
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 1612–1634
December 6-10, 2023 ©2023 Association for Computational Linguistics

Increasing Coverage and Precision of Textual Information
in Multilingual Knowledge Graphs

Simone Conia∗

Sapienza University of Rome
simone.conia@uniroma1.it

Min Li
Apple

min_li6@apple.com

Daniel Lee∗
University of Calgary

daniel.lee1@ucalgary.ca

Umar Farooq Minhas
Apple

ufminhas@apple.com

Ihab Ilyas
Apple

iilyas@apple.com

Yunyao Li
Apple

yunyaoli@apple.com

Abstract
Recent work in Natural Language Processing
and Computer Vision has been using textual
information – e.g., entity names and descrip-
tions – available in knowledge graphs to ground
neural models to high-quality structured data.
However, when it comes to non-English lan-
guages, the quantity and quality of textual in-
formation are comparatively scarce. To address
this issue, we introduce the novel task of auto-
matic Knowledge Graph Enhancement (KGE)
and perform a thorough investigation on bridg-
ing the gap in both the quantity and quality of
textual information between English and non-
English languages. More specifically, we: i)
bring to light the problem of increasing multi-
lingual coverage and precision of entity names
and descriptions in Wikidata; ii) demonstrate
that state-of-the-art methods, namely, Machine
Translation (MT), Web Search (WS), and Large
Language Models (LLMs), struggle with this
task; iii) present M-NTA, a novel unsupervised
approach that combines MT, WS, and LLMs
to generate high-quality textual information;
and, iv) study the impact of increasing multi-
lingual coverage and precision of non-English
textual information in Entity Linking, Knowl-
edge Graph Completion, and Question Answer-
ing. As part of our effort towards better mul-
tilingual knowledge graphs, we also introduce
WikiKGE-10, the first human-curated bench-
mark to evaluate KGE approaches in 10 lan-
guages across 7 language families.

1 Introduction

The objective of a knowledge graph is to encode
our collective understanding of the world in a well-
defined, structured, machine-readable representa-
tion (Hogan et al., 2021). At a high level, each
node of a knowledge graph usually represents a
concept (e.g., universe, weather, or president) or
an entity (e.g., Albert Einstein, Rome, or The Leg-
end of Zelda), and each edge between two nodes

∗Work done as intern at Apple.

is a semantic relationship that represents a fact
(e.g., “Rome is the capital of Italy” or “The Leg-
end of Zelda is a video game series”). With the
wealth of information that knowledge graphs pro-
vide, they play a fundamental role in a multitude
of real-world scenarios, touching many areas of
Artificial Intelligence (Nickel et al., 2016), includ-
ing Natural Language Processing (Schneider et al.,
2022), Computer Vision (Marino et al., 2017), In-
formation Retrieval (Reinanda et al., 2020), and
recommender systems (Guo et al., 2022).

Over the years, knowledge graphs have mainly
been adopted as a rich source of human-curated re-
lational information to enhance neural-based mod-
els for tasks of varying nature (Huang et al., 2019;
Bevilacqua and Navigli, 2020; Orr et al., 2021).
However, ever since natural language text has
proven to be an effective interface between struc-
tured knowledge and language models (Guu et al.,
2020; Petroni et al., 2019; Peng et al., 2023a), the
value of knowledge graphs has become twofold:
besides providing relational information, knowl-
edge graphs have also become a reliable source of
high-quality textual information. Indeed, recent
approaches have been increasingly reliant on tex-
tual information from knowledge graphs to surpass
the state of the art (Barba et al., 2021; Chakrabarti
et al., 2022; De Cao et al., 2022; Xu et al., 2023).

Unfortunately, when it comes to non-English
languages, the condition of multilingual textual in-
formation in knowledge graphs is far from ideal.
Indeed, popular resources present a significant gap
between English and non-English textual informa-
tion, hindering the capability of recent approaches
to scale to multilingual settings (Peng et al., 2023b)
Importantly, this gap exists in high-resource lan-
guages even if we consider basic textual properties,
such as entity names and entity descriptions. The
nature of the problem is dual: disparity in coverage,
as the quantity of textual information available in
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non-English languages is more limited, and preci-
sion, as the quality of non-English textual informa-
tion is usually lower.

In this paper, we address the aforementioned cov-
erage and precision issues of textual information in
multilingual knowledge graphs via a data-centric
approach. Our contributions include the following:

• We introduce the task of automatic Knowl-
edge Graph Enhancement (KGE) to tackle
the disparity of textual information between
English and non-English languages in multi-
lingual knowledge graphs;

• We present WikiKGE-10, a novel human-
curated benchmark for evaluating KGE sys-
tems for entity names in 10 typologically di-
verse languages: English, German, Spanish,
French, Italian, Simplified Chinese, Japanese,
Arabic, Russian, and Korean;

• We investigate how well Machine Translation
(MT), Web Search (WS), and Large Language
Models (LLMs) can narrow the gap between
English and non-English languages.

• We propose M-NTA, a novel unsupervised ap-
proach, which combines MT, WS, and LLMs
to mitigate the problems that arise when using
each system separately;

• We demonstrate the beneficial impact of KGE
in downstream tasks, including Entity Link-
ing, Knowledge Graph Completion, and Ques-
tion Answering.

We deem that achieving parity of coverage and
precision of textual information across languages in
knowledge graphs is fundamental to enable better
and more inclusive multilingual applications. In
the hope that our contributions can set a stepping
stone for future research in this field, we release
WikiKGE-10 at https://github.com/apple/ml-kge.

2 Related Work

In this section, we provide a brief overview of
knowledge graphs, highlighting how textual infor-
mation from knowledge graphs is now as important
as their relational information, showcasing how
recent work has successfully integrated textual in-
formation into downstream applications, and re-
viewing how recent efforts have mainly focused
on completing relational information in knowledge
graphs rather than textual information.

Knowledge graphs. Even though their exact def-
inition remains contentious, knowledge graphs
are usually defined as “a graph of data intended
to accumulate and convey knowledge of the real
world, whose nodes represent entities of interest
and whose edges represent potentially different re-
lations between these entities” (Hogan et al., 2021).
Over the years, research endeavors in knowledge
graphs have steadily focused their efforts primar-
ily on using their relational information, i.e., the
semantic relations between entities. Besides foun-
dational work on knowledge graph embedding tech-
niques, which represent the semantics of an entity
by encoding its graph neighborhood (Wang et al.,
2017), relational knowledge has been successfully
employed in Question Answering to encode proper-
ties that generalize over unseen entities (Bao et al.,
2016; Zhang et al., 2018; Huang et al., 2019), in
Text Summarization to identify the most relevant
entities in a text and their relations (Huang et al.,
2020; Ji and Zhao, 2021), in Entity Linking to
condition the prediction of an instance on knowl-
edge subgraphs (Raiman and Raiman, 2018; Orr
et al., 2021), and in Word Sense Disambiguation
to produce rich meaning representations that can
differentiate closely related senses (Bevilacqua and
Navigli, 2020; Conia and Navigli, 2021).

Textual information in knowledge graphs.
While knowledge graphs have been used for the
versatility of their relational information, the rapid
emergence of modern language models has also
represented a turning point in how the research
community looks at knowledge graphs. As a mat-
ter of fact, the initial wave of Transformer-based
language models (Devlin et al., 2019; Radford et al.,
2019) were trained purely on text, and, when re-
searchers realized that quantity and quality of train-
ing data are two essential factors to enable better
generalization capabilities (Liu et al., 2019), it be-
came clear that the textual data available in knowl-
edge graphs could be exploited as a direct interface
between human-curated structured information and
language models.

Indeed, prominent knowledge graphs – Wiki-
data (Vrandečić and Krötzsch, 2014), DBPe-
dia (Lehmann et al., 2015), YAGO (Hoffart et al.,
2011), and BabelNet (Navigli et al., 2021), among
others – feature lexicalizations for each entity in
multiple languages, e.g., names, aliases and de-
scriptions of various length. Therefore, textual in-
formation in knowledge graph is now as important
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as relational information, with recent developments
taking advantage of the former to surpass the previ-
ous state of the art in an increasingly wide array of
tasks, such as Word Sense Disambiguation (Barba
et al., 2021), Entity Linking (Xu et al., 2023; Proco-
pio et al., 2023), Relation Alignment (Chakrabarti
et al., 2022), and Language Modeling itself (Xiong
et al., 2020; Agarwal et al., 2021; Li et al., 2022a;
Liu et al., 2022). Unfortunately, the wide adoption
of such techniques in multilingual settings has been
strongly limited by the disparity in coverage and
quality of entity names and descriptions in mul-
tilingual knowledge graphs between English and
non-English languages (Peng et al., 2023b).

