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Abstract

While Large Language Models (LLMs) have
demonstrated impressive accomplishments in
both reasoning and planning, their abilities
in multi-agent collaborations remains largely
unexplored. This study evaluates LLM-
based agents in a multi-agent cooperative text
game with Theory of Mind (ToM) inference
tasks, comparing their performance with Multi-
Agent Reinforcement Learning (MARL) and
planning-based baselines. We observed evi-
dence of emergent collaborative behaviors and
high-order Theory of Mind capabilities among
LLM-based agents. Our results reveal limi-
tations in LLM-based agents’ planning opti-
mization due to systematic failures in managing
long-horizon contexts and hallucination about
the task state. We explore the use of explicit
belief state representations to mitigate these is-
sues, finding that it enhances task performance
and the accuracy of ToM inferences for LLM-
based agents.

1 Introduction

Recent large language models (LLMs), such as
GPT-4 (OpenAI, 2023), have demonstrated im-
pressive competencies across a wide array of do-
mains and tasks, ranging from mathematics to law,
without the need for fine-tuning or special prompt-
ing (Bubeck et al., 2023). This advancement has
significantly transformed the landscape of Natu-
ral Language Processing (NLP) research. Instead
of developing domain-specific models for down-
stream applications, focus has shifted towards eval-
uating and harnessing LLMs’ abilities to solve
novel tasks. Such a shift is consistent with the
idea of studying machine behaviors, an interdis-
ciplinary approach that expands the conventional
bounds of computer science and integrates insights
from diverse scientific fields (Rahwan et al., 2019).
Drawing inspiration from team science and group
psychology (Hagendorff, 2023), our study concen-
trates on collective machine behavior, evaluating

LLMs’ proficiency in multi-agent collaborations.
There is ongoing debate regarding the intelli-

gence levels of modern LLMs. While some argue
that LLMs excel primarily in linguistic competence
and struggle with cognitive abilities beyond lan-
guage, known as functional competence, others
demonstrate that LLMs can exhibit cognitive skills
such as formal reasoning and world knowledge
comprehension (Mahowald et al., 2023; Bubeck
et al., 2023). Motivated to explore this argument,
we designed a text-based game to evaluate LLMs’
ability in embodied interactions, including explor-
ing unknown environments, maintaining beliefs
about the world and collaborating with other agents,
which is critical for natural social interactions and
artificial general intelligence (AGI).

Theory of Mind, the capacity to reason about
others’ concealed mental states, is fundamental
to human social interactions, collaborations, and
communications (Zhang et al., 2012). As LLMs
increasingly participate in diverse social interac-
tions with humans, their social intelligence is ex-
pected to improve for them to become effective col-
laborators (Williams et al., 2022; Li et al., 2022).
For instance, a proficient AI assistant should be
able to infer a human’s preferences based on pre-
vious experiences without needing to ask. Recent
studies have applied classic Theory-of-Mind tasks
to several LLMs, concluding that current mod-
els (e.g., GPT-4) perform comparably to 9-year-
old children (Kosinski, 2023). However, the re-
search community has expressed doubts about the
validity of text-based ToM tests on machine intelli-
gence(Ullman, 2023; Sap et al., 2023). In response,
our study proposes a novel evaluation of LLMs’
high-order ToM in interactive teamwork scenar-
ios, encompassing dynamic belief state evolution
and rich intent communication between multiple
agents.

The main contributions of this study include that
we:
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• Evaluate LLM-based agents’ embodied in-
teraction capability in multi-agent collabora-
tive tasks against reinforcement learning and
planning-based baselines

• Identify systematic failures that limit the col-
laboration efficiency of LLM-based agents,
and propose a prompt-engineering method to
mitigate those failures by incorporating ex-
plicit belief state representations about world
knowledge in the model input

• Propose a novel evaluation of LLMs’ high-
order ToM in interactive teamwork scenarios,
encompassing dynamic belief state evolution
and rich intent communication between multi-
ple agents

2 Related Work

2.1 Large language models

Large language models, trained on vast text
corpora, excel in text completion and various
other Natural Language Processing (NLP) appli-
cations (Chowdhery et al., 2022; Thoppilan et al.,
2022). Recent studies highlight their abilities for
reasoning (Bubeck et al., 2023; Wei et al., 2022)
and action plan generation (Liu et al., 2023; Xie
et al., 2023), particularly when utilizing prompt en-
gineering techniques like chain-of-thought. How-
ever, some researchers note these models’ limita-
tions in forming actionable plans when interacting
with real-world objects (Ahn et al., 2022; Huang
et al., 2022). GPT-4’s capacity for embodied inter-
actions via text-based games and real-world prob-
lems was assessed by Bubeck et al. (2023). Further
studies explored the potential of LLM-powered em-
bodied agents in Minecraft (Wang et al., 2023b,a).
These investigations suggest that LLMs can per-
form tasks requiring environment understanding,
task comprehension, action planning, feedback in-
terpretation, and subsequent adaptation. Our study
seeks to broaden this understanding by evaluat-
ing LLMs’ planning abilities in cooperative multi-
agent scenarios.

