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Abstract

Text-video based multimodal event extraction
refers to identifying event information from the
given text-video pairs. Existing methods pre-
dominantly utilize video appearance features
(VAF) and text sequence features (TSF) as in-
put information. Some of them employ con-
trastive learning to align VAF with the event
types extracted from TSF. However, they disre-
gard the motion representations in videos and
the optimization of contrastive objective could
be misguided by the background noise from
RGB frames. We observe that the same event
triggers correspond to similar motion trajec-
tories, which are hardly affected by the back-
ground noise. motivated by this, we propose
a Three Stream Multimodal Event Extraction
framework (TSEE) that simultaneously utilizes
the features of text sequence and video appear-
ance, as well as the motion representations to
enhance the event extraction capacity. Firstly,
we extract the optical flow features (OFF) as
motion representations from videos to incorpo-
rate with VAF and TSF. Then we introduce a
Multi-level Event Contrastive Learning mod-
ule to align the embedding space between OFF
and event triggers, as well as between event
triggers and types. Finally, a Dual Querying
Text module is proposed to enhance the interac-
tion between modalities. Experimental results
show that TSEE outperforms the state-of-the-
art methods, which demonstrates its superiority.

1 Introduction

Event extraction (EE) is a fundamental task which
aims to recognize the event structure from texts
(Nguyen et al., 2016; Nguyen and Grishman, 2015;
Wadden et al., 2019; Lu et al., 2022). Recent years
have witnessed the booming of the multimodal
event extraction (MEE). MEE (Pratt et al., 2020;
Sadhu et al., 2021; Li et al., 2017) extends EE
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Figure 1: An illustration of the relationship between
motion representations and event triggers. To capture
the motion information, we extract optical flow features
from each video. The optical flow features tend to be
similar if the event triggers are the same. Otherwise,
they are likely to become dissimilar.

by merging complementary information from mul-
tiple modalities such as texts, images or videos.
Specifically, texts provide abstract semantics while
visual data supplies concrete instances(Liu et al.,
2023a,b; Yang et al., 2023a,b). Compared with
text-image based MEE (TIMEE) (Li et al., 2022;
Liu et al., 2022; Li et al., 2020; Zhang et al., 2017;
Tong et al., 2020), text-video based MEE (TVMEE)
(Chen et al., 2021; Wang et al., 2023) contains more
context and scene information. Moreover, TVMEE
presents temporal data that could capture the dy-
namic evolution of events, making it an area of
significant interest.

Existing methods in TVMEE (Chen et al., 2021;
Wang et al., 2023) extract text sequence features
(TSF) and video appearance features (VAF) from
texts and RGB frames by adopting pre-trained lan-
guage and video models respectively. However,
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they neglect the motion representations in videos.
In TVMEE, motion representations may play an
important role, as they furnish details on the mo-
tion and behavior of objects in videos. Furthermore,
we observe that identical event triggers correspond
to analogous motion representations. To explore
the relationship between motion representations
and event triggers, we introduce the optical flow
features (OFF) (Dosovitskiy et al., 2015) as ob-
ject motion representations. OFF (Ilg et al., 2017;
Sun et al., 2018; Jiang and Learned-Miller, 2023;
Marsal et al., 2023; Liu et al., 2021) represents
the movement of objects in a sequence between
consecutive frames and is extensively applied in
video fields, such as video understanding (Teed
and Deng, 2020; Luo et al., 2022), video super-
resolution (Zheng et al., 2022; Chan et al., 2022),
etc. As shown in Figure 1, we compare three trig-
gers ‘rally’, ‘meeting’ and ‘arrested’. For each
sample we visualize the text, frames and OFF ex-
tracted from the corresponding frames. It could be
observed that OFF is similar if it refers to the same
trigger. In contrast, heterogeneous triggers usually
point to dissimilar OFF.

