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Abstract

Most existing work on text simplification
is limited to sentence-level inputs, with at-
tempts to iteratively apply these approaches to
document-level simplification failing to coher-
ently preserve the discourse structure of the
document. We hypothesise that by providing
a high-level view of the target document, a
simplification plan might help to guide gener-
ation. Building upon previous work on con-
trolled, sentence-level simplification, we view
a plan as a sequence of labels, each describing
one of four sentence-level simplification oper-
ations (copy, rephrase, split, or delete). We
propose a planning model that labels each sen-
tence in the input document while considering
both its context (a window of surrounding sen-
tences) and its internal structure (a token-level
representation). Experiments on two simpli-
fication benchmarks (Newsela-auto and Wiki-
auto) show that our model outperforms strong
baselines both on the planning task and when
used to guide document-level simplification
models.

1 Introduction

Text simplification aims to transform a given text
into a simpler version of itself that preserves the
core meaning such that it can be better understood
by a wider audience (Gooding, 2022). Simplifica-
tion has also been shown to be a useful preprocess-
ing step for downstream NLP tasks such as relation
extraction (Miwa et al., 2010; Niklaus et al., 2016)
and machine translation (Chandrasekar et al., 1996;
Mishra et al., 2014; Li and Nenkova, 2015; Štajner
and Popovic, 2016).

Previous research has mostly considered the sim-
plification of isolated sentences. Much work has
focused on training a statistical or a neural model
on pairs of complex and simplified sentences as-
suming that such models will learn to perform sim-
plification operations (e.g. sentence splitting, lexi-
cal simplification or syntactic rephrasing) implic-

itly from the inductive bias present in the train-
ing data (Zhang and Lapata, 2017; Nisioi et al.,
2017; Jiang et al., 2020). However, because the
training data is obtained using distant supervision
techniques and is often imbalanced in terms of sim-
plification operations (many of which occur infre-
quently (Jiang et al., 2020)), system outputs have
been found to be overly conservative, often making
no changes or being limited to the paraphrasing of
short word sequences (Alva-Manchego et al., 2017;
Maddela et al., 2021). In addition, these systems
provide limited capacity for controllability and are
unable to express alternative variants of the sim-
plified text (Alva-Manchego et al., 2017; Cripwell
et al., 2021).

In response, controllable simplification systems
have been proposed which either constrain at-
tributes of the output (length, amount of paraphras-
ing, lexical and syntactic complexity) (Martin et al.,
2020) or explicitly specify which simplification op-
eration to perform (Alva-Manchego et al., 2017;
Dong et al., 2019; Malmi et al., 2019; Scarton et al.,
2020; Maddela et al., 2021; Cripwell et al., 2022).

To guide the simplification of full documents,
we combine the power of data-driven neural gener-
ative models with strategies from controllable sim-
plification. Our hypothesis is that document-level
simplification can be facilitated by a plan specify-
ing how each complex input sentence should be
transformed to yield a simplified version of that
document - should it be copied, deleted, split or
rewritten?

We make the following contributions: We
present a model for predicting document simpli-
fication plans which leverages both the context of
sentences and their internal structure (the words
they consists of). We create the data necessary to
train this model by labelling complex sentences
in simplification corpora with the simplification
operation that relates it to the corresponding sim-
plified sentence. We compare our planning model
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with several alternative neural architectures and we
briefly examine the impact of planning on docu-
ment simplification.

Experiments on two simplification benchmarks
(Newsela-auto and Wiki-auto) show that our model
outperforms strong baselines both on the planning
task and when used to guide document-level sim-
plification models. 1

2 Related Work

Document-Level Simplification. There is lim-
ited existing work on document-level text simpli-
fication. Early attempts largely applied sentence-
level techniques iteratively over a document (Wood-
send and Lapata, 2011a; Alva-Manchego et al.,
2019b). However, this is generally viewed as insuf-
ficient for certain operations and maintaining the
discourse coherence of the document (Siddharthan,
2003; Alva-Manchego et al., 2019b).

There are several works that address sub-
problems of simplification that only consider a
limited set of operations, like paraphrasing and
sentence re-ordering (Lin et al., 2021), insertion
(Srikanth and Li, 2021) or deletion (Zhong et al.,
2020; Zhang et al., 2022). Others fully address
simplification but only extend inputs to the level of
paragraphs without clearly differentiating the prob-
lem from the sentence-level (Laban et al., 2021;
Devaraj et al., 2021).