2.2 Theory of Mind

Prior research has tested LLMs’ Theory of Mind
(ToM) via variants of text-based tests such as the
unexpected transfer task (also known as Smarties
Task) or unexpected contents task (also known as
the “Maxi Task” or “Sally–Anne” Test) (Kosinski,

2023; Moghaddam and Honey, 2023). Results indi-
cate that leading LLMs can pass more than 90% of
these test cases. In contrast, Ullman (2023) found
that LLMs struggle with complex ToM inferences
involving communication or second-order beliefs.
In our study, ToM evaluations occur in the midst of
an interactive team task, where the mental states of
agents change dynamically with each interaction.
As agents exchange information through commu-
nication at every timestamp, the complexity of rea-
soning increases, since agents’ mental states may
be updated through both observations and commu-
nication. Thus, our tests can be considered more
challenging than the static text-based tests used in
prior research.

Theory of Mind (ToM) has been employed to en-
hance the performance of artificial agents in various
contexts. Lim et al. (2020) introduced a method to
integrate Bayesian Theory of Mind (BToM) (Baker
et al., 2017) with optimal-planning agents in a co-
operative game. The results indicate that an explicit
representation of others’ intentions enhances the
performance of both agent-only and human-agent
teams. SymbolicToM allows language models to
maintain an explicit symbolic ToM for multiple
characters in reading comprehension tasks using
graphical representations (Sclar et al., 2023). More-
over, there is a significant body of research focusing
on the application of ToM to boost collaboration in
multi-agent reinforcement learning (Oguntola et al.,
2023; Yuan et al., 2021). Inspired by these prior
studies, we aim to enhance LLM-based agents’ col-
laborative behaviors through explicit belief repre-
sentations.

2.3 Multi-agent collaboration

Team science researchers have studied human col-
laborative behaviors for decades, covering topics
such as leadership, communication, team dynam-
ics, team cohesion, and shared situation aware-
ness (Riedl et al., 2021). However, the transfer-
ability of these findings to hybrid human-agent
teams or fully automated teams remains largely un-
explored. Park et al. (2023) utilized ChatGPT to
operate a sandbox environment populated by gener-
ative agents, observing emergent social behaviors
among LLM-based agents. That study primarily fo-
cused on the feasibility of running such a sandbox
environment with LLMs, rather than specifically
on the collaborative behaviors of machine intelli-
gence.
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3 Multi-agent Collaboration Tasks

To evaluate the capability of LLM-based embod-
ied agents, we design a multi-agent environment
to simulate the collaborative and problem-solving
dynamics of a search and rescue mission.

3.1 Task environment

3 agents (i.e. Alpha, Bravo, and Charlie) emulate
specialists in a team, with the objective to locate
and safely defuse color-coded bombs scattered in
an unexplored environment. Each bomb exhibits
unique phase sequences in m colors, requiring the
correct order of wire cutters for defusing. Team
members start with different colored cutters and
must coordinate and synchronize efforts for ef-
ficiency. The environment is conceptualized as
a connected graph, with n nodes representing n
rooms linked by several edges symbolizing hall-
ways. In each round, the agents can choose from
three classes of actions: moving to one of the n
rooms, inspecting a bomb’s phase sequence in the
current room, or using one of the m wire-cutters.
The size of action space depends on the problem
scale (i.e. n + m + 1). Agents’ observation are
limited to their current room’s contents and agent
status. They are updated periodically about team
scores, current room contents, teammates’ loca-
tions and available tools. The team is rewarded
10*x points when a x-phase bomb is successfully
defused.

The evaluation environment comprises five
rooms (n = 5) and five bombs, including two
single-phase, two double-phase, and one triple-
phase bombs. Bomb stages might have three dif-
ferent colors (m = 3). Each successfully defused
bomb awards the team 10 points per processed
phase, resulting in 90 as the maximum score per
mission. Team performance is measured using two
metrics: the team score, indicating coordination
quality, and rounds to completion, measuring col-
laboration efficiency. A trial concludes when the
team has defused all bombs, exceeded the time
limit (i.e., 30 rounds), or entered a deadlock by
repeating outputs.

3.2 Text game interface

The initial task environment is implemented for
MARL agents based on gym API (Brockman et al.,
2016). To facilitate interaction between LLM-
based agents with the environment, we’ve inte-
grated the task environment with a text interface.

At each round (i.e. timestamp), the team’s three
agents sequentially interact with the environment,
both receiving observations and performing ac-
tions via natural language interaction. A built-in
communication mechanism enables text message
exchange among agents per round. Importantly,
agents remain oblivious to each other’s actions and
outcomes unless communicated, facilitating The-
ory of Mind inference opportunities.

Specifically, a rule-based text interface translates
observations into natural language descriptions and
encodes agent chats into abstract action selections.
For observations, the text interface extracts state
features from the game engine and replaces key-
words in the templates. A typical description text
includes the current round number, cumulative
team score, action feedback, contents of the current
room, teammates’ locations, and communication
messages. Action encoding is done via keyword
matching since LLMs are instructed to frame their
responses in a certain format and structure. Should
an agent produce unintelligible content, such as
invalid actions or nonsensical text, the interface
provides feedback for error correction. The error
messages are generated based on pre-programmed
rules and templates, such as "There is no bomb in
the current location, Room X, for you to inspect.".
Fig. 1 showcases sample interactions between the
agent team and task environment via the text inter-
face.