Knowledge graph acquisition and completion.
Finally, we would like to stress that our endeavor
is orthogonal to the efforts that usually fall under
the umbrella terms of “knowledge acquisition” (Ji
et al., 2022) and “knowledge graph completion” in
the literature (Lin et al., 2015; Shi and Weninger,
2018; Chen et al., 2020b). More specifically, the ob-
jective of these two tasks is to construct the “struc-
ture” of a knowledge graph, i.e., identifying the set
of entities of interest and the (missing) relations
between entities. Therefore, the multilingual ex-
tensions of these two tasks are concerned about
detecting missing nodes or edges in a multilingual
knowledge graph (Chen et al., 2020a; Huang et al.,
2022; Chakrabarti et al., 2022), whereas we specif-
ically focus on expanding the coverage and preci-
sion of textual information in multilingual knowl-
edge graphs. Nonetheless, we argue that increas-
ing coverage and quality of textual information
in multilingual knowledge graphs has beneficial
cascading effects on tasks like knowledge graph
completion, as our experiments show in Section 6.

3 Knowledge Graph Enhancement of
Textual Information

While relational information in knowledge graphs
is usually language-agnostic (e.g., “AI” is a field
of “Computer Science” independently of the lan-
guage we consider), textual information is usu-
ally language-dependent (e.g., the lexicalizations
of “AI” and “Computer Science” vary across lan-
guages). With the growing number of languages
supported by knowledge graphs, it is increasingly
challenging for human editors to maintain their
content up-to-date in all languages: therefore, we
believe it is important to invest in the development
and evaluation of systems that can support humans

in updating textual information across languages.

3.1 Task definition
Given an entity e in a knowledge graph G, we de-
fine Knowledge Graph Enhancement (KGE) as the
task of automatically producing textual information
about e for each language l ∈ L, where L is the
set of languages of interest. More precisely, KGE
encompasses two subtasks:

• Increasing coverage of textual information,
which consists in providing textual informa-
tion that is currently unavailable for e in G;

• Increasing precision of textual information,
which consists in identifying inaccurate or
under-specified facts in the textual informa-
tion already available for e in G.

Therefore, KGE evaluates the capability of a sys-
tem to provide new textual information (coverage)
as well as its capability to detect errors and inac-
curacies in existing textual information (precision).
While textual information may refer to any entity
property expressed in natural language, in the re-
minder of this paper, we focus on entity names and
entity descriptions in Wikidata, which have become
increasingly used in knowledge-infused language
models and state-of-the-art systems (see Section 2).

3.2 Coverage of non-English information
Ideally, we would like every entity e in Wikidata
to be “covered” in all languages, i.e., we would
like Wikidata to provide a name and a description
of e for each l in the set L of the languages sup-
ported by the knowledge graph. In practice, this
is not the case in Wikidata, as we can observe in
Figure 1, which provides a bird’s-eye view on the
availability of entity names and entity descriptions
in 9 non-English languages. More precisely, we
analyzed the Wikidata entities that have an associ-
ated Wikipedia page1 with at least 100 page views
in any language over the 12 months between May
2022 and April 2023. Our analysis calls attention
to the issue of coverage of entity names and en-
tity descriptions in Wikidata, which is significant
even if we only consider head entities – top-10%
of the most popular entities sorted by number of
Wikipedia page views – and restrict the set of lan-
guages to German, Spanish, and French, which are

1The Wikidata-to-Wikipedia mapping is n-to-1 since a
Wikidata entity may refer to the entire Wikipedia article or a
section of an article.
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Figure 1: Coverage of non-English textual information – entity names and descriptions – compared to English in
Wikidata. Even for head entities (top-10% in terms of Wikipedia page views), there is a large disparity between
English and non-English coverage; the situation is unexpectedly worse on torso (top-50%) and tail entities. Best
seen in color.

usually regarded as “high-resource” languages. Un-
surprisingly, we can observe that the gap in cover-
age increases when we consider entities belonging
to the torso (top-50%) and tail of the popularity dis-
tribution, as the coverage of Japanese and Chinese
names for tail entities is lower than 15%.

We argue that the fact that Wikidata inherits this
disparity from Wikipedia, which is edited by a
disproportionate number of English-speaking con-
tributors,2 should not detract our attention from
this issue. As a matter of fact, a growing num-
ber of approaches relies on textual information
from Wikidata; therefore, we believe that the stark
contrast between today’s great interest for textual
information in knowledge graphs and the scarce
multilingual coverage revealed by our analysis mo-
tivates the development of “data-centric AI” ap-
proaches (Zha et al., 2023) for increasing multi-
lingual coverage, rather than focusing our efforts
exclusively on model-centric novelties.

3.3 Precision of non-English information
While non-English coverage of entity names and
entity descriptions is critical, another crucial as-
pect is the level of precision in Wikidata. Indeed,
the majority of the approaches that rely on names
and descriptions often use such information as-is
and overlook the possibility that it may be inaccu-
rate. More specifically, we categorize the causes of

2The primary language of Wikipedia editors is English
(52%), followed by German (18%), Russian and Spanish (both
at 10%) [source: UNU-Merit].

inaccurate information into three main classes:

• Human mistakes, when the imprecision was
caused by a human editor. For example, entity
Q1911 is incorrectly named Oliver Giroud in
Spanish instead of Olivier Giroud.

• Stale entries, when new information is avail-
able but Wikidata has not been updated. For
example, the English description of entity
Q927916 has been recently updated to include
the date of death but the Russian description
still indicates the date of birth only.

• Under-specific information, when the avail-
able information is not incorrect but it is
still too generic. For example, the Spanish
description for Q345494 is “músico japonés”
(Japanese musician), whereas the German one
is “japanischer Komponist, Pianist, Produzent
und Schauspieler (1952–2023),” which details
his work (composer, pianist, producer, and ac-
tor) and includes his birth and death dates.

Although it is not uncommon to encounter in-
stances of these three classes of error in Wikidata,
conducting a comprehensive analysis of its entire
knowledge graph is unfeasible.

3.4 Evaluating KGE with WikiKGE-10

To address the above-mentioned issues, we present
WikiKGE-10, a novel resource for benchmark-
ing data-centric-AI approaches on KGE of entity
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AR DE EN ES FR IT JA KO RU ZH All

Entities 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 10,000
Entity names in WikiKGE-10 4,213 3,498 2,837 4,320 3,548 3,156 2,999 3,874 3,901 4,088 36,434
- Entity names in Wikidata 2,521 2,336 2,090 2,732 2,330 1,840 2,235 2,136 2,706 2,569 23,495
- Entity name errors in Wikidata 320 491 219 571 530 236 486 329 507 830 4,663

Table 1: Overview of WikiKGE-10, which features 10 languages – Arabic (AR), German (DE), English (EN),
Spanish (ES), French (FR), Italian (IT), Japanese (JA), Russian (RU), simplified Chinese (ZH).

names in 10 languages: English, German, Span-
ish, French, Italian, Chinese, Japanese, Korean,
Arabic, and Russian. At a high level, WikiKGE-
10 is designed to feature typologically-different
linguistic families, from West Germanic to Ro-
mance, Semitic, Slavic, Koreanic, Japonic, and
Sino-Tibetan, and, therefore, to enable compar-
ison of entity names across a set L of 10 di-
verse languages with heterogeneous, possibly non-
overlapping vocabularies and scripts.

Given a language l ∈ L, we uniformly sam-
pled 1000 entities from the top-10% of the entities
in Wikidata sorted by the number of page views
for their corresponding Wikipedia article in l. We
note that the composition of the top-10% entities –
and, therefore, our sample of 1000 entities – may
significantly vary from language to language, as
the popularity distribution changes according to
what different cultures care about (Hershcovich
et al., 2022). After selecting 1000 entities for each
language, human graders manually checked their
existing names to assess their correctness, while
also adding new valid names. The annotation pro-
cess, which took more than 2,500 human hours,
resulted in around 36,000 manually-curated names
across 10 languages; we provide more details on
the creation of WikiKGE-10 and our guidelines in
Appendix A. Importantly, as shown in Table 1, we
find that human graders deemed 20% of the entity
names in Wikidata to be incorrect and that 40%
of the valid entity names could not be found in
Wikipedia. In practice, since WikiKGE-10 features
manually-curated entity names and indicates which
names in Wikidata are incorrect or inaccurate, our
benchmark can be used to evaluate the capability
of a system to tackle both subtasks in KGE, i.e.,
increasing coverage and precision of entity names.

4 Methodology

In this section, we consider three broad families of
approaches – MT, WS, and LLMs – and demon-
strate their unsatisfactory performance on narrow-

ing the coverage and precision gap between English
and non-English languages. Therefore, we also
introduce M-NTA (Multi-source Naturalization,
Translation, and Alignment), a simple unsuper-
vised ensembling technique, which overcomes the
limitations of MT, WS, and LLMs by combining
and ranking their predictions. Here, we direct our
attention toward entity names, but we also show
that the methodologies discussed in this section can
be extended to other types of textual information,
such as entity descriptions, in Appendix C.

4.1 Baseline approaches

Machine Translation (MT). When in need of
converting information from one language to an-
other, employing MT is a typical choice. Indeed,
given a source language ls and a target language lt,
a straightforward approach would be to use an MT
system to translate the textual information avail-
able in ls to lt to increase coverage in lt. However,
such an approach is limited in several respects:
i) it assumes that all textual information is avail-
able in ls, which, in practice, is not the case even
when ls is English, i.e., MT cannot be applied if
the information to translate is not available in the
source language in the first place; ii) it assumes
that MT systems are precise, which, again, is not
the case: for example, entity names can be com-
plex and ambiguous to translate without additional
context (e.g., “Apple” could refer to the fruit or
the tech company); and, iii) while MT can be em-
ployed to increase coverage, it is not clear how to
apply MT to identify inaccurate entity names to
increase precision of existing textual information.

