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Abstract
Though pre-trained language models achieve
notable success in many applications, it’s usu-
ally controversial for over-confident predic-
tions. Specifically, the in-distribution (ID) mis-
calibration and out-of-distribution (OOD) de-
tection are main concerns. Recently, some
works based on energy-based models (EBM)
have shown great improvements on both ID
calibration and OOD detection for images.
However, it’s rarely explored in natural lan-
guage understanding tasks due to the non-
differentiability of text data which makes it
more difficult for EBM training. In this pa-
per, we first propose a triple-hybrid EBM
which combines the benefits of classifier, con-
ditional generative model and marginal genera-
tive model altogether. Furthermore, we lever-
age contrastive learning to approximately train
the proposed model, which circumvents the
non-differentiability issue of text data. Exten-
sive experiments have been done on GLUE and
six other multiclass datasets in various domains.
Our model outperforms previous methods in
terms of ID calibration and OOD detection by
a large margin while maintaining competitive
accuracy.

1 Introduction

Since many industrial applications involve safety
-critical domains such as healthcare (Li et al.,
2019; Blinov et al., 2020; Li et al., 2020; Rasmy
et al., 2021; Sarabadani, 2019), anticipating credit
card defaults (Sun and Vasarhalyi, 2021) and self-
driving (Khaitan et al., 2021), it’s essential for ma-
chine learning systems to provide not only accurate
but also well-calibrated predictions (Li et al., 2019),
which can help to decide whether it can be trusted.

However, models achieving high accuracy usu-
ally lead to overconfidence and miscalibration (Guo
et al., 2017; Thulasidasan et al., 2019; Ovadia et al.,
2019). This motivates an interesting and important
area that attempts to achieve a better trade-off be-
tween accuracy and calibration. In addition to ID

calibration, it’s more important for machine learn-
ing models to produce high uncertainty when OOD
data is observed, rather than to produce wrong yet
wildly confident predictions.
Related works. To overcome the problem of mis-
calibration, numerous methods have been proposed.
The natural way is post-hoc calibration that trans-
forms the output of the original network into cal-
ibrated confidence scores while maintaining the
network’s accuracy (Guo et al., 2017; Rahimi et al.,
2020; Jung et al., 2020). The second method to mit-
igate miscalibration is to add regularizations dur-
ing training such as label smoothing (Wang et al.,
2020), Mixup (Zhang et al., 2018). Desai and Dur-
rett (2020) and Kong et al. (2020) further conveys
that the aforementioned methods can be applied
to improve the calibration of pre-trained language
models on NLU tasks. The third way is to design a
specific loss function to minimize the discrepancy
between accuracy and confidence. For example,
Kong et al. (2020) lately propose the ID and OOD
regularizer to leverage the relationship between ac-
curacy and uncertainty, and it obtains a significant
improvement over previous methods in ID calibra-
tion and OOD detection.
Energy-based Models. In another line of work,
Joint EBM (JEM; Grathwohl et al., 2019) has been
shown great improvements on ID calibration and
OOD detection for images without explicit cali-
bration correction mechanism. The core idea is
to reinterpret a joint distribution pθ(x, y) from
a neural classifier pθ(y|x) in the perspective of
EBMs and jointly optimize the marginal distribu-
tion pθ(x) and a neural classifier pθ(y|x). Elflein
et al. (2021) further investigate the OOD detection
performance with different training approaches for
pθ(x) such as Stochastic Gradient Langevin Dy-
namics (SGLD; Welling and Teh, 2011), Sliced-
Score-Matching (SSM; Song et al., 2020) and Vari-
ational Entropy Regularized Approximate maxi-
mum likelihood (VERA; Duvenaud et al., 2021).
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Besides, Du and Mordatch (2019) propose an im-
plicit generative models based on EBMs (IGEBM)
and apply SGLD to optimize pθ(x|y). It performs
significantly better OOD detection than other gen-
erative models. However, as shown by Grathwohl
et al. (2019), the accuracy of IGEBM has dropped
dramatically to 49.1% on CIFAR10 while standard
finetuning can achieve 95.8% accuracy. This result
indicates that different loglikelihood factorization
leads to great gaps in accuracy, ID calibration and
OOD detection. Moreover, these training methods
such as SGLD, SSM, VERA need to calculate the
gradients about inputs, the none differentiability of
text data limits the application of these methods on
both calibration and OOD detection for NLU tasks.