Recently, Sun et al. (2020) proposed a sentence-
level model (SUC) that uses an encoding of sur-
rounding sentences as context information to in-
fluence the simplification. They use two extra en-
coders to build a representation of the two pre-
ceding and two following sentences, which are at-
tended over in their encoder-decoder generative
model. However, when applied to the document-
level task, their system was unable to outperform
any baseline systems (Sun et al., 2021).

Operation Prediction. Revision-based simplifi-
cation models learn to predict edit operations to
apply at the token-level rather than generating the
entire simplification from scratch (Alva-Manchego
et al., 2017; Dong et al., 2019; Kumar et al., 2020;
Omelianchuk et al., 2021; Dehghan et al., 2022).
This has the benefit of providing more control and
interpretability over generative approaches, often
at the cost of the ability to perform major struc-
tural changes. It also allows some systems to lever-

1Pretrained models, code, and data are available at https:
//github.com/liamcripwell/plan_simp.

age non-autoregressive generation strategies, result-
ing in faster inference times (Malmi et al., 2019;
Omelianchuk et al., 2021).

Some works have attempted to predict rewrite
operations at the sentence-level. Applying a binary
classifier to predict whether simplification should
be performed has been found to improve SARI
results, reducing conservatism and spurious trans-
formations (Scarton et al., 2020; Garbacea et al.,
2021). Others have proposed multi-class systems
to predict sentence-level operations that are then
used to condition a generative model (Scarton and
Specia, 2018; Scarton et al., 2020; Cripwell et al.,
2022). These show some capacity for general im-
provement over end-to-end systems, while also sig-
nificantly improving performance for specific op-
erations (e.g. splitting in the case of Cripwell et al.
(2022)).

At the document-level, there has been limited
interest to date. However, there are recent works
specifically looking at predicting sentence deletions
(Zhong et al., 2020; Zhang et al., 2022). Both of
these use features of the discourse structure from
surrounding sentences to identify likely deletion
candidates.

We bring all of these methods together by
proposing a system that uses both sentence and
document-level information to predict a multi-class,
sentence-level operation plan over an entire docu-
ment.

3 Problem Formulation

Let C denote an English language document. The
aim of document-level simplification is to produce
a text S that simplifies the input document C.

As a plan can provide a high-level view of a doc-
ument, we hypothesize that a document-level sim-
plification model that is based on a plan specifying
a simplification operation for each input sentence
should fare better than a simplification model that
directly simplifies an entire document.

We therefore decompose simplification into a
two-stage generation process:

p(S | C) = p(S | C,P )p(P | C)

where input document C = c1 . . . cn is a se-
quence of complex sentences, S = s1 . . . sk is a
sequence of simplified sentences and P = o1 . . . on
is a sequence of sentence-level simplification oper-
ations for C.
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We consider three simplification operations pro-
posed in previous work on sentence simplifica-
tion (copy, rephrase, and split) to which we add
delete, an operation that is needed to account for
the fact that, contrary to sentence simplification,
document-level simplification can require for a sen-
tence present in the input document to be excluded
from the resulting simplified document.

Given the input document C, the first-stage
model aims to predict the sequence of simplifica-
tion operations P that should be applied to each
individual sentence in that document. The second-
stage model generates the output simplified docu-
ment S conditioned on the input document C and
its accompanying simplification plan P .

In this work, we focus on the planning stage,
comparing different architectures and demonstrat-
ing the impact of planning on three possible
document-level simplification models. We leave
the exploration of alternative, more complex archi-
tectures for the simplification stage to future work.

Wiki-auto Newsela-auto

# Doc Pairs 85,123 18,319
# Sent Pairs 461,852 707,776

Avg. |C| 155.51 868.98
Avg. |S| 97.72 674.94
Avg. |ci| 28.64 22.49
Avg. |si| 21.57 15.84

Avg. n 5.43 38.64
Avg. k 4.53 42.60

Table 1: Statistics of each dataset after preprocessing,
where n is # sentences in C and k is # sentences in S.

4 Data

In this section we introduce the datasets used, ex-
plain how annotation is performed for each com-
plex sentence and describe other preprocessing
steps.

Dataset. For all experiments, we utilise Wiki-
auto and Newsela-auto (Jiang et al., 2020), two
datasets of English documents paired with their
simplification. These datasets were derived from
WikiLarge (Zhang and Lapata, 2017) and Newsela
(Xu et al., 2015) by aligning the input document
with the output simplification at both the sentence
and the paragraph level.