A previous work (Wang et al., 2023) applies con-
trastive learning to reduce the distance between
VAF and event types. Although VAF extracted
from continuous frames may provide useful mo-
tion information, it also contains misguiding back-
ground noise. To be specific, the background noise
is various scenes in heterogeneous videos. It does
not provide any event semantics and can suppress
the alignment between visual cues and event types.
However, this issue could be properly alleviated
by utilizing OFF because OFF solely exploits the
object motion representations and filters out the
scene information.

In this work, we design a novel frame-
work, Three Stream Multimodal Event Extraction
(TSEE), which simultaneously leverages three
modality features (text sequence, video appearance
and motion representations) to improve the event
extraction capability. To begin with, we employ
pre-trained I3D (Carreira and Zisserman, 2017)
and PWC (Sun et al., 2018) models to extract VAF
and OFF from each video respectively. For the
input text, we adopt a pre-trained language model
(Devlin et al., 2018; Raffel et al., 2020) to obtain
TSF. Then we propose a Multi-level Event Con-
trastive Learning (MECL) module, aiming to align
the feature representations between OFF and event

triggers, as well as event types and triggers. We
align each pair in the embedding space by introduc-
ing a multi-level contrastive objective. Lastly, we
propose a Dual Querying Text (DQT) module to
increase the interaction between modalities. In this
module, VAF and OFF retrieve the cross-modality
attention of each token in TSF respectively.

The contributions of our work could be summa-
rized as follows:

• We propose a novel framework called TSEE
that leverages the motion representations in videos.
To the best of our knowledge, we are the first to
introduce optical flow features into TVMEE.

• Our proposed modules, MECL and DQT, sig-
nificantly improve the model performance. MECL
aligns the embedding space of OFF, event triggers
and types. DQT enhances the interaction among
text, video and optical flow modalities.

• The experimental results on two benchmark
datasets demonstrate the superiority of our frame-
work over the state-of-the-art methods.

2 Related Work

2.1 Event Extraction

In the field of event extraction research, the initial
work primarily focused on sentence-level studies
in the text. Some works have explored the use of
convolutional neural networks (Nguyen and Grish-
man, 2015; Nguyen et al., 2016), recurrent neu-
ral networks (Nguyen and Grishman, 2015; Liu
et al., 2019, 2020), graph neural networks (Li et al.,
2017), and later emerging pre-trained language
models (Wadden et al., 2019; Wang et al., 2022;
Lu et al., 2022) for handling the extraction of trig-
gers and arguments. In the field of computer vi-
sion, event extraction is operationalized as situation
recognition (Pratt et al., 2020; Sadhu et al., 2021;
Yatskar et al., 2016; Li et al., 2017), with tasks pri-
marily involving the classification and extraction
of frames containing entities and roles (arguments)
from images with actions (visual events)(Zhang
et al., 2021; Chen et al., 2022a,b). In recent years,
there has been an emergence of using multimodal
information for event extraction(Chen et al., 2022c,
2023). (Zhang et al., 2017) demonstrated the ef-
fectiveness of using visually based entity data to
extract events. Previous multimodal event extrac-
tion models (Li et al., 2020; Liu et al., 2022) mostly
dealt with visual data in the form of images, (Chen
et al., 2021) pioneered a model that can jointly ex-
tract events from text and video data. They used
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a pre-trained text-video retrieval model to find the
most relevant text-video pairs. Based on (Chen
et al., 2021)’s approach, (Wang et al., 2023) intro-
duced supervised contrastive learning to enhance
the representation of the two modalities for further
event extraction.

2.2 Supervised Contrastive Learning

Contrast learning is a technique that trains models
to distinguish between similar and different exam-
ples. Self-supervised representation learning meth-
ods such as (Kim et al., 2020; Yue et al., 2022; Kim
et al., 2021; Kaku et al., 2021; Iter et al., 2020)
divide each sample into positive and negative sam-
ples, learning feature representations by compar-
ing the similarity between sample pairs. Works
such as (Gunel et al., 2020; Wu et al., 2022; Gunel
et al., 2020; Song et al., 2022) optimize the su-
pervised contrastive objective for supervised con-
trastive learning. For event extraction tasks, (Wang
et al., 2021) proposes a contrastive pre-training
framework that uses semantic structures. (Yao
et al., 2022) introduces an efficient event extraction
model with a contrastive objective to distinguish
triggers and arguments. (Zolfaghari et al., 2021)
presents a more effective cross-modal contrastive
learning loss function, compared to directly using
loss functions designed for visual data.

