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Abstract

This paper introduces a novel task of detect-
ing turning points in the engineering process
of large-scale projects, wherein the turning
points signify significant transitions occurring
between phases. Given the complexities in-
volving diverse critical events and limited com-
prehension in individual news reports, we ap-
proach the problem by treating the sequence
of related news streams as a window with mul-
tiple instances. To capture the evolution of
changes effectively, we adopt a deep Multi-
ple Instance Learning (MIL) framework and
employ the multiple instance ranking loss to
discern the transition patterns exhibited in the
turning point window. To facilitate comprehen-
sive evaluation of the task, we curate a dataset
comprising 80 large-scale projects. Extensive
experiments consistently demonstrate the ef-
fectiveness of our proposed approach on the
constructed dataset compared to baseline meth-
ods. We deployed the proposed model 1 and
provided a demonstration video2 to illustrate
its functionality. The code and dataset are avail-
able on GitHub3.

1 Introduction

Large-scale projects are intricate and extensive en-
deavors requiring substantial resources, effort, and
coordination to achieve specific objectives, often
involving multiple stakeholders and phases with
a significant impact on organizations, communi-
ties, and society. They encompass diverse fields,
such as aerospace engineering, water resources fa-
cilities, and transportation infrastructure, and hold
paramount importance in driving economic growth,
enhancing infrastructure, and addressing societal
needs, while also fostering innovation and sustain-

*Corresponding Author
1http://43.138.60.114:7080/
2https://youtu.be/FH3av84I-Kg
3https://github.com/smile577/tpd

ability. Typically, their successful execution re-
quires careful planning, collaboration, and a long-
term vision to maximize their positive impact on
communities and society at large.

In order to tackle the intricacies and difficulties
of carrying out large-scale projects, the engineer-
ing process employs a systematic and structured
approach to design, plan, and execute complex en-
deavors efficiently and effectively (Martin, 2000;
Gilb, 2005). The life cycle of large-scale projects
consists of several phases that cover the entire jour-
ney from initiation to closure (Beitz et al., 1996;
Bennett, 2003) and each phase dedicats to accom-
plishing different objectives. Figure 1 depicts the
seven phases involved in NASA’s Insight mission
engineering process, wherein each phase comprises
a series of subtasks or key events represented by the
gray diamonds, which can occur simultaneously or
have interdependencies.

During the engineering process of large-scale
projects, there are significant moments that deserve
attention, such as when the project reaches a new
milestone, e.g., transitioning from the conceptual
phase to on-ground implementation on the ground
(as shown in the green diamond h of Figure 1).
The moments or events which bring about criti-
cal changes in direction, course, or outcome are
referred to turning points in this paper, signify-
ing transitions occurring between adjacent phases.
The identification of these turning points provides
stakeholders, government agencies, and the general
public with valuable insights, empowering them to
navigate challenges, capitalize on opportunities,
and effectively adjust their strategies in response to
changing circumstances. For example, an analyst
can assess Boeing’s development status and offer
design suggestions for products at Airbus.

However, detecting turning points in the engi-
neering processes of large-scale projects, particu-
larly ongoing projects, is a non-trivial undertaking.
First, limited public data sharing and potential lack
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Figure 1: Illustration of the engineering process of NASA’s Insight mission. The gray diamonds represent subtasks
or events within a phase, whereas the green diamonds represent turning points that occur during the transition
between phases.

of standardized protocols may obstruct access for
those not directly engaged. Second, listing all pos-
sible turning point events for various projects is
challenging. Additionally, the turning points may
encompass multiple critical events, and the same
event could be part of a phase or being in a transi-
tion under different circumstances. Nevertheless,
publicly available news serves as a conveniently
obtainable and reasonably trustworthy data source.
In light of this, we’ve discovered that discerning
the occurrence of a turning point within a series of
interconnected news articles can be accomplished
by comparing and analyzing the significant events.
To accomplish this, we view a sequence of related
news streams as a window and resort to the Multi-
ple Instance Learning (MIL) (Andrews et al., 2002;
Sultani et al., 2018) framework to obtain window-
level labels, indicating the presence or absence of a
turning point within the window. In order to avoid
biased understanding of individual reports, the in-
stances of a window comprise several news to form
a relatively comprehensive grasp of the events that
occurred.