WikiLarge gathers three simplification datasets
which were automatically-collated from English
Wikipedia and Wikipedia simple (Zhu et al., 2010;

delete

29.17%
copy

20.64%

rephrase

39.01%
split

11.18%

Operation Distribution (Wiki-auto)

delete
16.69%

copy

26.06%

rephrase

35.49%

split

21.75%

Operation Distribution (Newsela-auto)

Figure 1: Operation class distributions for Wiki-auto
(top) and Newsela-auto (bottom) datasets.

Woodsend and Lapata, 2011b; Kauchak, 2013).
Newsela consists of news articles, each manually

rewritten at five different levels of simplification,
corresponding to discrete reading levels (0-4) of
increasingly simplicity. Aligned pairs are created
by pairing every article version with each other
version corresponding to a higher reading level.
Because of this, there can be up to four aligned
document pairs that contain the same document as
either the input or the output.

The types of operations present in different read-
ing level pairings differs significantly, with adjacent
level transitions being extremely conservative (no
instances of deletion throughout entire dataset). To
mitigate any issues arising from this, all models
we train with Newsela-auto receive a control-token
at the start of the input which specifies the target
reading level.

We do not use the D-Wikipedia dataset from
Sun et al. (2021) as it does not contain sen-
tence/paragraph alignments and is poorly format-
ted. In particular, all text is lower-cased and pretok-
enized in a way that makes it difficult to accurately
parse sentences. There are also regular formatting
issues at points where references exist in the source
article.

Annotating Complex Sentences. Using the
pairs (ci, sj) of complex and simplified sentences
available in Wiki-auto and Newsela-auto, we
heuristically assign a silver simplification opera-
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tion label to each complex sentence ci in these two
datasets as follows:

Delete: ci is not aligned to any sj .
Copy: ci is aligned to a single sj with a Leven-

shtein similarity above 0.92.
Rephrase: ci is aligned to a single sj with a

Levenshtein similarity below 0.92.
Split: ci is aligned to multiple sjs.

Preprocessing. Wiki-auto contains many docu-
ment pairs with wildly different sizes. We therefore
clip all complex documents after the last aligned
paragraph. Many simple articles resemble a sum-
marization, rather than a simplification of the com-
plex article (lots of deletion, often consisting of
about one sentence from each paragraph in C). Be-
cause of this, we also remove documents where
more than 50% of aligned sentences are labelled as
delete. Finally, we remove all articles that exceed
1024 tokens (so that we can fit them into a BART
baseline generative model).

For Newsela-auto, article pairs are much more
even in length as they are manually created to be
gradual, direct simplifications of each other. We
perform the same length-based filtering to exclude
documents that will not fit into a baseline genera-
tive model.

Train/Dev/Test Split. For both datasets we use
a train/validation/test split of 92.5/2.5/5. This is ap-
plied at the document-level so that sentences from
the same document will not exist across different
sets. For Newsela, this means that all reading level
versions of a single article will exist within the
same set.

Table 1 and Figure 1 give some statistics and
a graphical description of the two datasets after
pre-processing.

5 Planning

We present our model and four alternative models
we explored for comparison. Training details are
given in Appendix A.

5.1 Model (Contextual Classifier)

Given some input document C = c1 . . . cn
consisting of n complex sentences ci, the task
of the planner is to predict a sequence P̂ =
ô1 . . . ôn of n simplification operations with ôi ∈
{copy, rephrase, split, delete}.

One challenge with this is that the operations
have different, sometimes conflicting requirements.

Figure 2: Contextual classifier model architecture.

By construction, splitting is mostly context inde-
pendent as it is mainly determined by the input
sentence’s internal structure: a sentence will be
split only if it has the appropriate syntactic (e.g.,
The man who sleeps snores→ The man sleeps. He
snores.) or discourse (e.g., John went shopping
after he left work→ John left work. Afterwards he
went shopping.) structure. For sentence splitting,
context (the other sentences in the input document)
has little impact.

In contrast, deletion and to a lesser extent, copy
and rephrase are mostly context dependent. Intu-
itively, a sentence can only be omitted in the simpli-
fied text in cases where it is either redundant with,
or of minor semantic import relative to, other sen-
tences in the document. That is, while for splitting,
internal sentence structure is the key factor, for
deletion, it is the semantics of the input sentence
and how it relates to that of the other sentences
which matters most.