4 LLM-based Embodied Agents

We chose to evaluate OpenAI’s latest chat comple-
tion models, namely gpt-3.5-turbo-0301 and gpt-4-
0314, owing to their impressive performance in var-
ious benchmarks (Zheng et al., 2023). These mod-
els are prompted to engage in a text-based game,
with user inputs managed by the above-mentioned
game interface. The LLMs functions as embod-
ied agents interacting within the task environment.
They are provided with the game’s rules as context.
For each round, the model is asked to choose ac-
tions and communicate messages, based on the cur-
rent task state observations and past interaction his-
tory. Interaction history between the LLM-based
agent and text game interface are maintained in the
query text until it exceeds the maximum model in-
put size. In our setup, all agents retain memory of
the game rules and history from the previous two
rounds, amounting to 4096 tokens.
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Action selection: Inspect Bomb. 
Message to Team: "I am inspecting the bomb in 
Room 0. Bravo; please move to Room 3. Charlie; 
please move to Room 5."

Round: 2  Score: 0
Results: You inspected Bomb 1. This bomb is a 
1-stage bomb and its remaining sequence is Red.
Communication Messages: 
Bravo: "Moving to Room 3 as suggested. Alpha; 
you can defuse the bomb in Room 0 with your red 
tool."

……

Alpha

Environment

Belief state

……

Bomb Intel: Bomb 1 locates in 
Room 0 with a sequence of R. 

……

LLM Agent Text Game Interface Task Environment

Alpha

Bravo Charlie

Update Prompt

Update your belief state based 
on the observation.

……

Figure 1: Our proposed framework consist of 3 LLM-based agents, a text game interface and the actual task
environment. The natural language outputs of LLM are encoded into abstract actions by the text interface and then
sent to task environment. The task environment then processes agent actions and returns observations via the text
interface. Upon receiving environmental observations, LLM-based agents are prompted to update their beliefs and
output action selections and messages. 3 agents in the team are coded as Alpha, Bravo, and Charlie and take turns to
interact with the interface.

4.1 Multi-agent communication

Given the collaborative nature of the task scenarios,
inter-agent communication is crucial for achieving
effective coordination and teamwork. We imple-
mented a communication channel enabling LLM-
based agents to share textual messages within the
team. Messages, once sent, are immediately broad-
cast to all team members and reflected in their sub-
sequent observations. For instance, as depicted in
Fig. 1, agent Alpha dispatched messages instruct-
ing teammates to separate, followed by feedback
from agent Bravo. In practice, since agents al-
ternate in message sending, responses from team-
mates will appear in the observations of the suc-
ceeding round.

4.2 Belief state

Due to the model input size limitation, LLM-based
agents cannot retain the entire interaction history,
yet task dynamics require the team to track key
long-term information, such as room contents and
bomb sequences. To augment the agents’ infor-
mation retention and enhance collaboration, we
propose a method of prompt engineering to repre-
sent explicit belief states. As illustrated in Fig. 1,
upon receiving environmental observations, agents
are prompted to update a textual description storing
key task-related beliefs. This updated belief state

is preserved in the interaction history and used in
subsequent action planning. For instance, after in-
specting bomb 1, agent Alpha updated its belief
state about the bomb’s sequence from unknown to
red, retaining this information until further updates.

The proposed belief state is inspired by the idea
of chain-of-thought prompting (Wei et al., 2022),
wherein a complex reasoning task is broken down
into intermediate steps and introduced to the LLM
in a few-shot learning manner. Notably, although
an initial belief state description is provided to il-
lustrate the proper format and representations, the
update rules are entirely zero-shot, relying solely
on the LLM’s common sense and mission context.

5 Experiments

We systematically ablate LLM-based embodied
agents and evaluate them in a collaborative task
in teams of three. Two modules are manipulated in-
cluding LLM models (i.e. GPT-4 or ChatGPT) and
belief representation (i.e. with or without belief
state) resulting in a total of 4 experimental condi-
tions.

5.1 Setups

At the beginning of each experimental trial, we as-
semble a team of three embodied agents and reset
the task environment, randomizing starting loca-
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Agents Score Rounds to Completion Valid action %
ChatGPT 43± 4.7 30.0± 0.0 62.5%

GPT-4 90± 0.0 28.3± 2.6 71.8%
GPT-4 + Belief 90± 0.0 12.3± 2.0 86.1%

MAPPO 90± 0.0 11.0± 0.0 N/A
CBS Planner 90± 0.0 6.0± 0.0 N/A

Random 38± 14.7 30.0± 0.0 N/A

Table 1: Task performance of LLM-based agents and baseline conditions. Score represent the average team score in
all experiment trials. Length refers the average number of rounds the team took in completing the task. Percentages
of valid action measures the proportion of LLM outputs that can be encoded into actions allowed by the task rules.
Numbers after ± are 1 standard deviation.

tions, room connections, bomb distributions, and
sequences. Agents then take turns providing ac-
tion choices and communication messages based
on their initial observations. It’s important to note
that each agent only has a partial observation and
its own interaction history, with inter-agent com-
munication being the sole means of information
diffusion in this fully decentralized team. For LLM-
based agents, we set the model temperature param-
eter to zero and perform three trials of repeated
measurement to ensure result stability. Each trial’s
duration varies from 5 to 120 minutes, depending
on task load and model selection.