Following the insights, this paper delves into the
intricate task of detecting turning points in the engi-
neering process of large-scale projects by utilizing
multiple instance learning techniques. To facili-
tate this study, we collect 80 large-scale projects to
construct the turning point detection dataset. We
structure the sequence of related news streams into
a window with multiple instances through a deep
MIL framework and identify turning points via con-
volutional transformer encoder (Dosovitskiy et al.,
2020; Li et al., 2022). We then employ the multiple
instance ranking loss to push the positive instances
and negative instances far apart in terms of the ex-
tent of change or shift that occurs between phases.
Additionally, we develop a website for detection
and visualization with our deployed model, provid-

ing users with transition timeline and news related
to single or multiple large-scale projects.

2 Related Work

Turning Point Detection In the large-scale
projects, specific methods for detecting turning
points have not yet been established. However,
similar concepts exist in other domains such as
time series change-point detection, as well as turn-
ing point detection in video and text data. In
the field of time series data change-point detec-
tion(Aminikhanghahi and Cook, 2017; Truong
et al., 2020), the focus is primarily on identify-
ing fluctuations in time series data, such as those in
financial stock markets(Grillenzoni, 2012; Tang
et al., 2019) and weather temperatures(Banesh
et al., 2019). These methods commonly detect
changes based on fluctuations along specific dimen-
sions in low-dimensional spaces. However, these
techniques may not be directly applicable to high-
dimensional data such as video and text. In case of
video sequences, Chang et al. (Liu et al., 2019a) in-
troduced the use of the Two Clocks theory (Lotker,
2016) to detect a key event in narrative works, aim-
ing to identify multiple turning points in cartoon
movie stories. In the text sequences, Papalampidi et
al. (Papalampidi et al., 2019) proposed the task of
identifying turning points in movie screenplays to
analyze narrative structures. They defined turning
points in screenplays and developed an end-to-end
neural network model for recognition.

Multiple Instance Learning Multiple Instance
Learning (MIL) is a form of weakly supervised
learning where training instances are organized
into sets, called bags(Maron and Lozano-Pérez,
1997; Herrera et al., 2016). Only the label for the
bag is provided. Due to this characteristic, MIL
has found extensive applications in domains with
large amounts of weakly labeled data(Quellec et al.,
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Figure 2: An overview of multiple instance learning framework for turning point detection of large-scale projects.

2017; Tian et al., 2020), such as video classifica-
tion (Ding et al., 2013; Sultani et al., 2018; Li et al.,
2022), image classification(Sudharshan et al., 2019;
Li et al., 2021; Yang et al., 2023), and text classifica-
tion(He and Wang, 2009; Liu et al., 2018), among
others. In the context of weakly supervised video
classification, typically only video-level category
labels are provided. Sultani et al. (Sultani et al.,
2018) proposed the MIL ranking model. They
utilized the MIL ranking model to compute the
highest-scoring instance within the bag for video
classification. Li et al. (Li et al., 2022) introduced a
MIL ranking model based on Transformer for video
classification. In the realm of text classification,
He et al.(He and Wang, 2009) proposed a KNN
algorithm-based multi-instance Chinese text classi-
fier. Liu et al.(Liu et al., 2018) introduced Selective
Multi-Instance Transfer Learning to address the
issue of knowledge-safe transfer in multi-instance
learning for text classification.

3 TP-Detector

3.1 Task Definition

Our task is defined as follows: We want to de-
tect TP in an input news stream, where TP is typi-
cally associated with changes in sequences. To de-
tect changes of sequences within a specific range,
we partition the news stream into windows and
check for the presence of TP within these win-
dows. Given a window W on the news stream,
window W contains multiple news texts, denoted
as W = {x1, x2, ..., xn}. The window W has
two classes: TP window Wtp and non-TP window
Wntp. If there is a TP within the window, mean-
ing that events within the window across different
phases, it is classified as a TP window; otherwise,
it’s a non-TP window. The outputs include Y and
Ytp. Y represents whether window W is a TP win-

dow. If Y = 1, it’s a TP window; if Y = 0, it
means it’s not. Ytp represents the evidence within
W that is most likely to be a TP, and it’s only output
when Y = 1.