We model these different requirements by us-
ing a token level encoder for the target document
sentence ci (the input sentence to be labelled with
a simplification operation) and a sentence level
representation of the context where each cp ∈
c1 . . . ci−1, ci+1 . . . cn is represented by a sentence
level embedding using SBERT. In this way both
the internal structural information needed to cap-
ture splitting operations and the contextual informa-
tion required by the other operations are provided.
Specifically, we propose a model for planning that
combines a classifier with cross-attention over the
(dynamic or static) context and two types of posi-
tional embeddings. Figure 2 illustrates our model
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(a) Dynamic Contextual Classifier (b) Classifier

(c) Contextual Classifier (d) Tagger

(e) Tagger+Dec (f) EncDecfull

Figure 3: Visualisation of the inputs/outputs of the various models, where wi,t is the tth token in ci, n is the
no. sentences in C and m is the no. tokens in C. Sentence-level representations are shown in red, token-level
representations in teal, operation labels in pink, and unused parts of C in grey.

architecture.

Classifier with Cross-attention over the Con-
text. We build upon a RoBERTa classifier archi-
tecture to enable conditioning upon the surrounding
sentences in the document. We do this by insert-
ing an additional cross-attention layer between the
self-attention and the feed-forward layer of each
transformer block, allowing the model to attend to
a latent representation of the surrounding sentences,
Zi.

Context Representation. To obtain Zi, we take
a fixed window of radius r, extract the r sentences
on either side of the target sentence to be simplified
and concatenate the representation of each of these
sentences. Each context sentence is encoded with
the pretrained Sentence-BERT (SBERT) model2

(Reimers and Gurevych, 2019) and combined with
custom learnt positional embeddings.3

To better simulate autoregressive inference, we
consider a strategy where the left context consists
of previously simplified sentences, rather than com-
plex ones. We refer to this as dynamic context. At
training time, we use the ground truth simplifica-
tions

Contexti,r =Concat(sj−r..j−1, ci..i+r) (1)

where j ∈ {1, . . . , |S|} is the index of the first
sentence aligned to ci in the simple document S.

2Specifically, all-mpnet-base-v2.
3At training time, we backpropogate to the positional em-

bedding layers but keep the SBERT weights frozen.

During inference, the simplifications generated at
preceding timesteps ŝj−r..j−1 are used.

Positional Embeddings. We use custom posi-
tional embeddings to encode both information
about document, and relative context-window po-
sitions. These are each handled by a dedicated
embedding layer and added to the representations
of the corresponding context sentence.

Document positional embedding indices are sim-
ply the document quintile (1-5) that a given sen-
tence falls into. We use quintiles as this will en-
sure that all indices are encountered within the
input document. The context positional embed-
ding indices are the relative distance of a given
sentence from the input sentence ci, adjusted to be
within N0 : ContextPosIdxs = {p − i + r | p ∈
{i− r, . . . , i+ r}}.
Initialisation. Given that the cross-attention lay-
ers must be trained from scratch, the start of train-
ing can see a lot of instability in the model, po-
tentially making it more difficult to model context-
independent features of the input sentence. To ac-
count for this, we initialise the RoBERTa layers
with weights from a context-independent classifier.

5.2 Alternative Models
We compare our model with four alternative mod-
els. The different inputs/outputs of the models are
illustrated in Figure 3.

Classifier. We fine-tune pretrained
RoBERTa-base (Liu et al., 2019), which
has 12 hidden layers and a hidden size of 768, and
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Wiki-auto

Model C R S D Micro Macro

EncDecfull 26.9 42.2 36.0 51.8 43.2 40.8
Tagger+Dec 29.3 54.5 30.0 51.8 47.7 41.4
Tagger 38.6 54.2 31.7 58.5 50.6 45.8
Classifier 42.1 52.9 42.6 49.0 48.4 46.7

Dyn. Context 44.8 57.9 42.4 54.8 52.8 50.0
+ docpos 43.7 55.4 43.6 56.7 52.3 49.9

Newsela-auto

C R S D Micro Macro

26.1 10.8 11.7 9.0 12.2 11.5
72.2 73.9 75.9 79.7 75.0 75.4
71.4 72.7 74.1 78.4 73.7 74.1
77.0 75.6 80.0 78.5 77.4 77.8

79.3 77.3 82.8 81.4 79.7 80.2
80.0 78.1 83.6 82.0 80.3 80.8

Table 2: Planning Accuracy. Dyn. Context is the contextual classifier described in Section 5.1 with r = 13,
dynamic context and weights initialised using the classifier weights (C: Copy, R: Rephrase, S: Split, D: Delete).

add a pooled classification head which takes the
final layer [CLS] representation as input. Given
an input sentence ci, the model simply takes
the tokenized sentence as input and outputs a
prediction score for each operation class. The
model is applied from left-to-right on the input
document classifying each sentence in turn. Thus,
in this approach, while the model has access to
the tokens of the sentence to be classified, there is
no notion of context which, intuitively, should be
detrimental in particular for deletions.