5.2 Baselines

In addition to LLM-based embodied agents, we
also include baselines based on MARL and plan-
ning methods. For MARL, we consider Multi-
Agent Proximal Policy Optimization (MAPPO)
(Yu et al., 2022), which has shown strong perfor-
mance in environments such as the StarCraft Multi-
Agent Challenge (SMAC) (Samvelyan et al., 2019).
Our model is based on a stateful actor-critic ap-
proach building on recurrent neural networks with
shared actor and critic models given agent invari-
ance to improve sample efficiency and memory
requirements while avoiding the lazy agent prob-
lem (Sunehag et al., 2017). We utilise the default
hyperparameters for SMAC to train MAPPO in the
environment and evaluate its performance from an-
other fixed distribution of randomly generated envi-
ronments, recording the average score and episode
length as well as their standard deviation. Like
the LLM agents, MARL agents are able to observe
their teammates’ locations. Other than the team
reward of 10*x points when a x-phase bomb is
successfully defused, an additional intermediate re-
ward term is implemented as well, where an agent
is given a small positive reward of +1 upon the

application of the correct wirecutter in defusing a
phase of a bomb and a small negative reward of −1
when it causes a bomb to explode upon the applica-
tion of the wrong wirecutter. This reward-shaping
term allows the agents to more sample efficiently
learn the necessary bomb-defusing skills as com-
pared to the relatively sparser team reward.

In addition, we augment a state-of-the-art Multi-
Agent Path-Finding (MAPF) algorithm, Conflict-
Based Search (CBS) (Sharon et al., 2015), simul-
taneously generate task assignments with feasible
and collision-free paths for agents that adhere to
precedence and temporal constraints in order to
maximise a user-defined objective instead of the
sum of path costs or makespan. Specifically, the
user-defined objective is quantified as the return
from a user-defined reward function, which is the
team reward of 10*x points when a x-phase bomb
is successfully defused in the stated task. The plan-
ner uses a user-defined heuristic (e.g. sort bombs
in ascending order of distance from the agents’
starting location) to sort the execution order of the
actions for the entire task. The ordered actions
are then partitioned using a hyperparameter, the
number of actions per subtask, to form a subtask
(e.g. the two nearest bombs to the agents’ starting
location). The actions from the subtask are used
to generate possible combinations of assignments
to agents. The planner returns a feasible solution
for the subtask by resolving precedence and tem-
poral conflicts through the expansion of a binary
constraint tree in a best-first manner with respect to
the return. The solution for the entire task is then
composed of the solutions of the subtask sequen-
tially. By considering the entire task of 5 bombs as
a single subtask, the planner can be proven to be
complete and optimal with respect to the score.

184



Room Connectivity
Room 0 is connected to room 3 and 5. Room 3 is connected to 
room 0. Room 5 is connected to room 0.

……
Observation
You are now in Room 3 with Bomb 5.
What is your next action?

Environment

Action selection: Move to Room 5. 
Message to Team: "I am moving to Room 5 to help Charlie with 
Bomb 3."

Alpha

Results: You can not directly move to Room 5 because it is not 
adjacent to your current location; Room 3. Consider taking a 
detour to another room first and then move to your destination.

Environment

I am inspecting Bomb 1 in Room 0. Bravo; please move to 
Room 3. Charlie; please move to Room 5.

Alpha

I am moving to Room 3 as instructed. Alpha; please defuse 
Bomb 1 in Room 0 using the red tool.

Bravo

I am moving to Room 5 to search for more bombs.

Charlie

Yes, the current contents of Room 5 are as follows: Player alpha 
(you) and Bomb 3.

Introspection

No, Player Charlie does not know the current contents of Room 
5 since they moved to Room 6. They are only aware of the 
information they had before leaving Room 5.

1st-order ToM

Yes, player Charlie is aware that you know the current contents 
of Room 5 because you mentioned in your previous message 
that you were moving to Room 5 to assist with Bomb 3.

2rd-order ToM

Systematic Failures: Long horizon contexts Emergent Collaborative Behaviors

GPT-4+Belief: Positive ToM Inferences

Yes, the current contents of Room 6 are Bomb 4 and Alpha.

Introspection

ChatGPT: Negative ToM Inferences

No, player charlie does not know the current contents of room 6.

1st-order ToM

No, player charlie is not aware that I know the current contents of 
room 6.