Web Search (WS). A common workflow for
looking up textual information in a target language
lt is to query Web search engines with queries in
a source language ls, such as “[entity-name] in
[lt]”, and extract the answer from the search re-
sults, possibly limiting the search space to Web
pages entirely in lt or originating from countries
in which lt is the primary/official language. While
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WS can provide more varied results that are not
1-to-1 translations of the source entity name, we
argue that WS suffers from the same fundamen-
tal limitations as MT: i) if ls is not complete, then
we cannot formulate every search query; ii) WS is
prone to biases, especially for ambiguous instances
(e.g., googling “plane” shows many results about
airplanes, a few results about geometric planes, and
none about plane trees); and, iii) using WS to iden-
tify and correct imprecise textual information in a
knowledge graph is not obvious.

Large Language Models (LLMs). Recent
LLMs have been shown to be few-shot learners,
thanks to what is now known as in-context learning,
or the capability of capturing latent relationships
between a few input examples to provide an answer
for a new task (Brown et al., 2020). With the advent
of multilingual LLMs, such as BLOOM (Scao et al.,
2023), mT5 (Xue et al., 2021), and their instruction-
fine-tuned variants (Muennighoff et al., 2022), we
can prompt such models for translation, e.g., “How
do you say [entity-name] in [lt]?”, possibly provid-
ing a few examples in input to condition the gen-
eration of the output. While prompting language
models is versatile, relying on LLMs also exposes
us to their weaknesses, e.g., hallucinations (Ji et al.,
2023) and data biases (Navigli et al., 2023).

4.2 M-NTA: Multi-source Naturalization,
Translation, and Alignment

To address the issues above, we introduce M-NTA,
a simple unsupervised technique that combines MT,
WS, and LLMs. The intuition behind M-NTA is
that obtaining a fact from multiple source systems
may offer complementary pieces of information
which provide varying views on our world knowl-
edge; we hypothesize that, if distinct views support
the same fact, there is a greater chance for the fact
to be closer to the ground truth.

Source systems in M-NTA. The first question,
therefore, is how to produce the above-mentioned
views on our world knowledge. Given a source
language ls and an entity e whose name in ls is ens ,
M-NTA takes a three-steps approach to generate
ent in a target language lt:

1. Naturalization: as mentioned above, entity
names are not suitable for direct translation
since they might not provide sufficient con-
text (Li et al., 2022b). To overcome this issue,
M-NTA retrieves the textual description eds of

e in ls from Wikidata and uses it to produce a
natural language representation rs(e

n
s , e

d
s) of

e in ls. This allows M-NTA to rely on dif-
ferent representations for polysemous words,
e.g., “Apple is an American technology com-
pany” and “Apple is a fruit of the apple tree.”

2. Translation: next, M-NTA “translates” the
representation rs(e

n
s , e

d
s) from ls to lt using

a system f(·) to obtain a natural language
output rt(ent , e

d
t ) in the target language.

3. Alignment: finally, M-NTA aligns the output
rt(e

n
t , e

d
t ) with the input rs(ens , e

d
s) to extract

the entity name ent .

Most crucially, M-NTA is transparent to the defini-
tion of a source system f(·). This allows M-NTA
to take advantage of any source system f(·) that is
able to produce ent . More specifically, M-NTA can
use a set of source systems F = {f1, f2, . . . , fn}
in which fi can be an MT, WS or LLM-based sys-
tem. Not only that, we can leverage the same MT
system multiple times by setting the source lan-
guage ls to different languages, allowing M-NTA
to draw knowledge from all the languages of inter-
est to produce better results in lt.

Ranking answers in M-NTA. The second ques-
tion is how to validate each view by using the other
views. In practice, we first consider each view as an
answer y = f(·) provided by a source system f(·)
in the set of source systems F . Then, we assign an
agreement score σ(y) to each answer:

σ(y) =
∑

ϕ(y, y′) ∀y′ = f ′(·), f ′ ∈ F \ {f}

where ϕ(y, y′) → {0, 1} is a function that indicates
if y is supported by y′, e.g., in the case of entity
names ϕ(·, ·) can be implemented as exact string
match. In other words, the agreement score σ(y) is
higher when an answer y from a source system f
is supported by an answer y′ from another source
system f ′; if y is valid according to multiple source
systems, then there is a lower chance for y to be
incorrect. On the contrary, if y is not supported
by other answers, its agreement score is lower and,
therefore, there is a higher chance for y to be incor-
rect. Finally, we obtain the final set of answers Y
by selecting all the answers y whose score σ(y) is
greater than or equal to a threshold λ:

Y = {y : σ(y) ≥ λ}
1617



AR DE EN ES FR IT JA KO RU ZH Avg

C P C P C P C P C P C P C P C P C P C P C P

M
T

fr
om

DE → 28.1 42.4 – – 37.8 60.1 47.1 60.9 48.3 59.9 51.6 60.3 24.1 52.1 30.8 46.3 36.2 54.6 28.3 54.8 36.9 54.6
EN → 30.2 45.1 52.1 67.1 – – 50.9 63.1 50.2 62.8 54.1 65.2 29.9 55.3 32.8 49.2 38.1 57.3 30.6 57.1 41.0 58.0
ES → 27.3 43.1 48.0 63.1 37.1 58.5 – – 48.9 60.8 52.9 64.0 27.7 54.1 32.0 47.4 36.2 55.2 27.1 53.2 37.5 55.5
FR → 27.0 43.6 47.4 63.5 37.6 58.3 48.3 58.9 – – 52.9 64.0 27.4 54.5 32.3 47.8 35.9 55.1 27.4 53.6 37.4 55.5
IT → 26.8 43.6 48.2 62.9 36.4 58.7 46.8 57.8 49.2 61.3 – – 28.0 54.6 31.6 48.2 35.9 55.4 26.3 53.5 36.6 55.1
JA → 23.3 37.1 43.0 57.1 31.1 52.5 43.3 52.1 44.9 56.8 48.9 60.0 – – 28.0 43.4 32.2 51.2 23.1 49.2 35.3 51.0
ZH → 22.7 36.2 42.0 55.7 30.2 49.2 39.0 48.1 40.3 51.8 44.9 58.0 19.3 44.1 26.0 39.4 29.4 48.5 – – 32.6 47.9

W
S GoogleSearch 14.6 28.0 36.4 54.1 – – 39.3 52.0 39.0 57.6 43.6 53.5 16.1 44.3 23.6 38.5 29.1 47.2 18.5 36.2 28.9 45.7

LL
M

s

mT0large 15.2 29.0 40.1 53.2 – – 40.3 53.1 39.4 57.2 44.2 54.1 16.5 44.1 22.4 39.2 28.3 47.4 18.0 37.0 29.4 46.0
mT0xl 15.8 31.1 42.1 54.4 – – 41.5 54.2 39.9 58.0 44.5 54.9 16.9 46.1 23.2 39.5 30.1 48.4 19.2 37.8 30.4 47.2
mT0xxl 17.1 33.4 43.8 56.1 – – 41.9 55.0 40.7 59.1 45.0 55.1 18.0 46.9 22.4 39.9 31.0 48.7 19.3 40.1 31.0 48.3
GPT-3 18.2 34.1 47.4 64.9 – – 45.3 60.2 45.4 62.2 49.4 62.2 21.4 49.1 26.0 42.7 32.3 53.5 22.1 50.8 34.2 53.3
GPT-3.5 27.4 42.1 50.5 66.2 – – 50.6 63.2 50.5 63.3 53.7 64.9 28.9 54.4 31.9 47.3 36.8 56.3 29.2 55.7 39.9 57.0
GPT-4 29.9 44.0 51.3 66.1 – – 50.7 63.0 51.4 63.6 54.7 65.6 33.7 56.3 34.6 48.9 40.2 58.5 31.3 56.5 42.0 58.1

M
-N

TA

M-NTA GPT-3 41.3 73.6 57.5 77.3 41.3 64.8 55.4 74.7 57.1 69.9 61.3 75.1 34.0 65.8 50.0 76.6 44.1 66.5 34.7 70.0 53.0 79.4
M-NTA GPT-3.5 42.7 74.4 57.5 77.6 41.3 64.8 55.6 75.0 57.3 70.0 61.7 75.2 35.2 67.0 50.6 76.7 44.8 66.9 36.1 71.4 53.6 79.9
M-NTA GPT-4 43.2 74.4 57.1 77.5 41.3 64.8 55.8 75.0 57.4 70.3 61.7 75.5 35.2 67.9 51.2 76.8 45.3 67.1 36.8 72.0 53.9 80.1

Table 2: F1 scores on entity names coverage (C) and precision (P) in WikiKGE-10 for MT with NLLB-200, WS
with Google Search, LLM prompting with mT0 and GPT, and M-NTA. The symbol “–” is used to indicate that
source and target languages are the same. Best results in bold.

where λ is a hyperparameter that can be tuned to
balance precision and recall of the system, with
our experiments indicating that λ = 2 is the most
balanced choice for coverage, as discussed in Ap-
pendix C.