Tagger. We consider a model that frames the
problem as a sequence tagging task over the full
document, predicting the entirety of P̂ at once.
Each ci is encoded using the same SBERT model
as the contextual classifier, with the input document
C therefore being represented as a sequence of sen-
tence embeddings. In contrast to the classifier, the
tagger makes predictions based both on the input
sentence to be classified and on the context. How-
ever, because the input representation at each index
is for an entire sentence we lose some resolution
with respect to token-level content. The approach
is thus less adapted for splitting.

Tagger+Dec. We also consider an autoregres-
sive variant of the tagger that better models the
dependencies between predicted tags. Here, we
include a 1-layer decoder and condition each pre-
diction both on the input document and on the
previously predicted operation tags for the earlier
sentences. This approach is somewhat similar to
Dong et al. (2019); Malmi et al. (2019), except
we abstract to the document-level and do not re-
quire explicit realisation, as this will be handled
downstream by the simplication model.

EncDecfull. Finally, we experiment with an
encoder-decoder variant that conditions on a token-
level representation of the input, thereby combining

a global view and a token-level representation of
the input document. We use sentence separator
tokens to delimit each sentence in the input docu-
ment.

5.3 Evaluation Metrics

To evaluate the performance of the various plan-
ners we use F1-score, considering each individual
prediction at the sentence-level. We report the F1
for each operation class as well as both the micro
and macro averages. The micro F1 weights all ex-
amples equally, whereas the macro re-weights ex-
amples such that each class is represented equally
in the final score. Given the class imbalances in the
data, we regard macro F1 as our primary metric.

5.4 Results

Table 2 summarizes the results.
Compared to the various baselines, our model

consistently shows best results on both datasets.
The improvement over the context-free classifier is
slightly less on Newsela-auto however. We conjec-
ture that the much larger dataset and additional
guidance provided by the reading levels allows
the classifier to achieve rather high accuracy with-
out document-level context. We also note that the
context-free classifier is markedly outperformed by
other models with respect to delete, which confirms
the intuition that context modeling particularly mat-
ters for this operation.

Of the four baselines, EncDecfull performs worst
presumably because the very long input (the whole
context is modelled at the token level) challenges
the attention mechanism which tends to become
blurry as the length of the input increases. This is
particularly apparent on the longer Newsela docu-
ments.

The tagger models, which both use sentence-
level encodings of the complex document, perform
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Model Copy Rephrase Split Delete Micro Macro

(a) Ablation on Best Model
Dyn, r = 13, +init, +docpos 80.0 78.1 83.6 82.0 80.3 80.8
-docpos 79.3 77.3 82.8 81.4 79.7 80.2
-init 74.9 72.1 77.8 75.2 74.6 75.0
-init, -docpos 75.6 72.0 77.7 77.1 75.1 75.6

(b) Dynamic vs. Static Context
Stat, r = 9 71.3 69.5 75.4 73.3 72.0 72.4
Stat, r = 13 72.2 65.3 69.9 68.3 68.5 68.9
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6

(c) With vs without Initialisation
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 9 +init 79.3 78.0 82.7 79.8 79.7 80.0
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6
Dyn, r = 13 +init 79.3 77.3 82.8 81.4 79.7 80.2

(d) Window Size
Stat, r = 9 71.3 69.5 75.4 73.3 72.0 72.4
Stat, r = 13 72.2 65.3 69.9 68.3 68.5 68.9
Dyn, r = 9 73.1 70.1 75.5 75.9 73.1 73.6
Dyn, r = 13 75.6 72.0 77.7 77.1 75.1 75.6
Dyn, r = 9 +docpos 73.8 72.9 77.2 75.8 74.6 74.9
Dyn, r = 13 +docpos 74.9 72.1 77.8 75.2 74.6 75.0
Dyn, r = 9 +init +docpos 79.4 78.0 83.1 82.0 80.1 80.6
Dyn, r = 13 +init +docpos 80.0 78.1 83.6 82.0 80.3 80.8

Table 3: Ablations on Newsela-auto TestSet.

worse than the classifier. This highlights the impor-
tance of having a token-level modeling of the input
sentences.

We observe a strong difference in terms of abso-
lute scores between the two datasets. This is likely
a result of Wiki-auto being an inferior simplifica-
tion corpus (discussed in Section 4).