2.3 Optical Flow

Most of the existing methods for extracting op-
tical flow rely on pixel-by-pixel prediction using
neural networks. Optical flow extraction models
have various model structures, including encoder-
decoder architecture (Dosovitskiy et al., 2015), it-
erative refinement of multiple FlowNet modules
using cumulative superposition (Ilg et al., 2017),
feature processing and extraction through a pyra-
mid structure (Sun et al., 2018), and construction of
cost volumes with different expansion coefficients
(Jiang and Learned-Miller, 2023). (Marsal et al.,
2023) trains optical flow estimation networks by
training two networks that jointly estimate optical
flow and brightness changes. (Liu et al., 2021) ad-
dresses the optical flow problem of occluded pixels.
(Chan et al., 2022) utilizes temporal information
and proposes a novel approach to combine optical
flow and deformable alignment in videos. (Huang
et al., 2019) employs optical flow to solve motion
detection issues related to dynamic background and
changing foreground appearance.

3 Approach

3.1 Task Definition
Given a text-video pair (T, V ), we denote the se-
quence of input text tokens as T = {t1, t2, ..., tm}.
We sample from the video every 16 frames to
get the clip sequence V = {c1, c2, ..., ck}. In
TVMEE, each sample is annotated a set of event
types E = {e1, e2, ...}. Our goal is to jointly ex-
tract event triggers and event arguments. An event
trigger is a word or phrase in a sentence that indi-
cates the occurrence of an event. For example, in
the sentence ‘John bought a new car yesterday’,
the word ‘bought’ is the event trigger, indicating
the occurrence of a buying event. Event argument
extraction is to identify relevant pieces of informa-
tion or arguments from texts. The pieces commonly
involve an event, such as subject, object, verb, and
other modifiers. Then these roles are mapped to
their semantic roles such as agent, patient, location,
time, and so on. Take the above sentence as an ex-
ample, ‘John’, ‘car’ and ‘yesterday’ are the event
arguments referring to the buying event and the
roles are ‘buyer’, ‘product’ and ‘time’ respectively.

3.2 Feature Extraction
Our framework utilizes information from both text
and video features as shown in Figure 2. In par-
ticular, the video incorporates features from two
perspectives. The first is the video appearance fea-
tures, which represents color, texture, shape, and
other visual cues. Secondly, motion features pro-
vide information about dynamics of objects within
the scene. We employ corresponding pre-trained
models to extract these features respectively.
Text feature extraction. The input text tokens are
encoded using pre-trained T5-base (Raffel et al.,
2020) with dt hidden dimensions. Thus each input
sequence is represented as a matrix FT ∈ Rnl×dt ,
where nl is the length of sequence.
Video feature extraction. We input each clip se-
quence into the I3D network pretrained on Kinetics
dataset and the PWC network pretrained on Sintel
dataset. Then we obtain a sequence of VAF and
OFF. To represent a video-level feature, we sum up
all the features within the sequence . VAF and OFF
are denoted as FV ∈ Rdv and FO ∈ Rdo .