3.2 Model Overview

We propose a multi-instance learning model, as
shown in Figure 2. The model takes two windows
from one news stream as input, namely TP win-
dow and non-TP window. It starts by employing a
pre-trained language model (Liu et al., 2019b) to
represent the textual features. Next, the features of
continuous k news within each window are orga-
nized as instances. These instances are then pro-
cessed by an Instance Encoder, which consists of
multiple layers of 1D convolutions, to extract their
feature representations. At this point, the window
is treated as a bag containing multiple instances.
Subsequently, a Transformer encoder with convo-
lutional layers (Dosovitskiy et al., 2020; Li et al.,
2022) is employed to attend to the feature repre-
sentations of both the bag and the instances within
the bag. This process helps the model improve its
understanding of the features within the bag and
its constituent instances. Finally, two linear heads
assign scores to the bags and instances. The deci-
sion of whether the input window is a TP window
is made based on the scores of the bags and their
instances.

3.3 Multiple Instance Learning

Due to the diversity of turning point events in large-
scale project engineering processes, it is imprac-
tical to exhaustively enumerate all possible turn-
ing points. However, we have found that by com-
paring and analyzing known instances of turning
points, it is possible to learn the general patterns
of turning points and detect unknown turning point
events. Turning point events are typically sparse
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in the news streams, with the majority of informa-
tion being non-TP related. To effectively discover
critical turning point events, we introduce a multi-
instance learning framework (Andrews et al., 2002;
Sultani et al., 2018). Multi-instance learning is a
weakly supervised method where the data unit is
a bag. Taking binary classification as an example,
a bag contains multiple instances. If at least one
instance in a bag is a turning point instance, the
bag is considered a turning point bag. Otherwise,
it is a non-TP bag. This approach enables us to
detect turning points even when they are sparsely
distributed within the news streams.

We accept two windows, Wtp and Wntp, as in-
puts, each containing multiple news articles. We
use the pre-trained language model RoBERTa(Liu
et al., 2019b) to extract feature representations for
each news within the windows. The output of the
feature representations for the TP window are de-
noted as

We = {xei |xei = fe(xi), xi ∈ W}
where fe is RoBERTa, and We is the output feature
representations set.

We combine the continuous k feature represen-
tations from the above output into one instance. To
obtain the feature representation of each instance,
we use Instance Encoder to fuse the above feature
representations. The Instance Encoder consists of
multiple layers of 1D Convolutional and multiple
layers of max-pooling. The formulation can be
expressed as follows:

Ii = fie(x
e
i , ..., x

e
i+k−1)

where fie is the Instance Encoder and Ii represents
the feature representation of an instance.

To ensure that critical transition information is
not missed due to data segmentation and to increase
the information density within each bag based on
the sparse nature of news stream data, we form
instances using an overlapping approach. Specif-
ically, we iterate through the window with a step
of 1 news article to generate instances. Thus, we
represent the input W as one bag:

B = {Ii|i ∈ {1, 2, ..., n− k + 1}}
where B represents the multi-instance bag.

3.4 Turning Point Detection via Convolutional
Transformer Encoder

To enhance the understanding of feature represen-
tations for instances within the bag, we utilized the

Convolutional Transformer Encoder (CTE) (Doso-
vitskiy et al., 2020; Li et al., 2022). The 1D con-
volution within the CTE enables information inter-
action among instances within the bag. Then, we
employ the self-attention mechanism in the Trans-
former to enhance the understanding of feature rep-
resentations for instances. Finally, two linear layers
are used to classify the enhanced feature represen-
tations of both the bag and its internal instances.

We input the bag’s class information and the
feature representations of bag instances into the
CTE , which can be represented as follows:

Bcte = CTE(ClassToken||B)

where || represents concatenation.
The output of the CTE is then separately fed into

two Linear Heads: the Instance Regressor Linear
Head (IRLH) and the Bag Classifier Linear Head
(BCLH) (Li et al., 2022) as follows.

Bir = IRLH(Bcte[1, 2, ..., n− k + 1])

p = BCLH(Bcte[0])

where Bcte[i] represents the i-th element of Bcte,
Bir contains the scores of all instances in the bag,
and p is the bag’s class prediction value.

During the prediction phase, to reduce the fluctu-
ation of instance prediction scores, we use the bag’s
class prediction score for calibration: Bp = Bir ∗p,
where Bp represents the final prediction scores of
all instances in the bag. We select the maximum
value in Bp as the prediction value for the bag. If
the prediction value is greater than the threshold,
the bag is classified as a TP bag; otherwise, it is
classified as a non-TP bag.

3.5 Optimization via MIL Ranking Loss
To guide the multi-instance learning and achieve
end-to-end TP detection, we introduce the MIL
Ranking Loss (Sultani et al., 2018) to optimize the
learning process of our model. This loss function
helps us effectively train the model to distinguish
between TP and non-TP instances within the bags.