Recently, He et al. (2021) proposes a joint train-
ing of classifier pθ(y|x) and marginal distribution
pθ(x) based on Residual EBM (Deng et al., 2019)
for NLU tasks. Different from JEM, their model
is more flexible by designing various energy func-
tions for marginal distribution without any restric-
tion on joint distribution pθ(x, y). To estimate the
parameters of marginal distribution pθ(x), they pro-
pose to apply noise contrastive estimation (NCE;
Gutmann and Hyvärinen, 2010) to train the energy
model by discriminating the real data and the fake
data generated by a noise distribution. To make the
noise distribution as close as possible to the data
distribution, they finetune a task-specific GPT-2
(Radford et al.). Though it achieves improvements
on ID calibration, it’s often resource-intensive com-
pared to previous methods to finetune GPT-2 (Li
et al., 2022). Moreover, the quality and quantity of
fake samples generated by noise distribution has
great impacts for NCE training (He et al., 2021;
Gutmann and Hyvärinen, 2010).

Contribution. Methodologically, we propose a
novel model namely Triple-Hybrid Energy-based
Model (THEM) based on the JEM (Grathwohl
et al., 2019) through different decompositions of
logp(x, y) into a unified framework. Compared
to Grathwohl et al. (2019) and Du and Mordatch
(2019), our model combines the classifiers p(y|x),
class-conditional density p(x|y) and unconditional
data density p(x) into a hybrid model. Due to the
none differentiability of text data, we further pro-
pose to adopt InfoNCE (Oord et al., 2018) with
memory bank (He et al., 2020) to approximate
the normalized constant of EBM efficiently. This
method makes it possible for EBM training on
NLU tasks which is not well explored in previous

works regardless of input differentiability. We con-
duct comprehensive experiments with BERT (Ken-
ton and Toutanova, 2019) and RoBERTa (Liu et al.,
2019) as the backbone and demonstrate the effec-
tiveness of our framework on various datasets in-
cluding GLUE (Wang et al., 2018) and six multi-
class classification datasets (Kong et al., 2020) on
various domains. Not only the experimental results
show that our method achieves significant improve-
ments in ID calibration and OOD detection with
competitive accuracy over previous methods, but
also it is more robust with respect to the temper-
ature and size of memory bank compared to con-
trastive learning trained EBM including JEM(CL),
IGEBM(CL) and HDGE.

Overall, the contributions can be summarized as
follows:

• We propose a Triple-Hybrid Energy-based
model (THEM) and apply InfoNCE with
memory bank to optimize it efficiently and ef-
fectively for discrete data. It achieves signifi-
cantly better performance compared to strong
baselines including He et al. (2021) and Kong
et al. (2020) in terms of ID calibration and
OOD detection.

• We apply this training technique to JEM and
IGEBM to obtain JEM(CL) and IGEBM(CL)
respectively. THEM and JEM(CL) achieves
better ID calibration and OOD detection com-
pared to HDGE and IGEBM(CL) in average.

• We further study the effect of the tempera-
ture and size of memory bank for contrastive
learning on ID calibration and OOD detec-
tion. THEM is more robust to these hyper-
parameters than JEM(CL) and HDGE(CL).

2 Preliminaries: Joint Energy Model and
Contrastive Learning

Joint Energy Model (JEM). Energy-based mod-
els (EBMs; LeCun et al., 2006) measure the com-
patibility of the input variables x ∈ X and tar-
get variables y ∈ Y with an energy function
Eθ(x, y) : X ×Y → R, which is the main building
block. Low energy corresponds to high compata-
bility. With Eθ, the probability for data in an EBM
can be written as

pθ(x, y) =
exp (−Eθ(x, y))

Zθ
, (1)

where Zθ is the normalizing constant. EBMs are
flexible to parameterize since they do not make
restrictions on the tractability of Zθ.
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Joint Energy Model (JEM; Grathwohl et al.,
2019) reinterpret a classifier pθ(y|x) in super-
vised learning as an EBM for the joint distribu-
tion pθ(x, y). Specifically, pθ(y|x) is a categorical
distribution:

pθ(y|x) =
exp(fθ(x)[y])∑
y exp(fθ(x)[y])

, (2)

where fθ(x) : RD → RK maps each data point
x ∈ RD to K real-valued numbers known as logits,
and fθ(x)[y] indicates the logit of label y. JEM
defines an EBM of the joint distribution with the
same logits fθ:

pθ(x, y) =
exp(fθ(x)[y])

Zθ
, (3)

where energy function Eθ(x, y) = −fθ(x)[y]. To
retain discriminative performance of pθ(y|x), JEM
factorizes the loglikelihood as

log pθ(x, y) = log pθ(x) + log pθ(y|x), (4)

and apply EBM training to benefit from genera-
tive models pθ(x). Grathwohl et al. (2019) and
Elflein et al. (2021) have shown that EBM training
of the joint distribution improves calibration and
out-of-distribution detection with various training
methods.
Constrastive Learning. Our work is also re-
lated to contrastive learning, in that we approxi-
mate log pθ(x) and log pθ(x|y) by constrastive loss.
Contrastive learning achieves remarkable success
on downstream tasks, includes image classification,
video understanding, knowledge distillation, etc
(Khosla et al., 2020; Chen et al., 2020). In con-
strastive learning, a widely-used objective has the
following form (Oord et al., 2018):

