that

log
p(w′|u1)
p(w′|u2)
= ⟨u1 − u2, vw′⟩ − ψ(u1) + ψ(u2)

from (4). Thus, the KL divergence is

KL(p(·|u1) ∥ p(·|u2)) =
∑

w′∈V
p(w′|u1)

(
⟨u1 − u2, vw′⟩ − ψ(u1) + ψ(u2)

)

= ⟨u1 − u2, η(u1)⟩ − ψ(u1) + ψ(u2), (18)

showing (8).

Approximation of KL divergence. Next, we
consider the Taylor expansion of ψ(u) at u = u1.
By ignoring higher order terms of O(∥u− u1∥3),
we have

ψ(u) ≃ ψ(u1) +
∂ψ(u)

∂u⊤

∣∣∣∣
u1

(u− u1)

+
1

2
(u− u1)

⊤∂
2ψ(u)

∂u∂u⊤

∣∣∣∣
u1

(u− u1).

Using (6) and (7), we can rewrite this expression
for u = u2 as

ψ(u2) ≃ ψ(u1) + ⟨u2 − u1, η(u1)⟩

+
1

2
(u2 − u1)

⊤G(u1) (u2 − u1), (19)

and substituting it into (18), we obtain

2KL(p(·|u1) ∥ p(·|u2))
≃ (u1 − u2)

⊤G(u1) (u1 − u2), (20)

showing (9) for i = 1. Considering the Taylor
expansion of G(u) at u = u2, each element of
G(u1) is Gij(u1) = Gij(u2) + O(∥u1 − u2∥).
Thus we can rewrite the right hand side of (20) as
(u1 − u2)

⊤(G(u2) +O(∥u1 − u2∥)) (u1 − u2) ≃
(u1−u2)⊤G(u2) (u1−u2)+O(∥u1−u2∥3). There-
fore, we have shown that (9) holds for both i = 1
and i = 2.

K High-dimensional random vectors

Random vector setting. In this section, we adopt
a probabilistic viewpoint and treat the elements of
vectors u and v as random variables denoted by
ui and vi for i = 1, . . . , d to estimate the orders
of magnitude of various quantities, such as vector
norms. Although the embedding vectors {uw}w∈V ,
{vw′}w′∈V are not random variables, the random
variable setting is justified when we randomly sam-
ple words w and w′ from a large corpus and set
u = uw and v = vw′ . To simplify the analysis,
we assume that the vector elements are distributed
independently. While we could relax this assump-
tion by imposing the spherical condition (Jung and
Marron, 2009; Aoshima et al., 2018), we leave this
extension for future work.

We aim to discuss the relative magnitudes of
vectors, so rescaling the vectors does not affect the
argument. Therefore, we assume that each element
is proportional to d−1/2, i.e., ui = Op(d

−1/2),
vi = Op(d

−1/2). The squared norm of u is ∥u∥2 =∑d
i=1(u

i)2 = Op(d · (d−1/2)2) = Op(1), and the
norm itself is also ∥u∥ = (∥u∥2)1/2 = Op(1).
Here Op(1) means that the magnitude of the vector
remains bounded even if the dimension d increases.
The same applies to v, i.e., ∥v∥ = Op(1). The inner
product of u and v is also ⟨u, v⟩ = ∑d

i=1 u
ivi =

Op(d · (d−1/2)2) = Op(1). Throughout this sec-
tion, we consider magnitudes up to O(d−1) and
ignore higher order terms of O(d−3/2) for suffi-
ciently large d.

Inner product with centered vector. Each el-
ement of centered vector u − ū is ui − ūi =
Op(d

−1/2), thus ∥u − ū∥2 =
∑d

i=1(u
i − ūi)2 =

Op(d · (d−1/2)2) = Op(1). However, the inner
product

⟨u− ū, v⟩ = Op(d
−1/2), (21)

2128



i.e., it tends to zero as d → ∞. Similarly,
⟨u, v − v̄⟩ = Op(d

−1/2). To show (21), note
that E(ui − ūi) =

∑
w∈V p(w)(u

i
w − ūiw) = 0.

Thus, E((ui − ūi)vi) = E(ui − ūi)E(vi) = 0.
The variance is E(((ui − ūi)vi)2) = E((ui −
ūi)2)E((vi)2) = O(d−1 · d−1) = O(d−2). There-
fore, E(⟨u − ū, v⟩) = 0, and E(⟨u − ū, v⟩2) =
E(

∑d
i=1(u

i − ūi)vi)2) =
∑d

i=1 E(((ui −
ūi)vi)2)+

∑
i ̸=j E((ui− ūi)vi)E((uj − ūj)vj) =

O(d · d−2) + 0 = O(d−1). This proves (21).