2rd-order ToM

Figure 2: Example interactions between LLM-based agents and the text game interface. The upper left panel
showcases one type of systematic failures we observed in LLM’s outputs in which long horizon contexts are
overlooked. The upper right panel illustrates emergent collaborative behaviors (e.g. emergent leadership) between
LLM-based agents. The bottom two panels are quotes of GPT-4+Belief and ChatGPT agents’ answers for ToM
inference questions.

5.3 Theory of mind inferences

Alongside the main task, LLM-based agents are
tasked with performing Theory of Mind (ToM) in-
ferences during the mission. These inquiries fall
into three categories, aligning with three ToM ca-
pability levels. The first category, introspection,
assesses an agent’s ability to articulate its mental
state. The second category, first-order ToM infer-
ences, tests if agents can estimate others’ hidden
mental states. The third category, second-order
ToM inferences, evaluates an agent’s ability to infer
what others believe about their own mental state.

The design principle of ToM questions is in-
spired by the Sally–Anne test, the most widely
used ToM task in human studies. Every time an
agent conducts an action, we pose a belief reason-
ing question, asking if another agent (i.e., target
agent) is aware of the potential consequence of this
action. The consequence here can be either a state
change (e.g., a bomb has been defused) or a be-
lief change (e.g., Alpha has explored Room 5 and
found Bomb 3 in the room). An agent equipped
with ToM should realize that while they know the
consequence, the target agent might hold a false be-
lief about it. A full list of ToM inference questions
can be found in appendix.

To evaluate whether LLM-based agents answer
these questions correctly, human annotators were
hired to provide subjective judgment based on fully
observable interaction and communication history.
Specifically, the following standard are considered:
1) if the target agent is present in the current room
and observes the consequence, 2) if the target agent
has been to this room before, 3) if the consequence
has been communicated to the target agent. It is
worth mentioning that high-order ToM inferences
involving communication are naturally ambiguous.
These corner cases were discussed among annota-
tors to ensure a consistent standard across condi-
tions.

6 Results

Table 1 and Table 2 present the main experiment re-
sults. This section will analyze each metric, exam-
ine potential reasons for performance differences,
and provide qualitative case studies of experimental
trials.

6.1 Task performance

Except for the ChatGPT team, all teams manage to
defuse all bombs within the time limit. Their effi-
ciency is indicated by the average number of rounds
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spent to complete the task. The CBS Planner re-
solves the task in 6.0 rounds, providing an optimal
baseline given its centralized coordination and per-
fect information sharing. MAPPO, a state-of-the-
art multi-agent reinforcement learning algorithm,
completes the task in an average of 11.0 rounds
after 45 million timesteps of training, serving as a
practical baseline.

ChatGPT fails to complete the task in all exper-
iments, averaging a team score of 43.3. On the
contrary, teams based on GPT-4 achieve full scores,
with those using explicit belief representations be-
ing more efficient (28.3 vs. 12.3 rounds). These
findings align with previous research demonstrat-
ing GPT-4’s superior reasoning capabilities com-
pared to ChatGPT (Zheng et al., 2023). LLM-based
agents perform exceedingly well in team collabora-
tion tasks, especially considering their fully zero-
shot learning and decentralized framework. The in-
corporation of belief state representation improves
team collaboration by reducing invalid actions and
enhancing ToM inference capabilities.

6.2 Basic embodied interactions
For a successful team, each member should manage
individual sub-tasks effectively, a concept known
as taskwork in team science (Crawford and Lep-
ine, 2013). This involves understanding task rules,
reasoning about action prerequisites and conse-
quences, and interacting with the environment.
All LLM-based teams demonstrate basic embod-
ied interaction capabilities, achieving better per-
formance than the random baseline. Additionally,
LLM-based agents effectively express their beliefs
about task-related information via introspection, as
shown in Table 2. All agents show a strong perfor-
mance (>80%) in understanding world knowledge
(e.g., bomb locations) and situation modeling (e.g.,
interaction history).

6.3 Emergent collaborative behaviors
To understand how LLM-based agents match the
performance of state-of-the-art MARL methods,
we analyzed team trajectories and conducted a qual-
itative analysis of emergent collaborative behaviors.
As shown in the top-right panel of Fig. 2, GPT-
4+Belief teams use communication messages to
coordinate tasks. Agent Alpha voluntarily takes
the role of a team leader, delegating sub-tasks to
other members. Other collaborative behaviors com-
mon in human teams (Fan and Yen, 2004), such
as helping, resolving conflicts, and sharing infor-

mation, also emerge in LLM-based agent teams.
These findings suggest that LLMs, through learning
from massive language materials, acquire essential
teamwork skills without specific collaborative task
training.

6.4 LLM’s systematic failures

However, LLM-based agents’ collaboration is less
efficient than the optimal baseline. We identify
a few systematic failures that LLMs make during
team planning and discuss how they impede team-
work progress.

6.4.1 Long-horizon contexts
The first bottleneck of LLM-based teams’ effi-
ciency is dealing with long-horizon contexts. Dur-
ing the mission, LLMs occasionally output invalid
actions that violate task rules, such as moving to
non-adjacent rooms or using tools they do not pos-
sess. Even though the information about room
connectivity and tool allocation are included in the
initial prompts and maintained in the inquiry text,
LLMs often overlook these details because they
are far away from the planning question at the end.
The more advanced GPT-4 model performs better
in considering long contexts and complex logic,
thereby making fewer invalid actions, as shown
in Table 1. Our proposed belief state is also help-
ful in this progress by re-emphasizing task related
information in the input prompt.