−Epdata(x)

[
log

exp{tθ(x)⊤t′θ(x)}∑N
i=1 exp{tθ(x)⊤t′θ(xi)}

]
, (5)

where tθ(x) and t′θ(x) map each data point x to
two different representation spaces. This is usu-
ally called InfoNCE loss. Different from existing
methods for EBM training, we propose to leverage
constrastive learning approximation for effective
learning, without considering the generation ability
such as SGLD, SSM and so on.

3 Triple-Hybrid Energy-based Model

Motivation. Many works (Grathwohl et al., 2019;
Elflein et al., 2021; Du and Mordatch, 2019)

have shown that EBMs could significantly reduce
the expected calibration error and improve out-
of-distribution detection for image classification.
Specifically, the JEM proposed in Grathwohl et al.
(2019) factorizes the joint distribution log pθ(x, y)
into log pθ(x) + log pθ(y|x), where log pθ(y|x)
is to maintain the classification performance and
log pθ(x) is the generative term which contributes
to better calibration and out-of-distribution detec-
tion. On the contrary, the IGEBM proposed in
Du and Mordatch (2019) factorizes the joint dis-
tribution log pθ(x, y) into log pθ(y) + log pθ(x|y)
for implicit generation and surprisingly find that it
achieves better OOD performance. However, lack
of pθ(y|x) leads to terrible classification perfor-
mance. It’s shown in Grathwohl et al. (2019) that
the classification accuracy dropped dramatically to
49.1% on the CIFAR10 dataset, while the accuracy
is 92.9% by JEM.

On the other hand, Liu and Abbeel (2020) pro-
posed a hybrid discriminative-generative energy-
based model (HDGE) for both classification and
generation. The loss function consists of a discrim-
inative conditional log-likelihood log pθ(y|x) and
a generative conditional log-likelihood log pθ(x|y).
Compared to IGEBM, it includes log pθ(y|x) and
thus achieves better classification performance.
Compared to JEM, it includes the conditional gen-
erative model, rather than the marginal generative
model. In other words, JEM targets to reduce the
energy for data from the population pθ(x), while
HDGE aims at reducing the energy for compatible
pair (x, y). This motivates us to combine the ben-
efits of both conditional and marginal generative
model for better calibration and OOD detection.
Triple-Hybrid Energy-based Model (THEM).
We propose to make a hybrid model of the triple
log pθ(y|x), log pθ(x|y) and log pθ(x), called
Triple Hybrid Energy-based Model (THEM) and
the objective function is

Epdata(x,y) [log pθ(y|x) + log pθ(x|y) + log pθ(x)] ,

(6)

where pθ(y|x) is the standard softmax neural clas-
sifer and the generative models pθ(x), pθ(x|y)
serve as regularization, always accompanied with
better calibration and OOD detection.

From another perspective, we combine the two
factorizations of the joint distribution log pθ(x, y)
from JEM and IGEBM. We remark that the joint
distribution can also be factorized as (log pθ(x) +
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log pθ(x|y)+log pθ(y)+log pθ(x|y))/2. Our pro-
posed THEM utilizes this factorization and treats
pθ(y) known as the label frequencies in data, which
does not need to be optimized. Now we are ready
to resolve the computational issues for THEM in
the following.
Neural Classifier. The neural classifier term is
easy to cope with. Specifically,

pθ(y|x) =
exp(fθ(x)[y])∑
y exp(fθ(x)[y])

, (7)

where fθ(x)[y] is the logit of label y. Thus we
can derive the first term in (6) as the traditional
cross-entropy loss:

Epdata(x,y) [log pθ(y|x)] . (8)

Conditional Generative Likelihood. The condi-
tional generative likelihood can be derived from
the joint distribution:

log pθ(x|y) = log
pθ(x, y)

pθ(y)
= log

pθ(x, y)∑
x pθ(x, y)

= log
exp(fθ(x)[y])

Zθ(y)
,

(9)

where Zθ(y) =
∑

x exp(fθ(x)[y]). By defini-
tion, this is also an EBM with energy function
Eθ(x, y) = −fθ(x)[y]. Energy-based models are
well-known to be difficult to train. The Fenchel
duality method used in Chen et al. (2021b) can es-
timate Zθ(y). The stochastic gradient langevin dy-
namics (SGLD) adopted in Grathwohl et al. (2019)
can approximate the gradient of log pθ(x|y). How-
ever, these methods require to calculate the deriva-
tive with respect to the input x and thus can’t be
applied to discrete data such as text tasks.