Next, we examine the impact of our modeling
choices using ablation (Table 3) and focusing on
the higher-quality, Newsela-auto dataset. Our best
model is one with dynamic left-context, a context
radius of 13, document position embeddings and
weight initialisation. We see (Sub-table a) that each
of these components help improve performance
(document position appears less important with
a larger context window). Sub-tables b-d show
that using a dynamic rather than a static context
increases results by up to +6.7 Macro F1, while in-
creasing the context radius from 9 to 13 sentences
mostly improves performance when dynamic con-
text is used. Using document positional embed-
dings also generally improves results (Sub-table
d).

6 Simplification

To assess whether document plans can help im-
prove simplification models, we experiment with

two simple document-level simplification models
and compare their performance with and without a
preceding planning step.

6.1 Simplification Models

All models use the BART model (Lewis et al.,
2020) fine-tuned on aligned text pairs. 4

We consider two variants for document-level
simplification: (i) Doc-BART, which is finetuned
on full document pairs; and (ii) Sent-BART which
is finetuned on sentence pairs and iteratively ap-
plied to each input sentence at test time.

We compare these to various plan-guided (PG)
systems whereby one of our planners predicts an
ôi for each ci and is given as a control-token to a
sentence-level BART simplification model. In the
case of the dynamic planner, ôi is predicted based
on the sequence of previously simplified sentences
ŝi−r . . . ŝi−1.

Training details are given in Appendix B.

6.2 Evaluation

To measure meaning preservation and fluency, we
use BARTScore (Yuan et al., 2021), a state-of-the-

4We use the pretrained facebook/bart-base model
from https://huggingface.co/facebook/
bart-base.
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System BARTScore ↑ SMART ↑ FKGL ↓ SARI ↑ Length

Faith. P R F1 P R F1 Tokens Sents
(s → h) (r → h) (h → r)

Input -0.93 -2.47 -1.99 -2.23 63.2 62.7 62.8 8.44 20.52 866.9 38.6
Reference -1.99 -0.93 -0.93 -0.93 100 100 100 4.93 99.99 671.5 42.6

Doc-BART -2.48 -2.68 -2.76 -2.72 61.9 43.9 50.6 10.01 47.07 600.8 20.7
Sent-BART -1.86 -1.63 -1.56 -1.60 78.9 80.1 79.3 5.03 73.02 666.4 42.6

PGTag -1.95 -2.22 -2.18 -2.20 62.0 62.6 61.6 5.07 56.13 657.4 41.8
PGTag+Dec -1.94 -2.22 -2.18 -2.20 62.2 62.5 61.6 5.09 56.06 654.2 41.4
PGClf -1.91 -1.68 -1.53 -1.60 77.8 81.2 79.3 4.95 73.83 688.8 44.5
PGDyn -1.91 -1.60 -1.54 -1.57 80.2 81.0 80.5 4.98 75.00 667.2 42.6

PGOracle -1.93 -1.39 -1.40 -1.40 85.5 85.0 85.3 4.91 80.74 655.6 42.1

Table 4: Results of document simplification systems on Newsela-auto. For BARTScore, s is the source, h is the
hypothesis, and r is the reference.

art summarization metric that has proved effective
on many other text generation tasks. We also com-
pute SMART (Amplayo et al., 2022), a new met-
ric that considers sentences as the primary unit of
comparison. It was shown to be highly effective
for document summarization and does not use any
neural model, making it very fast to compute (we
use the SMARTL+CHRF version). We cannot use
other model-based metrics, such as BERTScore or
QuestEval, as these do not support texts longer than
512 tokens.

To assess simplicity, we use the Flesch-Kincaid
grade level (FKGL), a document-level metric used
to measure text readability, which has been found
to have the highest correlation with simplicity mea-
sures of human-written simplifications (Scialom
et al., 2021). We also report the popular SARI (Xu
et al., 2016). The EASSE python library (Alva-
Manchego et al., 2019a) is used for calculation
of FKGL and SARI. We include results for other
popular metrics in Appendix D.

At test time we generate sequences using beam
search with a beam size of 5 and a maximum length
of 1024 tokens. We enforce a minimum length for
Doc-BART, which is tuned on the validation set.

We do not conduct a human evaluation as we
intend the focus of this work to be on the planning
component and include simplification results only
to confirm its efficacy. We leave a more in-depth
investigation of the interaction between planning
and document-level simplification to future work.