ū approximates u0. Regarding v, we used only
the property vi = Op(d

−1/2) when deriving (21).
So, the result does not change if we replace v by
v − v̄: ⟨u− ū, v − v̄⟩ = Op(d

−1/2). However, the
result changes if we further replace u by u0:

⟨u0 − ū, v − v̄⟩ = Op(d
−1), (22)

meaning that ū approximates u0. To show this, we
first prepare another presentation of (5) as follows.
Since p(w′) = q(w′) exp(⟨u0, vw′⟩−ψ(u0)), (5) is
expressed as p(w′|u) = p(w′) exp(⟨u−u0, vw′⟩−
ψ(u) + ψ(u0)) by canceling out q(w′). We substi-
tute ψ(u) by (19) with u1 = u0, u2 = u to obtain

p(w′|u) ≃ p(w′) exp(⟨u− u0, vw′ − v̄⟩
− 1

2(u− u0)
⊤G(u− u0)). (23)

In the above, ⟨u− u0, vw′ − v̄⟩ = Op(d
−1/2), and

(u − u0)
⊤G(u − u0) =

∑
w′∈V (u − u0)

⊤(vw′ −
v̄)(vw′ − v̄)⊤(u − u0)p(w

′) =
∑

w′∈V ⟨u −
u0, vw′ − v̄⟩2p(w′) = O(d−1), because ⟨u −
u0, vw′ − v̄⟩ = Op(d

−1/2).
Next, we consider (1) and let p(w′|w) =

p(w′|uw) with (23).

p(w′) =
∑

w∈V
p(w′|uw)p(w)

≃ p(w′)
∑

w∈V
exp

[
⟨uw − u0, vw′ − v̄⟩

− 1
2(uw − u0)

⊤G(uw − u0)
]
p(w).

This holds for anyw′, thus
∑

w∈V exp[· · · ]p(w) ≃
1. By considering the Taylor expansion of the
summand above, we have exp[· · · ] = 1 + ⟨uw −
u0, vw′ − v̄⟩− 1

2(uw−u0)⊤G(uw−u0)+ 1
2⟨uw−

u0, vw′ − v̄⟩2 + Op(d
−3/2). Therefore, by taking

the summation, we have

⟨ū− u0, v − v̄⟩
− 1

2

∑

w∈V
(uw − u0)

⊤G(uw − u0)p(w)

+ 1
2

∑

w∈V
⟨uw − u0, v − v̄⟩2p(w) ≃ 0, (24)

where we have replaced vw′ by v to clarify that
w′ is arbitrary. Here,

∑
w∈V (uw − u0)

⊤G(uw −
u0)p(w) = Op(d

−1) and
∑

w∈V ⟨uw − u0, v −
v̄⟩2p(w) = Op(d

−1), thus we have proved (22).
In addition to showing (22), we can also

obtain an explicit formula for ⟨u0 − ū, v −
v̄⟩. The second term in (24) is

∑
w∈V (uw −

u0)
⊤G(uw − u0)p(w) =

∑
w∈V trG(uw −

u0)(uw − u0)
⊤p(w) = trGH , where

H :=
∑

w∈V
p(w)(uw − u0)(uw − u0)

⊤. (25)

The third term in (24) is
∑

w∈V ⟨uw − u0, v −
v̄⟩2p(w) =

∑
w∈V (v − v̄)⊤(uw − u0)(uw −

u0)
⊤(v − v̄) = (v − v̄)⊤H(v − v̄). Therefore,

we obtain

⟨u0 − ū, v − v̄⟩ ≃ 1
2(v − v̄)⊤H(v − v̄)

− 1
2trGH. (26)

Interstingly, (26) shows that all the context em-
beddings {vw′}w′∈V are constrained to a qudractic
surface in Rd.

Proof of (12). First note that

(u− u0)
⊤G(u− u0)

= (u− ū+ ū− u0)
⊤G(u− ū+ ū− u0)

= (u− ū)⊤G(u− ū) + (ū− u0)
⊤G(ū− u0)

+ 2(u− ū)⊤G(ū− u0).

Using (22), the magnitude of the remaining
terms is obtained as follows. (ū − u0)

⊤G(ū −
u0) =

∑
w′∈V (ū−u0)

⊤(vw′ − v̄)(vw′ − v̄)⊤(ū−
u0)p(w

′) =
∑

w′∈V ⟨ū − u0, vw′ − v̄⟩2p(w′) =
O((d−1)2) = O(d−2). Similarly, (u− ū)⊤G(ū−
u0) =

∑
w′∈V (u− ū)⊤(vw′ − v̄)(vw′ − v̄)⊤(ū−

u0)p(w
′) =

∑
w′∈V ⟨u− ū, vw′ − v̄⟩⟨vw′ − v̄, ū−

u0⟩p(w′) = O(d−1/2 · d−1) = O(d−3/2). There-
fore, we have shown that

(u− u0)
⊤G(u− u0)

= (u− ū)⊤G(u− ū) +Op(d
−3/2),

where the magnitude of (u− u0)
⊤G(u− u0) and

(u − ū)⊤G(u − ū) is Op(d−1), and u is arbitrary
uw. Combining this with (11) proves (12).
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L Technical details of the contextualized
embeddings

We need only the following additional modifica-
tions. The equation (1) for the unigram distribution
p(w) is replaced by

p(·) =
N∑

i=1

p(·|ui)/N.

The definition (25) for the matrixH in Appendix K
is replaced by

H :=

N∑

i=1

(ui − u0)(ui − u0)
⊤/N.

These modifications simply replace the average
weighted by word frequency p(w) on the vocabu-
lary set V with the simple average over {ui}Ni=1.
For a sufficiently large corpus size N of the train-
ing set, the distribution of {ui}Ni=1 is approxi-
mated by a density function π(u) of contextual-
ized embedding u. Therefore, the simple average
is interpreted as the expectation with respect to
π(u). Consequently, we can also employ an alter-
nate approach to the definition: ū =

∫
uπ(u) du,

p(·) =
∫
p(·|u)π(u) du and H =

∫
(u − u0)(u −

u0)
⊤π(u) du.
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