6.4.2 Hallucination
The second type of systematic failure we observe
in LLMs is their hallucination about the task state.
During the mission, agents might generate valid
but infeasible actions, like searching for a defused
bomb or claiming the sequence of a bomb with-
out inspection. These actions stem from false be-
liefs about the game state and do not contribute
to task progress. We attribute these hallucinations
mainly to the lack of explicit belief representation.
Without access to complete interaction history and
only partial environment observations, LLM-based
agents can’t form an accurate belief about the task
state. Therefore LLMs might generate imagina-
tions about nonexistent bombs or fake bomb se-
quences when reasoning about the next action. We
evaluate this hypothesis by the GPT-4+Belief condi-
tion where LLM-based agents explicitly represent
their belief state in text. Results show that the intro-
duction of belief state decreases invalid action by
50.7% and increase the team efficiency by 130%
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Agents Introspection 1st ToM 2rd ToM
ChatGPT 79.0% 41.9% 11.6%
GPT-4 80.0% 60.0% 64.3%
GPT-4 + Belief 97.2% 80.1% 69.4%

Table 2: LLM-based agents’ performance in ToM inference tasks. Natural language answers are annotated by
experimenters and compared with the ground truth based on global interaction history. Percentages represent the
inference accuracy.

6.5 Theory of Mind Inference
A critical aspect of teamwork is inferring team-
mates’ mental states, including beliefs, desires, and
intentions. We assess LLM-based agents by asking
them to conduct Theory of Mind inferences during
the mission. As seen in Table 2, LLM-based agents
can estimate their own and their teammates’ men-
tal states. In the most challenging second-order
ToM inference tasks, where agents estimate oth-
ers’ beliefs about their own mental states, GPT-4
+ Belief agents correctly respond in nearly 70%
of cases. Consistent with team performance, GPT-
4 surpasses ChatGPT in all three ToM inference
levels, and explicit belief state representation en-
hances LLM-based agents’ ToM capabilities. In
the following case study, we’ll analyze LLM re-
sponses to see how they succeed or fail in certain
cases.

6.5.1 Case study
As shown in Fig. 2, after Alpha entered Room 5 and
observed the contents, we asked whether a team-
mate in another room (i.e., Charlie) knows Room
5’s contents. This is a first-order belief estimation
question. GPT-4 answers correctly saying

"No, Player Charlie does not know the
current contents of Room 5 since they
moved to Room 6. They are only aware
of the information they had before leav-
ing Room 5."

considering both Charlie’s current location (not
in Room 5) and their interaction history (they’ve
been in Room 5 before). In contrast, ChatGPT fails
to consider this history. In the second-order ToM
inference case, we asked if Charlie is aware that
Alpha knows Room 5’s contents. GPT-4+Belief
answers correctly by considering previous commu-
nications whereas ChatGPT fails.

"Yes, player Charlie is aware that I know
the current contents of Room 5 because I
mentioned in my previous message that

I was moving to Room 5 to assist with
Bomb 3."

6.5.2 Inference under false belief
In some situations, ToM inferences become ex-
tremely challenging for LLMs. In our records, this
is typically when reasoning involves agent com-
munication. Even with ample context, it’s hard
for agents to track information transmission while
conducting ToM inferences. The most demanding
scenarios occur when agents share inaccurate in-
formation, leading to false beliefs. This usually
happens when LLM-based agents try an invalid
action and broadcast false intentions through com-
munication. For instance, when Alpha tells the
team they’re moving to Room 8 (which is unreach-
able), and we ask Alpha, "Is Charlie aware that
you know the contents of Room 8?" This ques-
tion is tricky since Alpha failed to reach Room 8.
In theory, the most acceptable answer is complex
and involves multiple high-order ToM assumptions.
For example a human annotated ground truth is:

"I did not know the contents of Room
8 cause I failed to make it there. But
since I told Charlie I will go there, they
might assume that I know the contents of
Room 8. However, considering Charlie
knows my current location, they should
be able to tell that I am not able to move
to Room 5 and induce that I do not know
the contents of Room 5."

In practice, LLM-based agents often grasp only
part of the logic or miss the crucial fact that they
didn’t reach the target room. Quotes from GPT-
4+Belief agent:

"Based on the observation and previous
history, Player Charlie is not explicitly
aware that I know the current contents of
Room 8. However, since I mentioned in
my previous message that I was moving
to Room 8, Player Charlie might assume
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that I would eventually learn about the
contents of Room 8."