3.3 Multi-level Event Contrastive Learning
We observe that identical event triggers usually in-
volve similar motion representations, which are
not affected by background noise. Additionally, in
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Figure 2: The overview of TSEE framework. We leverage a T5 model to extract Text Sequence Feature (TSF). For
each video we adopt a PWC Net and an I3D model to obtain Optical Flow Feature (OFF) and Video Appearance
Feature (VAF) respectively. Event Trigger Feature and Event Type Feature are extracted from TSF. Then the two
features along with OFF are entered into a Multi-level Event Contrastive Learning module to align the feature
representations between them. After that, Dual Querying Text module enhances the interaction among TSF, VAF
and OFF. Finally, the event decoder takes the aggregated feature as input to predict events.

the event extraction, an event type is correlated to
various triggers. Motivated by the above observa-
tions, we propose a Multi-level Event Contrastive
Learning (MECL) module. This module aligns the
feature representations between OFF and triggers.
The embedding spaces of event types and triggers
are also aligned using this module. We apply su-
pervised contrastive learning (Khosla et al., 2020)
in this module and define multi-level labels for dif-
ferent event levels.

Event type level. Since an event type corre-
sponds to various triggers, we use event types
as the anchors for triggers. Our purpose is to
push the triggers referring to the identical event
type close. In this level, we define all the event
types of the dataset event schema as the label set
E = {e1, e2, ..., ep}, where p is the number of
event types in the dataset event schema.

Event trigger level. Considering the same event
triggers correspond to similar motion trajectories
in videos, we regard the triggers as the anchors for
OFF. The label set in this level is all the triggers
W = {w1, w2, ...} in the dataset. For each trigger
we could obtain the embedding index from pre-
trained language model as the label index.

Given a batch of N samples, we first select the
samples annotated with one event type for com-
puting contrastive loss. It is for the reason that if
a sample has more than one event, OFF may con-
tain multiple motion trajectories. Thus OFF could
not be directly assigned the certain single label
of event. After filtering the samples, we obtain a
smaller batch of OFF FOc , the trigger words Wc, as

well as the corresponding event types Ec. For the
Event type level, positive pairs of each event type
consist of all referring trigger words and the event
type itself. In contrast, the negative pairs comprise
irrelevant trigger words and the event type itself.
For Event trigger level, each trigger’s positive pairs
are composed of optical flow features that point to
the trigger and the trigger. Conversely, the negative
pairs are made up of optical flow features that are
unrelated to the trigger and the trigger itself.

Considering the i-th sample in this smaller batch,
we first enter wi and ei into a pre-trained T5-base
model to obtain respective feature representations:

zi = T5(wi),

xi = T5(ei). (1)

Then we adopt the supervised contrastive learning
to optimize contrastive loss of the Event type level
and Event trigger level Ltype and Ltrig:

Ltype = −
B∑

i=1

log
exp(xi · zi/τ)∑

zl∈Wc\ziexp(x
i · zl/τ) ,

Ltrig = −
B∑

i=1

log
exp(zi · F i

O/τ)∑
Fu
O∈FOc\F i

O
exp(zi · F u

O/τ)
,

(2)

where B is the number of samples after filtering,
and τ is the temperature parameter of supervised
contrastive learning. Finally the multi-level loss
Lmulti is defined as :

Lmulti = Ltype + Ltrig. (3)
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Formally, the Multi-level Event Contrastive
Learning algorithm is shown as Algorithm 1.

3.4 Dual Querying Text
We design a Dual Querying Text (DQT) module
to enhance the interaction among three modalities.
The intuition is to query TSF which token responds
to VAF or OFF. For example, if the input text has
the word Police describing the argument of the
event, this token would respond to VAF. It is be-
cause VAF may contain visual cues whose seman-
tics are close to this argument. To encode the dual
queries of TSF, We utilize two transformer archi-
tectures. The attention scores of each token reflect
the degree of response to VAF or OFF.