Differently from MT, WS, and LLMs, since each
answer in Y is scored and ranked by M-NTA, the
application of M-NTA to KGE is straightforward.
To increase coverage, we can consider Y as the
result, as λ > 1 allows M-NTA to remove unlikely
answers; to increase precision, we can consider
every value ŷ in the KG that is not in Y as an
incorrect value.

5 Experiments on KGE

In this section, we evaluate our strong baselines
and M-NTA on the task of KGE for entity names
and discuss the results obtained on WikiKGE-10.

5.1 Experimental setup
Recently, there has been a surge of interest for mul-
tilingual MT systems, i.e., systems that use a uni-
fied model for multiple language pairs. Therefore,
for the implementation of the MT baseline, we use
NLLB-200 (Costa-jussà et al., 2022), a state-of-the-
art multilingual MT system that supports over 200
languages. For WS, we use Google Web Search, as
it is often regarded as one of the best WS engines.
For LLM prompting, we consider two popular mod-
els: i) mT0 (Muennighoff et al., 2022), an openly
available instruction-finetuned multilingual LLM
based on mT5, and ii) GPT,3 one of the most pop-

3Experiments with GPT-3 and GPT-3.5 were carried out
between March and May 2023. Additional experiments with

ular albeit closed LLMs, which has been proven
to show strong multilingual capabilities. Finally,
we evaluate M-NTA when scoring and ensembling
the outputs from NLLB-200,4 Google Web Search,
and GPT-3/3.5/4.

For each baseline, the input data is the set of
entity names that currently exist in Wikidata in a
source language ls, i.e., the entity names in ls are
“translated” into the target language lt using MT,
WS, LLM prompting or M-NTA. We note that, if
Wikidata does not include at least one name for an
entity e in ls, then none of the systems mentioned
above is able to produce a name in lt. M-NTA is
able to mitigate this issue by drawing information
from multiple source languages at the same time.

Given a set of human-curated correct names Ȳ
from WikiKGE-10 and a set of predicted names
Y generated by a system, we compute coverage
between Ȳ and Y as following:

PPVC =
∑

y∈Y

1Ȳ (y)

|Y |

TPRC =
∑

ȳ∈Ȳ

1Y (ȳ)

|Ȳ |

Coverage = 2
PPVC ·TPRC

PPVC +TPRC

where PPVC is the positive predictive value,
TPRC is the true positive rate, and 1X(x) is the
indicator function, which returns 1 if x ∈ X else 0.
We compute precision in a similar way, using the

GPT-4 were carried out in September 2023.
4For each target language lt, we M-NTA uses the transla-

tions from every source language ls ̸= lt.
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set of human-curated invalid names ¬Ȳ and the set
of names ¬Y predicted to be incorrect by a system.
Note that, to enable a direct and fair comparison,
we allow every system to rely on additional contex-
tual information in the form of entity descriptions
from Wikidata; we provide more details about the
experimental setting in Appendix C.

5.2 Results and discussion
The results on WikiKGE-10 reported in Table 2
highlight two key findings: i) our proposed solu-
tion, M-NTA, offers superior performance com-
pared to state-of-the-art techniques in MT, WS,
and LLMs on both coverage and precision of entity
names; and, ii) the results on WikiKGE-10 indicate
that KGE is a very challenging task and that more
extensive investigations are needed to design better
KGE systems. In the following, we report the main
takeaways from our experiments.

Different languages hold different knowledge.
Our experimental results show that generating en-
tity names in non-English languages by translating
English-only textual information does not provide
the best results, as shown in Table 2. This is true
not only for the MT system we use in our exper-
iments but also for WS and LLMs, for which we
use English-only queries and prompts, respectively.
In particular, it is interesting to notice that com-
pletely different systems, namely, MT and GPT-
3.5, produce similar results on average: 41.0% vs.
39.9% in coverage and 58.0% vs. 57.0% in preci-
sion. Therefore, we hypothesize that the significant
gain in performance by M-NTA – +12% in cov-
erage and +22% in precision over GPT-3.5 – is
mainly attributable to its effectiveness in combin-
ing information across different languages. Indeed,
it is interesting to notice that using GPT-4 instead
of GPT-3.5 as one of the sources of M-NTA only
provides marginal improvements to the overall re-
sults in both coverage and precision.

WS may not be suitable for KGE. The results
from our experiments show that WS is the least
effective approach to generate entity names. Al-
though we are not disclosed on the inner workings
of proprietary search engines, we can qualitatively
observe that the results returned from Web searches
often include answers for entities that are seman-
tically similar to the one mentioned in the input
query. For example, searching Niki Lauda (former
F1 driver) in Italian also returns results about Rush
(biographical film on Lauda). Relying on semantic

similarity is often a robust strategy for information
retrieval, but, in this case, it introduces significant
noise, which is undesirable in a knowledge graph.

Prompting LLMs requires caution. Our experi-
ments also indicate that prompting LLMs is a better
option than WS in terms of performance, especially
when using GPT. However, we shall keep in mind
not to take benchmark results at face value (Maru
et al., 2022): analyzing the answers shows one is-
sue that does not surface in our numerical results
is that some errors in the predictions provided by
LLMs can be significantly worse – and, therefore,
potentially more problematic – than those made by
MT and WS systems. We observe that, especially
for uncommon entities and smaller models, LLMs
may produce answers that are completely unrelated
to the correct answer, including copying part of the
prompt or its examples, providing entity names for
entirely different entities (e.g., Silvio Berlusconi
(Italian politician) for San Cesario sul Panaro (Ital-
ian comune)), hallucinating facts (e.g., adding that
The Mandalorian (2nd season) is from Star Wars:
La venganza de los Sith in Spanish), and also gen-
erating nonsense outputs. It follows that, although
LLMs are generally better than WS, the risk of
using them is higher in case of error, as purely nu-
merical metrics, such as coverage and precision,
may hide that some errors are worse than others,
i.e., potentially more harmful in downstream appli-
cations.

6 Enhancing Textual Information in KGs:
Impact on Downstream Tasks

In this section, we demonstrate the beneficial im-
pact of KGE on downstream tasks and its effec-
tiveness in improving the performance of state-of-
the-art techniques in multilingual Entity Linking
and Knowledge Graph Completion; we also show
that KGE is beneficial for multilingual Question
Answering in Appendix E.

Multilingual Entity Linking (MEL). A direct
application of increasing the quantity and qual-
ity of textual information in a knowledge graph
is MEL, the task of linking a textual mention to
an entity in a multilingual knowledge base (Botha
et al., 2020). We evaluate the impact of our work
on mGENRE (De Cao et al., 2022), a state-of-the-
art MEL system that fine-tunes mBART (Lewis
et al., 2020) to autoregressively generate a Wiki-
data entity name for a mention in context. As noted
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MEL mGENRE mGENRE + M-NTA ∆

FR 73.4 74.1⋆ +0.7
IT 56.8 58.2⋆ +1.4
RU 65.8 66.2⋆ +0.4
ZH 52.8 55.0⋆ +2.2

Avg 62.2 63.3⋆ +1.2

Table 3: Comparison between mGENRE and mGENRE
+ M-NTA in terms of F1 score in multilingual Entity
Linking on Wikinews-7. Best results in bold. ⋆ : statis-
tically different with p < 0.05.

by De Cao et al. (2022), mGENRE generates en-
tity names by also copying relevant portions of the
input mention; however, copying is not possible
when the mention of the entity is in a language for
which Wikidata does not feature any names. By
increasing the coverage and precision of textual in-
formation in Wikidata, M-NTA provides mGENRE
with a broader coverage of entity names in non-
English languages, aiding mGENRE’s capability
to rely on copying mechanisms. Indeed, as we can
see in Table 3, augmenting mGENRE with M-NTA
brings an improvement of 1.2 points in F1 score on
average in Wikinews-7, setting a new state-of-the-
art on this benchmark.

Multilingual Knowledge Graph Completion
(MKGC). Another direct application of KGE is
MKGC, the task of predicting missing links be-
tween two entities in a multilingual knowledge
base (Chen et al., 2020a). Similarly to MEL, we
evaluate the downstream impact of our work on a
re-implementation of Align-KGC (SoftAsym), a
state-of-the-art MKGC system originally proposed
by Chakrabarti et al. (2022), which we rebuilt to
use our entity names and descriptions to create
mBERT-based entity embeddings. As shown in
Table 4, using M-NTA to provide more and better
entity names and descriptions allows the MKGC
system to obtain a consistent improvement across
non-English languages on DBP-5L (Chen et al.,
2020a), i.e., +1.5 points in terms of Mean Recipro-
cal Rank (MRR), excluding English. We hypothe-
size that the larger part of this improvement comes
from the fact that the entity descriptions generated
by M-NTA are more informative, as suggested by
the examples shown in Appendix C.7 (see Table 7).
On one hand, this improvement demonstrates the
flexibility of M-NTA, as DBP-5L is based on a
different knowledge graph, i.e., DBPedia. On the

MKGC A-KGC A-KGC + M-NTA ∆

EN 47.4 47.5 +0.1
ES 64.6 66.3⋆ +1.7
FR 64.4 66.0⋆ +1.6
JA 62.8 64.2⋆ +1.4

Avg 59.8 61.1⋆ +1.3

Table 4: Comparison between our re-implementation of
Align-KGC and Align-KGC + M-NTA in terms of Mean
Reciprocal Rank (MRR) in multilingual Knowledge
Graph Completion on DBP-5L. Best results in bold. ⋆ :
statistically different with p < 0.05.

other hand, it empirically validates our assumption
that increasing coverage and precision of textual
information in multilingual knowledge graphs is an
effective data-centric way to unlock latent perfor-
mance in current systems.