7 Discussions

Our study yields three primary insights. First,
Large Language Models (LLMs) demonstrate sub-
stantial planning and collaboration capabilities
within our task scenarios. With suitable prompt-
engineering, teams of LLM-based agents perform
comparably to state-of-the-art Multi-Agent Rein-
forcement Learning (MARL) algorithms. This find-
ing is particularly noteworthy given that MARL
agents receive extensive task-specific training with
a centralized critic, while LLM-based agents oper-
ate in a fully decentralized manner and undertake
tasks in a zero-shot setting. Despite prior research
highlighting LLMs’ limitations in generating ac-
tionable plans and interacting with the world, they
perform reasonably well when placed in a team
and tasked to process actions step-by-step. Particu-
larly, LLMs fine-tuned with Reinforcement Learn-
ing from Human Feedback demonstrate emergent
social interaction skills in multi-agent collabora-
tions, which might be similar to the collaborative
and interactive settings in which human language
is primarily learned and used (Sap et al., 2023).

Second, LLMs still fall short of being optimal
planners or team players due to systematic fail-
ures, such as neglecting long-horizon contexts and
making inaccurate assumptions about the task state
(a.k.a hallucination). These flaws significantly hin-
der team collaborations as they can rapidly dissem-
inate misinformation via communication, leading
to widespread false beliefs. We attempted to mit-
igate these issues by allowing LLM-based agents
to maintain an explicit belief state about the world.
Our findings suggest that modern LLMs can up-
date the given belief descriptions based on their
observations, hinting at the potential emergence of
advanced cognitive skills such as world knowledge
understanding and situation modeling. Moreover,
belief state representations offer a structured frame-
work that helps agents track key task-related infor-
mation, leading to improved team performance.

Finally, our study indicates that the Theory of
Mind (ToM) capabilities of LLMs are still lim-
ited, particularly when evaluated within interactive
teamwork scenarios that involve dynamic belief
states and intensive communication. For context,
while 5-year-old children can perform second-order
ToM inferences (Miller, 2009), adults don’t consis-

tently use this ability during communications due
to the complexity and ambiguity of social interac-
tions (Keysar et al., 2003). Thus, there’s consider-
able work ahead for LLMs to develop a functional
ToM and interact naturally with humans. Our study
represents a preliminary effort to devise novel eval-
uation methods for LLMs’ ToM that go beyond
traditional tests such as the Sally-Anne test.

8 Conclusions

In this study, we assessed the ability of recent large
language models (LLMs) to conduct embodied
interactions in a team task. Our results demon-
strate that LLM-based agents can handle complex
multi-agent collaborative tasks at a level compara-
ble with the state-of-the-art reinforcement learning
algorithm. We also observed evidence of emer-
gent collaborative behaviors and high-order The-
ory of Mind capabilities among LLM-based agents.
These findings confirm the potential intelligence of
LLMs in formal reasoning, world knowledge, situa-
tion modeling and social interactions. Furthermore,
we discussed two systematic failures that limit the
performance of LLM-based agents and proposed
a prompt-engineering method that mitigates these
failures by incorporating an explicit belief state
about world knowledge into the model input.

Limitations

This study represents an initial effort to understand
machine intelligence in complex task scenarios.
Several enhancements could improve the experi-
mental setup and offer a more thorough evaluation
of LLMs in multi-agent collaborations. First, we
could incorporate additional LLMs besides Ope-
nAI’s GPT models. As new models emerge with
enhanced reasoning capabilities and larger input
sizes, their performance in team tasks and ToM
inference may also change. Second, the task envi-
ronment is relatively simple with only five nodes
and five bombs. We plan to scale up the environ-
ment and introduce more restrictions to test how
LLM-based teams react to more challenging tasks.
Lastly, the current team consists of three agents
with homogeneous policies. It would be intrigu-
ing to evaluate how LLM-based agents perform
in human-agent teams, especially from a human-
centered perspective where issues like trust, trans-
parency, and human-agent co-training can be ad-
dressed.

The ToM capability evaluation method used in

188



this study also has its limitations. Currently, human
annotators, who have a global view of the task
state and interaction history, generate the ground
truth for ToM inference questions. However, this
estimation is at best an approximation, assuming
agents process information as a rational human
would, which might be ambiguous in situations
involving false beliefs or miscommunications. A
potential alternative could be using each agent’s
maintained belief state as the ground truth.

The proposed belief state method could extend
from introspective belief to first-order or even
second-order beliefs. Currently, LLM-based agents
maintain a belief state about their own world knowl-
edge in text form. By extending this representation
to include other agents’ world knowledge, we could
equip LLM-based agents with an explicit first-order
ToM model. Their ToM capability can be assessed
by directly comparing one’s first-order belief with
another’s introspective belief, rather than asking
LLMs Sally-Anne style questions.
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Appendix

A Prompts

A.1 Task context

Welcome to our interactive text game! In this game,
you’ll assume the role of a specialist on a search
and rescue team. Alongside two other players,
you’ll navigate a five-room environment with a
mission to defuse five hidden bombs.

The Map: Imagine a network of rooms repre-
sented by a connected graph where each node cor-
responds to a room, and the edges between nodes
depict hallways. The rooms are numbered 0, 3, 6,
5, and 8. Room 0 is connected to all other rooms.
Room 5 shares a hallway with room 6. Room 3 is
linked to room 8. And room 8 is also connected
with room 6. You can only travel to adjacent, di-
rectly connected rooms at each turn.