For TSF, VAF, OFF denoted as FT ∈ Rnl×dt ,
FV ∈ Rdv and FO ∈ Rdo in Section 3.2, VAF
and OFF are projected into queries respectively. In
both transformer architectures, TSF is projected to
obtain keys and values. Then we adopt a softmax
function to calculate the dual attention weights:

Av = softmax(
FV Hq1H

⊤
k1
F⊤
T√

dt
)FTHv1 ,

Ao = softmax(
FOHq2H

⊤
k2
F⊤
T√

dt
)FTHv2 , (4)

Where Hq, Hk, Hv are three projection matrices
for query, key and value respectively. The output
attention scores are aggregated as follows:

FA = Av · FT +Ao · FT (5)

4 Experiment

Datasets. We evaluate our approach on two open-
ended TVMEE datasets: TVEE (Wang et al., 2023)
and VM2E2 (Chen et al., 2021). TVEE dataset
contains 7598 text-video pairs. The international
news videos with captions are collected from the
On Demand News channel. The event schema is
from the ACE2005 (Walker, 2006) benchmark that
consists of 8 superior event types and 33 event
types. Contact.Speech, Disaster.Disaster and Ac-
cident.Accident are added to the event schema be-
cause the schema in ACE2005 could not cover all
the event types in videos. The TVEE dataset is
randomly divided into train, valid, and test sets in
a ratio of 8:1:1. VM2E2 is a collection of text
and video data that includes 13,239 sentences and
860 videos. Within the dataset, there are 562 pairs
of sentences and videos that share the same event

Algorithm 1 Multi-level Event Contrastive Learn-
ing

Require: OFF FO, event types E = {e1, e2, ...},
event triggers W = {w1, w2, ...},event type
positive pairs Spy = ∅, event type negative
pairs Sny = ∅, event trigger positive pairs
Spg = ∅, event trigger negative pairs Sng = ∅,
filtering batch Sf = ∅, supervised contrastive
learning function CON.

1: for (FO, E)i in batch do
2: if Len(Ei)==1 then
3: zi ← T5(wi)
4: xi ← T5(ei)
5: Sf .append(zi, xi, F i

O)
6: else
7: CONTINUE
8: end if
9: end for

10: for (z, x, FO)
j in Sf do

11: if zj refers to xj then
12: Spy.append(zj , xj)
13: else
14: Sny.append(zj , xj)
15: end if
16: if F j

O refers to zj then
17: Spg.append(zj , F j

O)
18: else
19: Sng.append(zj , F j

O)
20: end if
21: end for
22: Ltype = CON(Spy)+CON(Sny)
23: Ltrig = CON(Spg)+CON(Sng)
24: return Ltype + Ltrig

type, with each pair containing only one event. The
dataset defines 16 multimodal event types based on
the LDC ontology. Following (Chen et al., 2021),
we split VM2E2 into 411 and 151 samples.

Evaluation Metrics. Following (Wang et al.,
2023), we utilize the same evaluation metrics to
report text, video and multimodal evaluation re-
sults. The evaluation metrics include: Precision
(P), Recall (R) and F-score (F1). The performance
of text event extraction is evaluated by two sub-
tasks: event trigger extraction and event argument
extraction. The correctness of a trigger prediction
is determined by whether its type and span align
with the labels, while for an argument prediction, it
is determined by whether its span and all the roles
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Dataset Input Model
Text Evaluation Video

Evaluation
Multimodal
EvaluationTrigger Argument

P R F1 P R F1 P R F1 P R F1

TVEE

Text
DEEPSTRUCT 76.4 75.2 75.8 53.1 48.9 50.9 - - - 76.4 75.2 75.8
CoCoEET 76.0 76.6 76.3 62.9 44.2 51.9 - - - 76.0 76.6 76.3
TSEET 75.7 77.2 76.4 63.3 45.0 52.6 - - - 75.7 77.2 76.4

Video
JSL - - - - - - 48.2 51.6 49.8 48.2 51.6 49.8
CoCoEEV - - - - - - 49.1 60.7 54.3 49.1 60.7 54.3
TSEEV - - - - - - 48.7 62.1 54.6 48.7 62.1 54.6

Multimodal
JMMT 74.3 80.2 77.1 50.1 54.9 52.3 55.4 57.0 56.2 87.2 88.6 87.9
CoCoEE 80.7 76.4 78.5 65.6 45.4 53.6 56.4 57.4 56.9 92.9 92.9 92.9
TSEE (ours) 82.6 80.5 81.5 67.0 49.3 56.8 58.2 58.6 58.4 94.4 93.7 94.0