7 Conclusion and Future Work

In this paper, we introduced the novel task of
automatic Knowledge Graph Enhancement, with
the objective of fostering the development and
evaluation of data-centric approaches for narrow-
ing the gap in coverage and precision of tex-
tual information between English and non-English
languages. Thanks to WikiKGE-10, our novel
manually-curated benchmark for evaluating KGE
of entity names in 10 languages, we brought to light
the unsatisfactory capabilities of machine transla-
tion, web search, and large language models to
bridge this multilingual gap. To this end, we intro-
duced M-NTA, a novel approach to combine the
complementary knowledge produced by the above
techniques to obtain higher-quality textual infor-
mation for non-English languages. Not only did
M-NTA achieve promising results on WikiKGE-10
but our experiments also demonstrated its benefi-
cial effect across several state-of-the-art systems
for downstream applications, namely, multilingual
entity linking, multilingual knowledge graph com-
pletion, and multilingual question answering.

We hope that our novel benchmark and method
can represent a milestone for KGE. However, our
work demonstrates that, if we aspire to achieve
quantity and quality parity across languages, we
still need more extensive investigations on how to
effectively increase coverage and precision of tex-
tual information in multilingual knowledge graphs.
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Limitations

Textual information in knowledge graphs. In
this paper, we focus on two specific types of tex-
tual information, namely, entity names and entity
descriptions. Although our discussion on cover-
age and precision of textual information (or lack
thereof) can be extended to other types of textual in-
formation, e.g., longer descriptions like Wikipedia
abstracts or coreferential information like the an-
chor text of the hyperlinks in a Wikipedia article,
our analysis in Sections 3.2 (“Coverage of non-
English information”) and 3.3 (“Precision of non-
English information”) highlights that the gap be-
tween English and non-English names and descrip-
tions is very large even for popular entities, ranging
from 20% to 60% for entity names and from 30%
to 80% for entity descriptions. Furthermore, entity
names and entity descriptions are the most widely
used types of textual information from knowledge
graphs in downstream tasks (see Section 2), and,
therefore, we decided to focus our discussion on
these two types, which potentially have a more di-
rect impact on downstream applications, as also
shown in Section 6. We hypothesize that most of
our observations generalize to other types of tex-
tual information in knowledge graphs; however,
we leave deeper investigations and the creation of
benchmarks for other types of textual information
in knowledge graphs to future work.

Different knowledge graphs. Our attention is
mainly directed at Wikidata, as it is one of the most
popular multilingual knowledge graphs used by
the research community in Natural Language Pro-
cessing as well as Information Retrieval and Com-
puter Vision. Therefore, a possible limitation of
our work is its generalizability to other knowledge
graphs. We hypothesize that our work is generaliz-
able to other knowledge graphs, such as DBPedia,
BabelNet, and Open Multilingual WordNet, among
others, since entity names (or aliases) and entity
descriptions (or definitions) are often available in
many of them. Our hunch is partially demon-
strated by our empirical experiments on Multilin-
gual Knowledge Graph Completion (see Section 6),
as we evaluate the impact of M-NTA on DPB-5L,
which is constructed from DBPedia. However, we
hope that our work will raise awareness on the is-
sues of multilingual coverage and precision of tex-
tual information on as many knowledge graphs as
possible, and inspire future work to investigate the

extent of the problem not only on general knowl-
edge graphs but also on domain-specific ones.

WikiKGE-10. Although WikiKGE-10 covers a
wide range of entities – a total of 36,434 manually-
curated entity names – it still focuses only on enti-
ties belonging to the head of the popularity distri-
bution of Wikipedia. Our attention is directed to
popular entities as we observed a large gap of cov-
erage between English and non-English languages
even for entities that are in the top-10%: our bench-
mark shows that current state-of-the-art techniques,
namely, MT, WS, and LLMs, still struggle to pro-
vide correct entity names for popular entities. We
hypothesize that such techniques will also strug-
gle on less popular entities, i.e., entities belonging
to the torso and tail of the popularity distribution.
However, we cannot assume that the performance
and – more importantly – the ranking between MT,
WS, and LLMs is the same on torso and tail en-
tities, e.g., WS may be more robust than LLMs
in generating names for tail entities. Future work
may take advantage of the methodology presented
in this paper to create benchmarks for more chal-
lenging settings. Last but not least, we stress the
fact that the popularity of an entity is variable over
time; therefore, entities that are now in the top-10%
may not be as popular in the next year, or vice-
versa, previously unknown entities may become
extremely popular in the short-term future.

M-NTA. In Section 5.2, we demonstrate that M-
NTA is able to combine information from MT, WS,
and LLMs, successfully outperforming the three
approaches in increasing coverage and precision of
entity names across the 10 languages of WikiKGE-
10. However, one of its main limitations comes
from the fact that M-NTA requires the output from
MT, WS, and LLMs, therefore, its inference time
and computational cost is equal to the sum of its
individual components if run sequentially. Since
we want a knowledge graph to contain the best
textual information possible, we believe that the
increase in performance – +12% in terms of aver-
age F1 score on coverage increase compared to the
second best system; +22% on increasing precision
– justifies the additional time and compute required
to run M-NTA. However, we look forward to novel
methods that will be able to obtain the same or
even better results while drastically decreasing the
computational requirements.
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A Creating WikiKGE-10

In this section, we provide more details on the
creation process of WikiKGE-10, our novel human-
curated dataset for evaluating automatic approaches
on KGE of Wikidata entity names.

A.1 Choice of languages

As mentioned in Section 3.4, one of the main de-
sign decision for our benchmark is the selection of
10 languages from a set of diverse typologically-
different linguistic families:

• West Germanic: English, German;

• Romance: Spanish, French, Italian;

• Semitic: Arabic;

• Sino-Tibetan: Chinese (simplified);

• Slavic: Russian;

• Koreanic: Korean;

• Japonic: Japanese.

This design choice makes WikiKGE-10 challeng-
ing, as the set of symbols used in each language
may or may not vary significantly: for example,
a person name may be the same in English and
French, but it is highly unlikely that a person name
is written in the same way in English and Chi-
nese, which requires at least transliteration. More-
over, the transliteration process between English
and Chinese (and also other languages, such as
Japanese) is not always deterministic, making it
difficult to rely on rule-based approaches to trans-
late a name between these two distant languages.
We focused on languages that can be considered
high/medium-resource as our quantitative analysis
in Section 3.2 shows that coverage of textual in-
formation is still far from ideal even for the most
popular entities (top-10%) of those high/medium-
resource languages. We leave the expansion of our
benchmark to lower-resource languages to future
work.

A.2 Human annotation process

The objective of the annotation process was to sug-
gest and rate entity names in a target language.

First, given an entity, the human annotators were
asked to familiarize themselves with its informa-
tion: the user interface for the task provided the
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Figure 2: UI used for the annotation task: the annotators coudl familiarize themselves with the task with an outline
of the task instructions (detailed guidelines could be read in a separate page) and the information about the entity,
including its names in English and its Wikipedia pages in English and the target language (Italian in this case).

entity names and a short description of the given en-
tity in English retrieved from Wikidata, as well as
a built-in panel that directly displayed side-by-side
the Wikipedia articles of the corresponding entity
both in English and in the target language, if avail-
able. This allowed human annotators to familiarize
themselves with the entity and catch commonalities
and differences between English and non-English
information at a glance without leaving the annota-
tion tool.

After learning about the entity, the annotators
were tasked with rating entity names that are valid
for the given entity with respect to the target lan-
guage, i.e., if an entity name is valid only in lan-
guages that are different from the target language
of interest, the annotators were explicitly asked to
categorize such names as invalid. More specifically,
for each name, an annotator could choose one of
the following options:

• 1 - Incorrect. The name should not be used
to refer to the entity in the target language.
For example, “pomodori marci” – the literal
translation of “tomatoes that are rotten (fruit)”
in Italian – should never be used to refer to
Rotten Tomatoes (the media review site). In
addition, the name should always be valid in
the target locale; therefore, a name in another
language that is not recognized in the target
locale should be considered incorrect.

• 2 - Spelling issues. The name contains minor
issues, for example, spelling errors or missing
digits. For example, “Michael Jacson” (notice
the missing “k”) should not be used to refer
to “Michael Jackson”.

• 3 - Generic, rare or incomplete. The name
can be used to refer to this entity but it is
very generic, rare or incomplete. For exam-
ple, “Barack” can be used to refer to “Barack
Obama” or “game” can be used to refer to
“video game.” Note that nicknames or stage
names like “Air Jordan” for Michael Jordan
(basketball player) or “Money” for Floyd May-
weather (boxer) do not fall into this category;
they should be categorized as “good fit” (see
below).