To identify the category of a bag, we compare the
input bags in such a way that the highest predicted
score of instances in TP bags is greater than all
instances in non-TP bags. The instance with the
highest score in the non-TP bag is most similar to
the TP instances in TP bags, which can lead to false
positives. To distinguish between true positives and
false positives, we aim to maximize the separation
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between them. Therefore, the MIL Ranking Loss
function can be formulated as:

l(Btp, Bntp) = max(0, 1− max
Ii∈Btp

f(Ii) + max
Ii∈Bntp

f(Ii))

Where Btp and Bntp represent the TP bags and
non-TP bags, respectively, and f(Ii) denotes the
final prediction score of instance Ii.

In general, TP occurs within a relatively short
period; therefore, most of the instances in the win-
dow are non-TP instances. In other words, in a TP
bag, only a few instance scores are close to 1, while
the rest of the scores are close to 0. To address this
sparsity, we introduce a sparsity constraint. Ad-
ditionally, we include a binary cross-entropy loss
for bag classification. Therefore, our ranking loss
formula is as follows:

l(Btp, Bntp) = max(0, 1− max
Ii∈Btp

f(Ii) + max
Ii∈Bntp

f(Ii))

+ λ1

∑

Ii∈Btp

f(Ii) + λ2BCE(p, Y )

4 Experiments

4.1 Dataset
Due to the unavailability of a dataset for our task,
we collected dataset to train and evaluate our model.
In order to make the development status of large-
scale projects accessible to everyone interested, we
aimed to collect data through publicly available
channels rather than relying on proprietary sources.
Given the accessibility, real-time nature, and au-
thenticity of news, we chose to gather data from
publicly available news sources as the primary data
source for our dataset. Our data collection process
involved several steps. Firstly, we gathered avail-
able projects as candidates. Next, we utilized the
Google Search API to search for relevant news,
resulting in a news stream. To facilitate the label-
ing process, we provided a clear definition of the
phases in large-scale projects, as outlined in Table
3. This served as a reference point for annotators
to label each window of news articles according to
whether it represented a turning point or not.

Due to the diversity of large-scale technology
projects, in order to make the dataset more clear
and standardized, we categorize the projects in
the dataset into three main types: Deep Space
Exploration Projects, Large Ground Infrastructure
Projects, and Aeronautic and Marine Engineering
Projects. Deep Space Exploration (DSE) Projects:
These projects are aimed at conducting deep space

scientific research and exploring new technologies.
They include celestial exploration and space astron-
omy research, among others. Large Ground In-
frastructure (LGI) Projects: These projects involve
the development, maintenance, or improvement
of critical large-scale ground infrastructure. This
category includes projects related to transportation
networks, power systems, nuclear test facilities, net-
work and computing facilities, and ground-based
observatories, among others. Aeronautic and Ma-
rine Engineering (AME) Projects: These projects
are focused on the design, development, and im-
plementation of aeronautic and marine engineering
solutions. This category includes projects related to
aircraft and ship design, manufacturing, and usage,
among others.

The partial statistics of our dataset are presented
in Table 4. In total, we collected data from 80 dif-
ferent projects. On average, there was a time span
of 53 days between successive news articles within
a news stream, indicating that the data within news
streams was sparse. To address this issue and to
ensure that turning point windows were not missed,
we adopted an overlapping window segmentation
strategy. For more detailed information about the
dataset, please refer to Appendix B.

We allocated a total of 64 projects to the training
set, 8 to the development set, and another 8 to the
test set. Within these sets, there were 654, 83, and
85 turning point windows, and 3564, 460, and 461
non-turning point windows, respectively.

4.2 Baseline

We employed DSVDD(Ruff et al., 2018) as our
baseline model and RoBERTa(Liu et al., 2019b) as
our strong baseline model.

To validate the effectiveness of each proposed
component, we excluded them one by one from
our model: (1) w/o InCoder: Excluding the In-
stance Encoder module. (2) w/o CTE: Excluding
the Transformers module with convolution.

Experiment Settings: We followed the hyper-
parameters of RoBERTa-Base (125M parameters)
and initialized our model using public pre-trained
checkpoints. We set the learning rate to 8e-4
and the batch size to 8. For the Baseline model
DSVDD, we set the learning rate to 8e-4 and the
batch size to 64. For the strong Baseline model
RoBERTa, we set the learning rate to 8e-4 and the
batch size to 16.
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Table 1: Experimental Results on the constructed dataset.