VM2E2

Text
DEEPSTRUCT 44.7 43.1 43.9 19.8 13.2 15.9 - - - 44.7 43.1 43.9
CoCoEET 41.5 45.6 43.5 20.5 15.3 17.5 - - - 41.5 45.6 43.5
TSEET 45.2 41.8 43.4 21.2 17.1 18.9 - - - 45.2 41.8 43.4

Video
JSL - - - - - - 21.2 18.6 19.8 21.2 18.6 19.8
CoCoEEV - - - - - - 27.3 31.2 29.1 27.3 31.2 29.1
TSEEV - - - - - - 26.5 30.7 28.4 26.5 30.7 28.4

Multimodal
JMMT 39.7 56.3 46.6 17.9 24.3 20.6 32.4 37.5 34.8 76.1 69.5 72.7
CoCoEE 47.3 47.7 47.5 26.7 18.5 21.8 33.2 37.2 35.1 78.2 75.6 76.9
TSEE (ours) 49.2 53.5 51.6 24.5 27.4 25.9 35.1 38.0 36.5 78.9 77.2 78.0

Table 1: Comparison with the state-of-the-art methods. The evaluation metrics are introduced in Section 4.1. The
best performed methods in each metric are highlighted in bold.

align with the labels.

Implementation Details. We use Pytorch and a
2080 Ti GPU to implement our framework and
conduct experiments. We apply a pre-trained T5-
base (Raffel et al., 2020), as the TSF encoder. For
the video input, we separately adopt pre-trained
I3d (Carreira and Zisserman, 2017) and PWC (Sun
et al., 2018) to extract VAF and OFF. For the event
extraction decoder, we use CRF decoder following
(Wang et al., 2023). The dimension of TSF, VAF
and OFF are 768, 1024 and 1024 respectively. We
utilize a linear function to project the dimension
of VAF and OFF to 768. Following (Wang et al.,
2023), we train our model for 15 epochs and the
batchsize is set 16. The optimizer is Adam and the
learning rate is 10e-5. Following (Yao et al., 2022),
we utilize 0.3 for the parameter τ in MECL.

4.1 Baselines

Following (Wang et al., 2023), we compare our
model with other methods in three settings, which
are Text Event Extraction, Video Event Extrac-
tion, Multimodal Event Extraction.
Text Event Extraction. For text event extraction,
we only utilize text input. We compare the follow-
ing models in this setting:

- DEEPSTRUCT (Wang et al., 2022) : It is
the state-of-the-art method in text event extraction.

It proposes structure pretraining to let language
model understand the structure in the text.

-CoCoEET (Wang et al., 2023) : It uses the text
encoder and a CRF decoder of CoCoEE without
CoLearner module.

-TSEET : It utilizes the T5-base encoder and a
CRF encoder to extract events with text modality.
It is without MECL module and DQT module.
Video Event Extraction. We only use video input
as the video event extraction. We compare the
models as follows:

-JSL (Pratt et al., 2020) :We follow (Wang
et al., 2023) to use a sota model JSL in video event
extraction. Key frames are utilized to detect events.

-CoCoEEV (Wang et al., 2023) : It utilizes
the video encoder of CoCoEE and a video event
decoder without CoLearner module.

-TSEEV : It utilizes a pre-trained I3D model
to extract video features and the decoder is set the
same as (Wang et al., 2023). It is also without
MECL module and DQT module.
Multimodal Event Extraction. This is our full
task setting. We compare the models as follows:

-JMMT (Chen et al., 2021) :It utilizes a trans-
former encoder to jointly encode the text and video
inputs. The visual features include video-level fea-
tures and image-level features.