6.3 Results

Results can be seen in Table 4.
PGDyn achieves the highest results of all systems.

Using the silver operation labels (PGOracle) leads to

a substantial further increase in performance across
every metric, highlighting the impact of planning
and pointing to the possibility of further improve-
ments to be made.

Using either PGDyn or PGClf yields generally bet-
ter results than Sent-BART. Both systems achieve
better FKGL and SARI, suggesting greater out-
put simplicity. Sent-BART achieves much higher
source-oriented BARTScore (faithfulness) than
even the references, suggesting some conservativity
in its transformations.

PGClf achieves slightly higher recall BARTScore
than PGDyn, while also generating the longest out-
puts, both in terms of tokens and sentences. This
suggests it is less effective at identifying sentences
for deletion, confirming our hypothesis that con-
text is key for deletion. We can see here that the
rank order of SMART matches that of BARTScore,
suggesting it is similarly suited for simplification.

Both PGTag and PGTag+Dec perform quite badly
relative to the other PG systems and Sent-BART.
However, Doc-BART is by far the worst perform-
ing system, presumably a result of it failing to prop-
erly handle the long document lengths.

7 Conclusion

In this paper we present an approach to document
simplification that decomposes the task into a two-
stage process of planning and generation. We pro-
pose a planning system that is able to take docu-
ment context and structure into account to produce
a coherent high-level simplification plan. By using
this plan to guide a sentence-level simplification
model, we are able to outperform end-to-end sys-
tems in terms of both meaning preservation and
simplicity.
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We leave for future work the development of
dedicated simplification models that can leverage
a document-level plan while also considering con-
textual information directly during generation.
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use in our experiments requires a license to use,
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low-quality alignments observed within the Wiki-
auto dataset, we strongly encourage any work to-
wards producing new open-access datasets for the
document-level simplification task.
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A Training Details for the Planning
Models

Each model was trained with a learning rate of
1e−5, a batch size of 32 and a dropout rate of 0.1.
We ran experiments on a computing grid with 2×
Nvidia A40 GPUs (45GB memory).

For the contextual classifier, we test with r
values of 9 and 13, subject to findings in Ap-
pendix C. All layers in common with the stan-
dard RoBERTa architecture are initialised with
the RoBERTa-base pretrained weights. All
added positional embedding layers are also ini-
tialised with the pretrained weights from the
RoBERTa-base positional embedding layer. All
other layers are randomly initialised.

B Training Details for the Simplification
Models

For all generative models, we used a learning rate
of 3e−5, a batch size of 16, and performed dropout
with a rate of 0.1 and early stopping. The network
has 6 layers in each of the encoder and decoder,
with a hidden size of 768. All models were trained
on a computing grid using 2× Nvidia A40 GPUs
(45GB memory) in under 24 hours.

C Context Window Size

To determine the optimal context window size for
the contextual planner we ran a series of experi-
ments with varying values of the radius, r. We
used 100,000 random examples from the Newsela-
auto (non-adjacent reading levels) training set and
trained a model with each of the configurations for
5 epochs. Results can bee seen in Figure 4.

The deletion operation is most affected by the in-
clusion of context, with performance rapidly rising
as r grows to 13. The rephrase operation appears
to slowly degrade in performance as r increases,
while the other two operations show no obvious
pattern. We also observe that r = 9 produces the
highest macro F1.

D Extra Evaluation Results

For clarity, we provide scores for a wider range
of simplification evaluation metrics that were not
included in the main body of the paper in Table 5.
These mostly include popular metrics used for sen-
tence simplification that we do not believe adapt
as well to the document-level setting, do not pro-
vide further insight into system differences, or have

2 4 6 8 10 12 14
r

30

35

40

45

50

55

60

F1

Effect of context radius size, r

Operation
Macro
Delete
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Rephrase
Split

Figure 4: Effect of context window size on F1 scores.

not recieved much support in the literature. Speci-
fially, we include BLEU (Papineni et al., 2002),
and full operation scores for both SARI and D-
SARI (Sun et al., 2021). For D-SARI, we apply the
document-level penalties on top of the base EASSE
implementation of SARI.

We can see that the main SARI differences be-
tween the context-free planner and Sent-BART is
that Sent-BART achieves higher keep, while the
planner achieves higher add. This suggests that
Sent-BART is likely more conservative in edits.
Further, as the planner does not have access to con-
textual content, it is likely failing to consistently
copy/delete the correct parts of the text.