The Challenge: Scattered among these rooms
are five bombs, each coded with different phases
represented by colors. To defuse them, you’ll need
to use the correct wire-cutting tools in the correct
sequence. There are one-phase, two-phase, and
three-phase bombs, needing 1, 2, or 3 color-coded
tool applications in sequence to disarm. For in-
stance, a bomb with a red-green phase sequence re-
quires the red tool first, then the green one. Points
are awarded based on the number of tools used
for defusing a bomb, with each tool use worth 10
points. Your task is to maximize the team score as
soon as possible. The challenge is that the bomb
locations and sequences are unknown to players at
the start.

Tools: Each player is equipped with two color-
coded wire cutters. As player Alpha, you have red
and green tools, player Bravo wields green and
blue, and player Charlie possesses blue and red.

Actions: Each round, you can opt to do one of
the following: 1) Move to an adjacent room, 2)
Inspect a bomb’s phase sequence in your current
room, or 3) Apply your wire cutters to a bomb in
the current room.

Communications: In addition to selecting an
action to take from the above list, you can also
send communication message texts to both of your
teammates in each round. The message text you
sent will be shared with both of your teammates in
their observation in the next round.

Observation: While you can only see what’s
in your current room and read text messages from
teammates. You’ll also be informed of the current

round number, team score and the current location
of your teammates. Your teammates have the same
observability as you. They will not be able to know
your action and its consequences unless you explic-
itly communicate.

To facilitate our interaction, reply your action se-
lection and communication messages in this fixed
format: Action selection: Your action. Message
to Team: “Your Message”. To move to an adja-
cent room, say: ’Move to Room X’. To inspect
the sequence of a bomb in your current room, say:
’Inspect Bomb’. To apply a wire cutter tool, say:
’Apply X Tool’. Remember, your replies must
adhere strictly to these rules. Feel free to ask clari-
fying questions if needed. I’ll supply the necessary
information as we progress. Are you ready to take
on this explosive challenge?

A.2 Initial belief state
Below is your current belief about game state based
on your previous observations about the environ-
ment and interactions with your teammates. Your
role: You are playing as Player <agent id>.
Current round: 1
Total team score: 0.
Observation: You are currently in Room 0 with
both of your teammates. In the room you also
found bomb 1 with unknown sequence. There is
no other bomb in the current room.
Teammate Locations: Player alpha is in Room
0; Player bravo is in Room 0; Player charlie is in
Room 0.
Room connectivity:

• Room 0 is connected to room 3, 5, 6, 8

• Room 3 is connected to room 0

• Room 5 is connected to room 0 and 6

• Room 8 is connected to room 0 and 6

Bomb Intel:

• Bomb 1: Located in Room 0. The phase se-
quence is Unknown.

• Bomb 2: Details currently unknown.

• Bomb 3: Details currently unknown.

• Bomb 4: Details currently unknown.

• Bomb 5: Details currently unknown.

Tool inventory:
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• Alpha: Equipped with red and green wire cut-
ters.

• Bravo: Equipped with green and blue wire
cutters.

• Charlie: Equipped with red and blue wire cut-
ters.

Available action options:

• To move to an adjacent room, say: ’Move to
Room X’.

• To inspect the sequence of a bomb in your
current room, say: ’Inspect Bomb’.

• To apply a wire cutter tool, say: ’Apply X
Tool’.

• To send a message to your teammates, say:
’Message to Team: "Your Message"’.

B Environment feedback for Error
correction

• Your action is invalid.

• You can not directly move to Room roomid
because it is not adjacent to your current loca-
tion, Room currentroom. Consider taking a
detour to another room first and then move to
your destination.

• There is no bomb in the current current loca-
tion, Room currentroom, for you to inspect.

• You can not apply Tool toolcolor to Bomb
boomid because the sequence of this bomb is
sequence. You will need to apply other color
tool first.

• There is no bomb in your current location,
room roomid, for you to defuse.

• You do not have Tool toolcolor. Consider
asking your teammates who have this tool to
help you defuse the bomb.

C Theory of Mind Questions

C.1 Introspection
• Do you know the current contents of room
roomid?

• Do you know the state and remaining se-
quence of bomb bombid has been changed?

• Do you know a bomb phase has just been
defused?

• Do you know the sequence of bomb bombid?

C.2 First-order ToM
• Does player playerid know the current con-

tents of room roomid?

• Does player playerid know the state and re-
maining sequence of bomb bombid has been
changed?

• Does player playerid know a bomb phase has
just been defused?

• Does player playerid know the sequence of
bomb bombid?

C.3 Second-order ToM
• Based on the observation and previous history,

is player playerid aware of the fact that you
know the current contents of room roomid?

• Based on the observation and previous his-
tory, is player playerid aware of the fact that
you have changed the state and remaining se-
quence of bomb bombid?

• Based on the observation and previous history,
is player playerid aware of the fact that you
know a bomb phase has just been defused?

• Based on the observation and previous history,
is player playerid aware of the fact that you
know the sequence of bomb bombid?
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