• 4 - Good fit. The name is a good way to
refer to this entity (for example, one of its
common names, a nickname, or an acronym).
For example, “Harvard” can be used to refer
to “Harvard University”, “WB” can be used to
refer to “Warner Bros.”, “Schumi” is a valid
nickname for “Michael Schumacher”.

• 5 - Perfect fit. The name is the most appro-
priate name for this entity (usually, its most
common name). For example, “Harvard Uni-
versity” (instead of just “Harvard”), “Barack
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Figure 3: UI used for the annotation task: the annotator had to rate names from 1 to 5. Before providing a rating,
they can easily double-check the name in consideration on a Web search engine. As shown in this figure, the
annotators could also suggest new names, which will be inserted in the pool of entity names to grade.

Obama” (instead of “Barack Hussein Obama
II”). In other words, it is the most common or
popular entity name to reference the intended
entity.

Annotators were given the choice to opt out from
rating an entity name in case they deemed they did
not have enough context (e.g., information from the
Wikipedia pages of the entities in English and in the
target language) or they did not feel knowledgeable
enough about the topic.

Before confirming their selection, each annotator
had to double-check their choice by searching exact
matches of the name under consideration using a
Web search engine; a UI component allowed the
annotators to directly look up for exact matches
in the target language without manually typing a
query, making the search easier and speeding up
the annotation process. Forcing the annotators to
take this extra step allowed them to verify that a
named they deemed invalid was indeed invalid, i.e.,
no or few results from the search engine, or not
associated to the entity of interest. An example of
an annotation task is shown in Figures 2 and 3.

We note that annotators could also suggest new
names in the target language for each entity if

they knew about other possible valid names. Each
suggested name was inserted in the pool of entity
names to validate, and, therefore, graded by 3 an-
notators. On the contrary, annotators could not
suggest invalid entity names for an entity, as our
objective was to focus on the errors that are already
in Wikidata, but could provide feedback in case
they noticed that something was wrong in the task.

A.3 Quality assurance and inter-annotator
agreement

To guarantee a high-quality output, before partic-
ipating to the annotation process, each human an-
notator had to pass an entrance test, which con-
sisted in studying a set of guidelines – which in-
troduced the annotator to the concepts of entities
and knowledge graphs, described the task and the
UI elements, and provided a few examples with
illustrations – and in rating 50 entity names cor-
rectly. Annotators that could not pass the entrance
test could not participate to the actual annotation
process (we did not use the 50 entity names in the
entrance test in the final dataset).

For each target language, we only hired annota-
tors that could certify their proficiency in English
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Figure 4: Pairwise inter-annotator agreement measured
with Cohen’s Kappa shows strong agreement at the end
of the annotation process.
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Figure 5: Inter-annotator agreement measured with
Krippendorff’s alpha, which takes into account the car-
dinality of the ratings (1-5), shows strong agreement
among annotators.

and the target language. Annotators were compen-
sated according to the standard hourly wages of
their geographic location. On average, each an-
notator spent about 1 minute for rating an entity
name and about 5 minutes on each entity. Since
each entity name was rated by 3 annotators, we
can estimate that the total human time required by
the annotation process is 3 annotators × 10,000
entities × 5 minutes / 60 minutes = 2,500 hours.

At the end of the annotation process, we mea-
sured the inter-annotator agreement in two ways.
First, we computed pairwise inter-annotator agree-
ment using Cohen’s kappa. As shown in Fig-
ure 4, we can observe an average agreement of
0.79, where a score of 0.60 is usually considered
to represent substantial agreement and 0.80 is usu-
ally regarded as strong agreement. We also stress
that Cohen’s kappa does not take into account the
cardinality of the rating values, i.e., for Cohen’s
kappa there is no difference between a 1-vs-5 and a
4-vs-5 disagreement. Therefore, we also measured
the overall inter-annotator agreement using Krip-

pendorff’s alpha, which shows strong agreement
with an average of 0.96 across all languages, as
we can see in Figure 5.5 Overall, the strong inter-
annotator agreement scores validate the results of
the annotation process.

B Related Work: Addendum

While WikiKGE-10 is the first benchmark designed
to aid development and evaluation of systems for in-
creasing coverage and precision of entity names in
multilingual knowledge graphs, there has been pre-
vious work that tried to address this issue in other
ways. Among them, we acknowledge the existence
of JRC-Names (Steinberger et al., 2011). Here,
we provide more details on the fundamental dif-
ferences WikiKGE-10 and JRC-Names, including:
i) WikiKGE-10 is completely manually-created;
ii) WikiKGE-10 is mapped 1-to-1 to Wikidata; iii)
WikiKGE-10 is not limited to persons and orga-
nizations; iv) JRC-Names considers names with
spelling mistakes as valid names (as they may ap-
pear in real-life scenarios), whereas WikiKGE-10
considers them incorrect (as our objective is to ob-
tain a multilingual knowledge graph that is as clean
as possible); v) JRC-Names does not distinguish
between entities that have the same name, since
it is “very likely that different persons sharing the
same first and last name have the same identifier
because no disambiguation mechanism is in place.”

C Methodology: Addendum

In this section, we provide more details on the
methods we investigate in our paper, namely, MT,
WS, LLMs, and M-NTA.

C.1 Contextualizing entity names
As mentioned in Section 4.1, converting entity
names from one language to another – by using ma-
chine translation, looking them up with Web search
engines, or querying language models – is chal-
lenging because entity names can be ambiguous.
Therefore, we contextualize entity names before
converting them from one language to another lan-
guage, i.e., we add information that a system can
use to disambiguate an entity name and produce
the correct output in the target language.

More specifically, given the fact that we already
know the entity identifier associated to the entity

5The original paper on Krippendorff’s alpha suggests that
tentative conclusions can be made with a score greater than
0.67 and strong conclusions can be made with a score greater
than 0.80.

1628



name we would like to translate, we retrieve its cor-
responding description from Wikidata in the same
language as the entity name, and use it to form a
pseudo-natural language sentence.6 For example,
the entity name Apple is contextualized as “Apple
is an American technology company” and “Apple
is a fruit of the apple tree” depending on whether
it corresponds to entity Q312 or Q89, respectively.
In case of missing entity descriptions for a target
language, we construct a simple entity description
starting from its instance-of statements in Wiki-
data, e.g., “Albert Einstein is a human.” While
more complex strategies or more relations may be
used to better contextualize entity names, devis-
ing more complex strategies – which may require
separate ad hoc solutions for MT, WS, and LLMs
– is beyond the scope of this paper. We leave the
investigation of more complex techniques for entity
name contextualization to future work.

C.2 Aligning and de-contextualizing entity
names

While the advantage of contextualizing entity
names is evident, the main disadvantage is that
system will “translate” an entity name and also
its contextualization information, possibly mixing
the two types of textual information. This issue
is particularly relevant when translating to a target
language with a syntax that is significantly different
from the source language or to a target language
with non-trivial segmentation rules, e.g., from En-
glish to Japanese or Chinese. Therefore, we need to
de-contextualize the translated name, i.e., we need
to align the translated name to the original name
and remove the contextualization information that
was translated together with the name.

To address this issue, we follow recent stud-
ies (Chen et al., 2022) in alignment techniques,
which show that MT is surprisingly robust to the
insertion of symbols in the input sentence. More
specifically, we indicate the start and the end of the
entity name in the input sentence with special mark-
ers; for example, “[Apple] is an American technol-
ogy company.” After translating the contextualized
entity name into the target language, we detect the
start and end markers in the translation and use
their position to extract the translated entity name.
Our analysis reveals that such an alignment system
produces valid alignments most of the time in a

6Wikidata descriptions can be retrieved from the Wikidata
dump. Each entity may have multiple Wikidata descriptions,
one for each language if available.

subset of manually-inspected instances. While this
alignment system can be replaced by more com-
plex alignment techniques, our analysis suggests
that alignment errors are not the primary factor in
end-to-end evaluation; we measured the number of
errors attributable to misalignments and found that
only 2% of the translated sentences contains such
errors. Therefore, we can conclude that alignment
errors are not a major bottleneck to end-to-end per-
formance on WikiKGE-10 – probably due to the
simplicity of the syntactic structure of the sentences
that result from the contextualization process – and
leave the investigation of more complex alignment
systems to future work.

C.3 MT: implementation details
In our experiments with MT, we decided to limit
the number of source languages to 7, namely, Ger-
man, English, Spanish, French, Italian, Japanese,
and Chinese. The main reason behind this choice
is that the quality translations from automatic sys-
tems has been shown to still lag behind when the
source language is a lower-resource language, e.g.,
Korean. Therefore, in this work, we focus our at-
tention on higher-resource languages for which MT
has been proven to achieve satisfactory results on
several standard benchmarks, allowing us to iterate
faster. We hypothesize that translating from lower-
resource languages does not result in performance
that is significantly better than what we can see in
Table 2, even when the linguistic families of the
source and target languages are close. However,
we leave an investigation on the effect of carefully
choosing source-target language pairs for MT to
future work.