Model
Overall Results DSE Projects LGI Projects AME Projects
P R F1 P R F1 P R F1 P R F1

Bin. Classifier 0.18 0.05 0.08 0.28 0.05 0.09 0.40 0.18 0.25 0.18 0.05 0.07
DSVDD 0.24 0.80 0.36 0.34 0.79 0.48 0.22 0.82 0.35 0.13 0.60 0.21
RoBERTa 0.60 0.67 0.63 0.58 0.67 0.63 0.43 0.72 0.54 0.32 0.62 0.42
TP-Detector 0.70 0.77 0.74 0.80 0.75 0.77 0.61 0.68 0.64 0.34 0.83 0.48

w/o InCoder 0.67 0.75 0.71 0.60 0.83 0.69 0.60 0.67 0.60 0.33 0.79 0.47
w/o CTE 0.69 0.76 0.72 0.74 0.69 0.71 0.51 0.78 0.61 0.26 0.81 0.39

4.3 Evaluation

For the TP detection task, our goal is to minimize
the possibility of overlooking TP windows and ac-
cept a certain level of false positives if necessary.
Therefore, we aim to achieve a higher recall rate
while maintaining the precision of the prediction
results. Based on this objective, we observed signif-
icant improvements in our model compared to the
baseline model DSVDD and the strong Baseline
model RoBERTa, which demonstrates the effective-
ness of our model in identifying TP windows. For
Deep Space Exploration (DSE) projects, our pre-
diction results perform well. There are two main
reasons for this: (1) DSE projects are space ex-
ploration initiatives managed by organizations like
NASA and ESA. These agencies adhere to strict
standard procedures and rigorous review processes
for their projects. Therefore, these projects gen-
erally follow well-defined engineering processes,
making the detection of turning points relatively
straightforward. (2) There is a relatively large num-
ber of DSE projects, and information about them is
regularly and comprehensively released by these or-
ganizations. Media outlets also tend to focus more
on these projects, resulting in a wealth of available
information. The abundance of information allows
the model to extract more features, which is advan-
tageous for successful turning point detection. For
Large Ground Infrastructure (LGI) and Aeronau-
tic and Marine Engineering (AME) projects, our
prediction results perform less well. There are sev-
eral reasons for this: (1) LGI and AME projects
are relatively underrepresented in the dataset due
to their smaller numbers, which makes it challeng-
ing for the model to learn robust patterns specific
to these categories. (2) LGI projects generally re-
ceive less attention from media organizations com-
pared to DSE projects. Consequently, there is less
news coverage for these types of projects, leading
to a limited amount of available information. (3)

In AME projects, there are multiple projects with
multiple end targets. For instance, in aeronautic
engineering projects, the goal is to deliver multiple
identical aircraft. Because each aircraft follows the
same fixed process from manufacturing to deliv-
ery, we consider the first moment of this process
as the turning point. However, in such cases, it is
challenging for the model to accurately distinguish
between these instances.

For the ablation study, we can draw the following
conclusions: (1) Instance Encoder: This serves as
an encoder for the instances within a bag, with its
primary function being to fuse feature representa-
tions of multiple news articles within the instances
and generate a feature representation for each in-
stance. (2) CTE (Convolutional Transformer En-
coder): CTE is a Transformer encoder with con-
volutional components. Its role is to focus on and
enhance the feature representations of both bags
and the instances within them.

5 Demonstration

We provide our services in a web-based. We de-
ployed the proposed model 4 and provided a demon-
stration video5 to illustrate its functionality.

We offer two detection options: Single Project
and Multiple Project. In the "Single Project" mode,
the system performs TP detection on an individual
project. The input entails a JSON file containing
the news stream, while the output encompasses TP
detection results image and the highest-scoring in-
stance within TP windows. The explanation for a
TP window is provided by showcasing the highest-
scoring instance. On the other hand, the "Multi-
ple Projects" mode enables simultaneous TP detec-
tion across multiple projects. Similar to the sin-
gle project mode, the input comprises JSON files
containing news streams for multiple projects, and

4http://43.138.60.114:7080/
5https://youtu.be/FH3av84I-Kg
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Figure 3: A result example from our demo website.

Table 2: The instance with highest score in the third TP
window of the Kepler space telescope project.