E Example Planner Predictions

Figure 5 shows example snippets of planner model
outputs. We have selected representative extracts
that highlight the strengths and weaknesses of the
main models. We do not include outputs from Tag-
ger as they are virtually identical to Tagger+Dec
in most cases and therefore do not provide further
insight.

F Example Simplification

Figure 6 shows system output examples for the
simplification models. We only show texts from
Wiki-auto as they are easier to showcase due to
their shorter length, as well as their being licensing
restrictions for Newsela content.
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System BLEU ↑ D-SARI ↑ add keep delete SARI ↑ add keep delete

Input 46.2 8.76 0.0 26.29 0.0 20.52 0.0 61.56 0.0
Reference 100.0 99.98 99.99 99.97 99.99 99.99 100 99.97 99.99

Doc-BART 31.13 30.60 16.54 25.01 50.24 47.07 20.41 55.40 65.40
Sent-BART 70.74 66.27 53.89 71.95 72.95 73.02 55.91 83.66 79.48

PGTag 48.08 42.96 31.70 44.01 53.17 56.13 35.61 65.61 67.18
PGTag+Dec 48.12 43.31 31.57 44.68 53.69 56.06 35.54 65.54 67.11
PGClf 70.84 62.97 56.31 65.15 67.47 73.83 57.62 83.56 80.32
PGDyn 72.41 67.42 56.83 71.82 73.61 75.00 58.88 84.75 81.36

PGOracle 78.97 77.02 63.44 83.92 83.70 80.74 65.22 89.94 87.05

Table 5: Extra results for document simplification experiments on Newsela-auto.

(a) (b)

(c) (d)

Figure 5: Example planning results for various models. Subfigures show representative snippets from Newsela-
auto test-set documents. The silver labels are shown above in yellow, and system outputs are shown on the rows
below with correct predictions in green and incorrect predictions in red. ClfDyn is our best performing model,
the contextual classifier with dynamic context. Figure 5a shows a case where there are lots of context-agnostic
operations (rephrase, split) resulting in poor performance from Tagger+Dec. Figure 5b shows a varied snippet
where ClfDyn appears to be the best at identifying both rephrase and split, as well as delete. Figures 5c and 5d
show that Tagger+Dec is capable of performing well in situations demanding a lot of context-dependent operations
(copy, delete).
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System Output

Complex Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist who designed and
produced the artwork for the posters of many classic Hollywood films. His iconic images are associated
with the golden era of Hollywood and Campeggi is now generally regarded as the most important graphic
artist and poster designer in the history of American cinema. In the following decades, Campeggi designed
and produced the poster and advertising graphics for over 3000 films, working not only under contract with
the MGM studios, but also with Warner Brothers, Paramount, Universal, Columbia Pictures, United Artists,
RKO, Twentieth-Century Fox and several other movie studios. Sixty-four of the films he illustrated won
Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side Story",
"Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018, at the age of 95.

Simple Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies. Campeggi was known for his poster
designs for "Casablanca", "Singin’ in the Rain", and "Breakfast at Tiffany’s". Campeggi died on August 29,
2018 in Florence from respiratory failure at the age of 95.

Doc-BART Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies, including "Casablanca", "Ben-Hur",
"Singin’ in the Rain", "An American in Paris", "West Side Story", "Exodus", "Breakfast at Tiffany’s", "Gigi",
and "".

Sent-BART Silvano "Nano" Campeggi (23 January 1923 – 29 August 2018) was an Italian artist. He designed and produced
the artwork for the posters of many classic Hollywood movies. Campeggi is generally regarded as the most
important graphic artist and poster designer in the history of American cinema. Campeggi designed and
produced the poster and advertising graphics for over 3000 movies, working not only under contract with
the MGM studios, but also with Warner Brothers, Paramount, Universal, Columbia Pictures, United Artists,
RKO, Twentieth Century Fox and several other movie studios. Sixty-four of the movies he illustrated won
Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side Story",
"Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018, at the age of 95.

PGDyn Silvano "Nano" Campeggi (January 23, 1923 – August 29, 2018) was an Italian artist. He designed and
produced the artwork for the posters of many classic Hollywood movies. Sixty-four of the movies he illustrated
won Oscars, including "Casablanca", "Ben-Hur", "Singin’ in the Rain", "An American in Paris", "West Side
Story", "Exodus", "Breakfast at Tiffany’s", and "Gigi". Campeggi died on 29 August 2018 at the age of 95.

Table 6: Simplification outputs for a specific document pair example. Although Newsela-auto is the focus of our
simplification experiments, we can only include example documents from Wiki-auto due to licensing constraints.
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