C.4 WS: implementation details
In Section 4.1, we discussed how WS can be used
to retrieve entity names in a target language: given
an entity name in a source language ls, we can per-
form a search using a query like “[entity-name] in
[lt]” to obtain results in a target language lt. More-
over, we can enrich the query by adding contextual
information in the form of Wikidata descriptions,
as discussed in section C.1, resulting in enriched
queries like “[entity-name] ([entity-description]) in
[lt]” to mitigate the problem of ambiguous names,
e.g., not only there are more than 10 people in
Wikipedia that could be referred to as Michael Jor-
dan but also songs and movies.

More specifically, given an entity e and one of
its names ens and its Wikidata description eds in a
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source language ls, we build a search query as de-
scribed above, limiting the choice of ls to English.
Then, we parse the HTML response and collect the
most frequently highlighted terms, i.e., those terms
that are in bold (between <b></b> tags) or empha-
sized (between <em></em> tags), in the top-10
websites returned by the search engine. Finally, we
keep the top-5 entity names retrieved from the col-
lected terms if they appear at least 2 times among
the highlighted results. As discussed in Section 5.2,
such an approach – even though it tries to imitate
how humans look up information on the Web – re-
sults in a significant amount of noise due to the
collection of a significant number of terms that
are only semantically-related to the query and not
semantic matches.

C.5 LLMs: implementation details
In our experiments, we investigate two main LLMs:
mT0 and GPT. The former is the instruction-
finetuned version of mT5, a state-of-the-art multi-
lingual LLM. For mT5, we take into account three
variants – large, xl, and xxl – which differ in their
size to investigate if and to what extent increasing
the number of trainable parameters in a language
model is beneficial for the task under consideration.

For our experiments, we evaluate the effective-
ness of mT5 and GPT with one-shot prompts, i.e.,
we provide a description of the task and one ex-
ample of input/output to the LLM before requiring
them to generate the entity name of interest. More
specifically, each prompt is constructed as follows:

• Task definition: given an entity name in En-
glish and a short description of the entity in
English, complete the following with the cor-
responding entity name in [lt].

• Example:

– English name: [êns ]
– English description: [êds]
– [lt] name: [ênt ]

• Task:

– English name: [ens ]
– English description: [eds]
– [lt] name:

where lt is the target language, ê is the entity used
for the example, and e is the entity of interest. We
choose the example entity ê at random from the
top-10% entities with the only constraint that ê and

e have the same entity type, e.g., if we want to
generate the name for e and e is a person, then also
the example entity ê shall be a person. Notwith-
standing the input/output example provided, we
observe that sometimes LLMs, even when they
output correct names, do not conform to the same
input/output format as the example, e.g., they add
preambles (“the name of X is Y”, “as a language
model, I...”) or explanations (“X because...”). This
makes it hard to extract the relevant portion of text,
resulting in alignment errors.

C.6 M-NTA: implementation details

In this section, we provide more details on three im-
portant factors for the implementation of M-NTA,
namely, the value of λ, the choice of ϕ, and the
individual contribution of each sub-system (MT,
WS, and LLMs) in M-NTA.

C.6.1 The value of λ
In Section 4.2, we introduced M-NTA, our novel
approach to combine MT, WS, and LLMs, and
described how it scores and ranks the answers
Y = {y : σ(y) ≥ λ} according to a threshold
hyperparameter λ, mentioning that λ = 2 is the
most robust choice for coverage. Here, we expand
our discussion on λ, showing how the choice of its
value can significantly vary the precision and recall
of the answers provided by M-NTA.

At a high level, the intuition behind λ is that it
is a hyperparameter that controls the number of
“supporting evidences” required by M-NTA to con-
sider an answer as plausible; on the contrary, if
an answer is supported by fewer than λ evidences,
then M-NTA considers such an answer as noise.
Therefore, we can expect that increasing the value
of λ will result in more precise predictions at the
cost of recall, and decreasing the value of λ will
result in more broad coverage but also less precise
answers. This is indeed the case in our experiments,
as we can see in Figures 6 and 7, in which we can
observe that increasing the value of λ decreases the
overall recall while increasing the precision of the
answers on a sample of the Italian and Korean test
sets of WikiKGE-10. Given the results of M-NTA
for different values of λ across the 10 languages
of WikiKGE-10, we observed that λ = 2 is em-
pirically the best choice on average if we want to
balance precision and recall in coverage. However,
we also note that the decision about the value of
λ can be also affected by the downstream applica-
tion of interest: if the use case is adding textual
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Figure 6: Recall and Precision (%) of M-NTA in the
Italian test set of WikiKGE-10 (coverage) for increasing
values of λ, ranging from 1 to 6. We can observe how
the Recall decreases as the Precision increases.
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Figure 7: Recall and Precision (%) of M-NTA in the
Korean test set of WikiKGE-10 (coverage) for increas-
ing values of λ, ranging from 1 to 6. We can notice the
same trend as in Figure 6.

information to a knowledge graph for direct user
consumption, then we may want to prefer precision
over recall and increase the value of λ accordingly;
otherwise, if we want to use textual information
for the creation of multilingual embeddings, then
we may be more interested in recall for covering as
many entities as possible.

C.6.2 The choice of ϕ

One important factor in the design of M-NTA is the
choice of the function ϕ(y, y′) → {0, 1}, which
establishes whether an answer y from a system
f(·) is supported by the answer y′ from another
system f ′(·). While ϕ can be any “similarity” met-
ric, e.g., a measure of vector similarity, the final
choice depends on the type of textual information
represented by each answer. In this paper, we focus

R P F1

M-NTAλ=1 89.7 42.4 57.1
M-NTAλ=2 71.4 81.5 75.6
M-NTAλ=3 56.4 82.3 66.5
M-NTAλ=4 41.9 87.3 56.0
M-NTAλ=5 23.2 90.3 35.5
M-NTAλ=6 10.4 93.8 18.0

Table 5: Recall (R), Precision (P), and F1 Score of
M-NTA with different values of M-NTA across the 10
languages of WikiKGE-10. The value of λ in M-NTA
can be tuned to have broad recall or high precision.

C P

M-NTAFull 53.6 79.9
M-NTAno-WS 53.2 79.8
M-NTAno-LLM 43.8 71.1
M-NTAno-WS/no-LLM 43.2 70.9

Table 6: Ablation study on the individual components
of M-NTA on coverage (C) and precision (P). All re-
sults reported for M-NTA with λ = 2 and λ = 1 for
precision.

on entity names, for which even a slight variation
between two names can mark the difference be-
tween a correct name and an incorrect one, e.g.,
Olivier and Oliver. Therefore, we choose exact
match between lower-cased, punctuation-stripped
entity names as the function ϕ, i.e., a name y is
supported by another name y′ if and only if y = y′,
except for letter casing (e.g., Canary and canary)
and punctuation (Michael B Jordan and Michael B.
Jordan). As we will see in section C.7, other forms
of ϕ may be more appropriate for types of textual
information different from entity names.

C.6.3 Ablation study
Throughout the paper, we mentioned multiple
times that the main strength of M-NTA is its
capability to combine the answers provided by
MT, WS, and LLMs. Here, we carry out an
ablation study to quantify and better understand
the individual impact of each subsystem in M-
NTA. More specifically, we compare the results
of the “full” M-NTA to M-NTA without Google
Web Search (M-NTAno-WS), without GPT-3.5 (M-
NTAno-LLM), and only with MT from 7 languages
(M-NTAno-WS/no-LLM). As we can see in Table 6,
even when M-NTA does not rely on answers from
WS and LLMs, the results of M-NTAno-WS/no-LLM
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Entity Source Entity description

Bufuri Wikidata “company”
Q1002164 M-NTA “car manufacturer”

Reinhard Zöllner Wikidata “German historian”
Q100502 M-NTA “university professor and German historian”

Haukadalur Wikidata “valley”
Q1034430 M-NTA “valley in Iceland with a geothermal area”

Paola Cortellesi Wikidata “Italian actress and singer”
Q1042721 M-NTA “Italian actress, screenwriter, television author, comedian and singer (1973-)”

Washuzan Highland Wikidata “Japanese amusement park in Okayama prefecture”
Q10345405 M-NTA “An amusement park in Shimotsui, Kurashiki City, Okayama Prefecture”

Table 7: Selected examples of descriptions generated by M-NTA compared to Wikidata. As you can see, M-NTA is
able to improve descriptions in high-resource languages. As we can see in this Table, M-NTA is able to provide
important information in the description.

are better than simple translation from the best
source language (English). This empirically vali-
dates our hypothesis, i.e., different languages hold
complementary knowledge and M-NTA is able to
combine such knowledge in an effective way.

C.7 Applying M-NTA to entity descriptions

While the focus of WikiKGE-10 is on entity names,
the approaches described in Section 4.1 – MT, WS,
and LLMs – and M-NTA can also be applied to
other types of textual information. As discussed
in sections 2 and 3, entity descriptions are another
popular type of textual information used in recent
approaches. In this section, we describe how MT
and M-NTA can be easily adapted to convert entity
descriptions from one language to another, while
we leave a more in-depth study about the effective-
ness of WS and LLMs for entity descriptions to
future work.