Date News content

Oct. 30th, 2018

NASA’s Kepler Space Telescope mission has
officially ended. All good things must come
to an end, on Earth and even in space. NASA
announced on Tuesday that the Kepler mis-
sion - which has transformed how we un-
derstand planets outside of our solar system
- is officially over. According to the space
agency, Kepler has run out of fuel in space,
ending its 9.5-year planet hunting mission.

Oct. 31st, 2018

NASA retires planet-hunting Kepler space
telescope. NASA on Tuesday announced the
demise of its elite planet-hunting telescope
just a few months shy of its 10th anniver-
sary. The Kepler space telescope that found
thousands of planets beyond our solar sys-
tem and boosted the search for worlds that
might support life has run out of fuel.

the output is similar to the "Single Project" mode.
Figure 3 illustrates the results of Multiple Project
detection.

Table 2 presents evidence for the correctness of
a detection result. It displays the highest-scored
Instance in the third TP window of the prediction
results for the Kepler Space Telescope project. This
TP occurs between the Operation phase and the Ter-
mination phase. Each row in the table represents a
news. The first news describes NASA’s official re-
tirement of the Kepler space telescope. The second
similarly discusses a similar topic. In this instance,
the explanation centers around the decision to re-
tire Kepler due to fuel exhaustion, which cannot
be replenished. This crucial event has caused the
transition of Kepler from an operational state to a
terminated state. This crucial event serves as the
turning point that we are interested in identifying.

6 Conclusion

To investigate phase transitions in engineering pro-
cesses, we propose the Turning Point Detection

task on large-scale projects. For this task, we intro-
duce a deep multi-instance learning model. This
model initially performs feature extraction on in-
put windows using a pre-trained language model.
Subsequently, it employs an Instance Encoder to
capture instance-level features. Following this, a
Convolutional Transformers Encoder is employed
to detect phase transition features. Ultimately, a
linear head is employed to provide prediction out-
comes. We collected a new dataset specifically
for this task. Extensive experiments demonstrated
that our model outperforms strong baselines. We
have deployed our model online to assist in detect-
ing phase transitions in news streams. We hope
that our work will contribute to further research
in this emerging task and benefit relevant stake-
holders. The dataset we have constructed currently
only includes publicly available news reports. In
the future, we aim to incorporate officially released
information into the dataset as an essential supple-
ment to enhance our understanding of the projects
with more comprehensiveness.
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A Large-scale Project Phases

Table 3: Phase definitions in the engineering process of
large-scale projects.

Phase Description

Conceptual Studies

Propose ideas or concepts; Assess
the feasibility of ideas or concepts;
Establish the requirements and ob-
jectives of the task

Preliminary Design

Establish baseline tasks; Design ar-
chitecture; Determine required tech-
nologies; Establish a design so-
lution; complete ’implementation’
level of design

Final Design

Establish complete, validated de-
tailed design; Complete all design
specialty audits; Establish manufac-
turing processes and controls

Fabrication&Integration

Prepare production facilities; Manu-
facture products that meet specifica-
tions and acceptance standards; As-
semble and integrate systems

Commissioning
Validate the system; System test and
commissioning

Operation Perform mission; Sustain system

Renewal/Pause
Improve/augment system; Suspend
system operations

Termination Implement decommission/disposal

Table 3 provides the definitions of task phases
within the context of large-scale projects. These
definitions have been developed by drawing
upon the insights and guidelines provided by
NASA(Hirshorn et al., 2017; Requirement, 2018;
Osborne, 2022) and NSF(nsf) regarding phase defi-
nitions in projects. Our approach involved a com-
prehensive review and synthesis of the definitions
from these reputable sources to formulate a clear
and concise delineation of the various phases that
characterize large-scale projects.

B Dataset Statistic

Table 4 presents the statistical information for the
dataset. There are a total of 80 projects in the

Table 4: Statistics of constructed dataset.

Project Type All DSE LGI AME
# of Project 80 46 15 19
Avg. # of phases 3.8 4.1 2.9 3.7
Avg. # of windows 66.3 62.2 60.4 81.1
Avg. # of TP windows 10.5 10.8 9.3 10.6
Avg. # of non-TP windows 55.8 51.4 51.1 70.4
Avg. # of news in window 5.0 5.0 4.3 5.4
Avg. # of news in phase 14.0 14.3 12.3 13.9
Avg. phase time span(M) 30 28 35 33
Avg. 2 news time span(D) 53 53 69 47

dataset, with 46 Deep Space Exploration Projects,
15 Large Ground Facilities Projects, and 19 Aero-
nautic and Marine Engineering Projects.
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