-CoCoEE (Wang et al., 2023) :It is the state-of-
the-art model in text-video based event extraction.
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Dataset Units Trigger Argument
O H D P R F1 P R F1

TVEE

76.2 76.9 76.5 62.8 46.1 53.2
✔ 76.8 77.3 77.0 63.9 45.7 53.3
✔ ✔ 80.5 79.2 79.8 64.5 47.3 54.6
✔ ✔ ✔ 82.6 80.5 81.5 67.0 49.3 56.8

VM2E2

42.3 45.9 44.0 21.3 16.6 18.7
✔ 44.0 47.2 45.5 20.8 18.1 19.4
✔ ✔ 47.9 50.6 49.2 22.7 25.3 23.9
✔ ✔ ✔ 49.2 53.5 51.6 24.5 27.4 25.9

Table 2: Ablation study on three units in TSEE. ‘O’
represents OFF (Optical Flow Features). ‘H’ means
MECL (Multi-level Event Contrastive Learning) mod-
ule. ‘D’ denotes DQT (Dual Querying Text) module.
‘✔’ represents our framework is equipped with the unit.

It contrasts the event types and video features.

4.2 Main Results
The experiment results on TVEE and VM2E2
datasets are presented in Table 1. We could find
that when the input data only consists of text,
DEEPSTRUCT, CoCoEET and TSEET achieve
similar performance. Specifically, on TVEE
dataset TSEET performs 0.1% and 0.6% better than
CoCoEET on F1 of trigger extraction. However,
DEEPSTRUCT reaches a higher F1 than TSEET
and CoCoEET on VM2E2 dataset. This could be
because the ability to extract event information
from text of the three models is comparable.

When there is only video data in input,
CoCoEEV and TSEEV show the comparable perfor-
mance and are both better that JSL on two datasets.
It is because JSL applies to static frames while
CoCoEEV and TSEEV adopt pre-trained models of
videos to capture dynamic information.

The results of multimodal data input show that
TSEE achieve the best performance on most of the
evaluation metrics compared with existing state-
of-the-art methods. On TVEE dataset, our model
reaches 81.5% F1 of trigger extraction compared
with 77.1% and 78.5% achieved by JMMT and Co-
CoEE respectively. This result demonstrates that
the integration of motion representations in videos
is helpful for the multimodal event extraction task.
On VM2E2 dataset, the F1 score of trigger extrac-
tion is improved from 47.5% (CoCoEE) to 51.7%,
where the improvement is larger than that of TVEE
dataset. This may be the reason that in VM2E2
dataset, each sample is annotated with only one
event. The MECL module would not filter any
sample in every batch when computing contrastive
loss, thus obtaining better feature representations
and boosting the performance of the model. We

(a) w/o MECL (b) w/ MECL

Figure 3: T-SNE visualization for MECL module. w/o
MECL (a) denotes that MECL is removed from TSEE
and w/ MECL (b) means that TSEE is trained with
MECL module. Each dot represents one OFF and each
color denotes a specific event trigger.

notice that JMMT performs well in the recall met-
ric, such as 54.9% argument extraction recall on
TVEE dataset and 56.3% trigger extraction recall
on VM2E2 dataset. This may be that JMMT uti-
lizes the additional object detection model to inject
proposal features of key frames to the transformer
encoder, improving the recall of triggers and argu-
ments in samples.

We also observe that the results show the similar
trends from single modality to multimodal input,
which verifies that injecting multimodal input to
TSEE and CoCoEE both boosts the performance in
all metrics. Specifically, the incorporation of video
to TSEEV boosts the F1 performance from 76.4%
to 81.5% on TVEE dataset. For CoCoEEV, the F1
score is improved from 76.3% to 78.5%.