Adapting the MT-based approach to generate en-
tity descriptions in a target language is straightfor-
ward. In section C.2, we discussed the necessity of
using special markers to facilitate the extraction of
the translated entity name from the translated sen-
tence, e.g., “[Apple] is an American multinational
technology company.” To extract the entity descrip-
tion instead of the entity name, we can simply place
the special markers around the entity description,
e.g., “Apple is an [American multinational technol-
ogy company].” Thanks to this simple modification,
the rest of the pipeline for the MT-based approach
can remain the same.

Adapting M-NTA to generate entity descriptions
in a target language requires an additional step,

i.e., designing an appropriate function ϕ(y, y′) →
{0, 1} (see section 4.2) to establish when a descrip-
tion y′ = ēdt counts as supporting evidence for a
different description y = edt . Indeed, a description
may imply another description even if they are not
exact matches. For example, the English descrip-
tion for Earth (Q2) is “third planet from the Sun
in the Solar System”, which implies the Spanish
description “planet in the Solar System, third by
distance from the Sun” (translated in English from
Spanish). To address this issue, we define ϕ as
follows:

ϕ(y, y′) =

{
1 if sim(y, y′) > 0.5

0 if sim(y, y′) ≤ 0.5

where sim(·) is the cosine similarity between the
vector representations of y and y′. We compute the
vector representations of the descriptions by using
XLM-RoBERTa (base) (Conneau et al., 2020).

D WikiKGE-10: Additional Results

In this section, we provide additional results to com-
plement the main results described in Section 5.

Indeed, it is interesting to observe how the re-
sults would change if we slightly relax the metrics
of coverage and precision. In particular, we relax
coverage to provide a positive score in case a sys-
tem is able to provide at least one valid entity name
for a given entity. Similarly, we relax precision to
provide a positive score in case a system is able
to identify at least one invalid entity name for a
given entity. Table 8 provides an overview of the
results. As one could expect, the scores on cov-
erage increase, as it is easier to provide one valid
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AR DE EN ES FR IT JA KO RU ZH Avg

C P C P C P C P C P C P C P C P C P C P C P

M
T

fr
om

DE → 57.8 35.4 – – 62.7 36.9 68.3 36.4 66.5 40.1 72.7 47.5 44.2 25.8 60.7 38.9 59.5 35.0 46.9 26.7 59.9 35.9
EN → 71.4 49.9 76.6 60.7 – – 81.9 53.3 74.8 52.6 78.9 59.5 51.5 38.6 70.8 54.1 67.8 47.6 55.5 42.7 69.9 51.0
ES → 57.5 32.9 59.8 38.9 57.7 33.2 – – 66.3 39.9 68.6 47.0 43.7 24.1 61.1 37.2 56.2 30.7 46.1 26.4 57.5 34.5
FR → 61.1 33.9 67.0 41.2 63.1 33.7 72.1 35.4 – – 71.9 46.0 47.8 26.6 62.8 37.0 59.2 29.9 47.3 25.7 61.4 34.4
IT → 58.9 28.4 64.9 37.5 59.1 30.5 70.2 31.8 66.9 34.3 – – 43.3 20.8 59.9 30.8 58.7 26.6 46.4 21.8 58.7 29.2
JA → 40.9 16.7 32.0 12.4 25.7 9.0 37.8 11.6 33.8 10.7 38.0 14.0 – – 56.4 33.8 34.9 11.7 43.4 24.6 38.1 16.1
ZH → 38.0 16.5 27.6 9.6 20.3 6.4 30.2 9.0 30.2 9.7 30.2 10.5 33.1 17.6 47.7 27.3 30.6 9.8 – – 32.0 12.9

W
S GoogleSearch 52.2 41.4 58.8 55.1 – – 69.9 47.2 58.2 46.4 66.1 58.2 34.2 22.2 45.3 37.7 42.1 42.7 39.4 31.8 51.8 42.5

LL
M

s

mT01B 49.1 37.2 56.2 44.3 – – 70.7 45.1 59.1 44.1 65.1 57.2 36.3 18.2 45.0 38.9 44.1 38.0 37.2 31.0 51.4 39.3
mT03B 53.2 38.1 57.2 46.6 – – 71.8 45.2 61.0 44.6 65.9 58.1 38.1 19.2 46.4 38.8 46.0 38.6 39.5 32.0 53.6 40.1
mT07B 54.2 40.2 59.1 50.1 – – 74.4 47.8 62.2 47.2 69.4 57.9 39.2 23.4 48.0 40.1 46.1 39.1 41.2 32.5 54.7 42.1
GPT-3.5 67.1 48.8 75.9 61.3 – – 80.3 57.6 77.1 54.2 76.4 57.3 54.4 41.0 73.3 52.2 69.1 44.4 57.2 44.1 70.7 51.2

M-NTA GPT-3.5 75.9 70.6 79.7 73.1 67.8 58.1 86.2 69.1 83.2 66.3 87.1 74.2 59.6 51.9 79.1 75.5 75.2 64.2 62.7 60.5 75.6 66.3

Table 8: F1 scores on entity names coverage (C) and precision (P) in WikiKGE-10 when identifying at least one
valid name for coverage and at least one invalid name for precision. The symbol “–” is used to indicate that source
and target languages are the same. Best results in bold.

Entities Names
coverage (%) coverage (%)

W +M-NTA ∆ W +M-NTA ∆

DE 94.63 97.42 + 2.79 95.12 96.45 +1.33
EN 99.09 99.23 + 0.14 93.48 93.88 +0.40
ES 95.01 97.10 + 2.09 93.12 94.39 +1.27
FR 96.07 97.64 + 1.57 96.13 97.03 +0.90
IT 93.07 96.80 + 3.73 95.52 97.75 +2.23
JA 87.52 91.53 + 4.01 91.88 94.15 +2.27
ZH 54.15 64.44 +10.29 55.60 64.91 +9.31

Avg 88.51 92.02 + 3.52 88.69 91.22 +2.53

Table 9: Comparison of Wikidata (W) and Wikidata +
M-NTA (+M-NTA) on entity and name coverage for
entity-type queries in MKQA.

name for an entity instead of the complete list of
valid names. However, the performance in preci-
sion decrease usually decreases, as we hypothesize
that there are entities for which it is more difficult
to identify incorrect entity names.

E Impact on Downstream Tasks:
Question Answering

In section 6, we have investigated the impact of in-
creasing coverage and precision of textual informa-
tion in two downstream tasks, namely, multilingual
entity linking and multilingual knowledge graph
completion. Here, we also investigate the impact
of our work on Question Answering (QA), with a
specific focus on knowledge-seeking queries. One
of the main characteristics of knowledge-seeking
queries is that they can be usually answered by nav-
igating a knowledge graph and returning (the name
of) an entity, e.g., the answer to the query “What
is the highest mountain in Washington, US?” is
Mount Rainier (Q194057). However, if the knowl-
edge graph does not provide a lexicalization for
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+39.9%
+41.9%

+15.4%

+52.0%

Figure 8: Reduction rate in the number of unanswerable
queries in MKQA when using M-NTA to improve the
coverage of Wikidata.

the entity in the target language, then a knowledge-
based QA system will not be able to provide a
correct answer. Therefore, increasing the coverage
of entity names across languages is essential to ex-
tend the support of knowledge-based QA systems
to multilingual settings.

To quantify the impact of M-NTA on QA, we
consider the subset of queries in MKQA (Long-
pre et al., 2021), a multilingual QA dataset for
knowledge-seeking queries, whose type of an-
swer is classified as “entity”, i.e., those queries
that can be answered by providing the name of
a Wikidata entity. Importantly, the original au-
thors of MKQA manually added names (primary
names and aliases) for all those Wikidata enti-
ties that did not have a lexicalization. Therefore,
there is a set of questions in MKQA which are
“unanswerable” by a knowledge-based QA sys-
tem that relies on Wikidata; this set of unanswer-
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able questions impose an upper bound to the re-
sults achievable by any knowledge-based QA sys-
tem. More specifically, we measure the number
of answerable/unanswerable queries when relying
only on Wikidata7 compared to using an M-NTA-
augmented Wikidata (Wikidata + M-NTA) in two
settings:

• Entity coverage: the number of entities in the
answers of MKQA for which Wikidata (or
Wikidata + M-NTA) can provide at least one
name;

• Name coverage: the number of names for the
entities in the answers of MKQA that are also
present in Wikidata (or Wikidata + M-NTA).

As we can see in Table 9, using M-NTA allows us
to increase the number of answerable queries both
when we look at entity coverage (+3.52% absolute
improvement) and name coverage (+2.53% abso-
lute improvement). Notably, M-NTA provides a
significant increase in entity coverage for simplified
Chinese (+10.29% absolute improvement), which
is the language with lowest coverage, but also in En-
glish (+0.14% absolute improvement). Although
the absolute improvement in English seems small,
entity coverage in English is already high in Wiki-
data (99.09%): another way to look at this im-
provement is by analyzing the reduction rate in the
number of unanswerable queries. As we can see
in Figure 8, the reduction rate in the number of
unanswerable queries in MKQA can be reduced
significantly when using M-NTA to improve the
coverage of Wikidata. Even for English, the re-
duction rate is about 15.4%, which becomes as
high as 52.0% and 53.8% in German and Italian,
respectively.

7As of April 2023.
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