4.3 Ablation Study

To validate the effectiveness of different innova-
tions and parts in TSEE, we conduct ablation stud-
ies on the two datasets. We investigated three main
units of TSEE: (1) Integration of optical flow fea-
ture; (2) Multi-level Event Contrastive Learning
module; (3) Dual Querying Text module. The base-
line in the first line applies sum function to VAF
and TSF. The results are summarized in Table 2.
Effectiveness of OFF. In this part we extract OFF
from video data and sum up VAF, TSF and OFF.
From Table 2, we observe that the integration of
OFF improves all evaluation metrics over baseline
on the two datasets, verifying that OFF provides
beneficial information for event extraction.
Effectiveness of MECL. To evaluate the influence
of MECL module, we utilize MECL module based
on the second line of each part. As shown in Table
2, MECL module brings the most improvement to
our framework, such as 2.8% trigger extraction F1
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Figure 4: Case study on DQT module. Attention heatmaps of two randomly sampled examples are visualized. In
each example, the first line is VAF and the second line is OFF.

score on TVEE dataset and 3.7% trigger extraction
F1 score on VM2E2 dataset. This demonstrates
that MECL module could refine the feature repre-
sentations and align the features between heteroge-
neous modalities, thus boosting the performance.
Effectiveness of DQT. We also evaluate the im-
pact of DQT module. From Table 2, we could
find that DQT module improves the performance
of all evaluation metrics significantly on the two
datasets. It is worth noting that the recall metric of
trigger extraction is boosted from 50.6% to 53.5%
on VM2E2 dataset and so is argument extraction
recall metric from 25.3% to 27.4%. The reason is
perhaps that in the DQT module, each text token is
queried by the VAF and OFF, thus enhancing the
ability of searching instances contained in videos.

4.4 Visualization of T-SNE for MECL

To verify the impact of MECL module, we use
t-SNE (Van der Maaten and Hinton, 2008) to vi-
sualize the manifold of TSEE with and without
MECL module. Our MECL module is designed to
reduce the distance between OFF and event triggers.
We randomly sampled 1500 OFF trained with or
without MECL module on TVEE dataset. The visu-
alization results are shown in Figure 3, where OFF
belonging to the same trigger is marked in the same
color. It could be clearly seen that OFF trained with
MECL module in subfigure is obviously separated
into various compact clusters. However, when OFF
is not trained with MECL module, there is no dis-
tinctiveness between OFF belonging to different
triggers. This result demonstrates that our MECL
module does well in aligning the semantics of dif-
ferent modalities.

4.5 Case Study on DQT

In order to intuitively show the effectiveness of
DQT module, we conduct case studies on TVEE
dataset. As shown in Figure 4, we visualize the
attention heatmaps based on the attention scores
output by DQT. As DQT utilizes VAF and OFF to
query each token in TSF respectively, each sample
corresponds to two lists of attention scores. From
Figure 4, we could observe that for each sample,
the frame appearance or motion related tokens are
paid more attention by VAF or OFF. In the first
example, When VAF queries police, protesters and
march, it gives more attention scores than other to-
kens. We could also observe that OFF attends to the
clashed most. In the second example, each token
is allocated similar attention score by VAF. This
may be the reason that the pre-trained I3D model
does not have the knowledge of instances such as
Trump and Kim. OFF gives a higher attention score
to meeting because this token could provide motion
information. From the above analysis we can see
that DQT module does well in understanding the
relationship between multimodal semantics.

5 Conclusion

In this paper, we propose a Three Stream Multi-
modal Event Extraction framework that explores
the utilization of motion representations in text-
video based multimodal event extraction (TVMEE)
tasks. Optical flow features are extracted from
videos as motion representations to incorporate
with other modalities. To improve alignment
among feature representations, we propose a Multi-
level Event Contrastive Learning module. A Dual
Querying Text module is also designed to help en-
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hance the interaction between different modalities.
TSEE achieves the state-of-the-art results on two
datasets, demonstrating the effectiveness of our
framework. In future work, we will explore the uti-
lization of large language model (LLM) in fusing
modality features to boost TIMEE performance.

Limitations

The main limitation of our work is the offline train-
ing. As the insufficiency of GPU resources, we
need to extract the VAF and OFF in advance and
could not optimize the video pre-trained model
online. The other limitation is the inapplicabil-
ity of open-domain event extraction. As both two
datasets are annotated in a close-domain event set,
our framework can not deal with open-domain
event extraction.
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