Approximation with Contrastive Learning. The
above training methods are successful for gener-
ation purpose. Differently, we focus on classifi-
cation with better calibration and OOD detection.
As such, we propose to coarsely approximate the
normalization constant as

Zθ(y) ≈
N∑

i=1

exp(fθ(xi)[y]), (10)

where xi is sampled from the data no matter
whether yi is equal to y or not. The second term in

(6) is approximately

Epdata(x,y) [log pθ(x|y)] ≈ log
exp(fθ(x)[y])

N∑
i=1

exp(fθ(xi)[y])

.

(11)

Since the samples for approximation are incorpo-
rated in the denominator using the same label y, the
logits fθ(x)[y] can be treated as the score function
of input-label contrast (Rethmeier and Augenstein,
2021). As a result, this objective can be seen as
the InfoNCE (5) in contrastive learning. Liu and
Abbeel (2020) also proposed this approximation
for image classification, while it’s more suitable to
text classification due to the discreteness of data.

To be more distinguishable between positive and
negative samples but not concentrated on the near-
est few samples (Zhang et al., 2021), we employ
the temperature parameter τ in InfoNCE and the
objective loss becomes

log
exp(fθ(x)[y]/τ)

N∑
i=1

exp(fθ(xi)[y]/τ)

.
(12)

For the effectiveness of contrastive learning, it
often requires a large number of negative sam-
ples (Chen et al., 2021a). Since directly increasing
N is limited to hardware memory, we instead pro-
pose to use a memory bank (He et al., 2020) to store
logits with negligible computational resources. In
detail, we store the logits fθ(x)[y] of the past sam-
ples into the memory bank.
Marginal Generative Likelihood. The marginal
generative likelihood can be handled in the similar
way as conditional generative likelihood. Specifi-
cally,

logpθ(x) = log

{∑

y

pθ(x, y)

}

= log

∑
y exp(fθ(x)[y])

Zθ
,

(13)

where Zθ =
∑

x

∑
y exp(fθ(x)[y]). We propose

to approximate the third term in (6) as

Epdata(x,y) [log pθ(x)] ≈ log

∑
y exp(fθ(x)[y])

N∑
i=1

∑
y exp(fθ(xi)[y])

,

(14)

where xi is sampled from the data distribution. As
the conditional generative likelihood, techniques of
temperature parameter and memory bank are also
employed.
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4 Experiments

In this section, we conduct thorough experiments
to investigate the empirical peformance of our pro-
posed methods. We first introduce the criteria for
ID calibration and OOD detection.
ID Calibration. For a well-calibrated model, the
confidence estimate p̂ of the model is expected
to be comparable to true probability (accuracy):
P(ŷ = y|p̂) = p̂ (Desai and Durrett, 2020; Kong
et al., 2020). The calibration error for a given con-
fidence p ∈ (0, 1) is defined as the followings:

Ep = |P(ŷ(x) = y(x)|P̂ (x) = p)− p|, (15)

where ŷ(x) is the label predicted by the model,
y(x) is the true label for input x and P̂ (x) is the
output probability associated with the predicted
label ŷ(x). To evaluate the overall calibration error,
we partition (0, 1) into M bins of equal size and let
bm denote the set of prediction confidences which
lie in the m-th bin. The expected calibration error
(ECE) is calculated by weighting the difference
between accuracy and confidence of each bin:

acc(bm) =
1

|bm|
∑

i∈bm
I(ŷi = y).

conf(bm) =
1

|bm|
∑

i∈bm
p̂i.

ECE =

M∑

m=1

|bm|
N

|acc(bm)− conf(bm)|.

(16)

OOD Detection. In general, OOD detection is
a binary classification problem, where the model
is required to produce a score sθ(x) ∈ R. Usu-
ally we can set a threshold δ to detect OOD sam-
ples whose score functions are below the thresh-
old. A well-calibrated model is expected to output
higher scores for in-distribution examples than out-
of-distribution examples. A widely used score func-
tion is maximum prediction probability (Hendrycks
and Gimpel, 2016):

sθ(x) = maxypθ(y|x). (17)

Following Kong et al. (2020), we employ the em-
pirical Normalized Bounded Area Under the Cali-
bration Curve (NBAUCC) as the evaluation metric
rather than the Area Under the Receiver-Operating
curve (AUROC; Hendrycks and Gimpel, 2016) and
the Area Under the Precision-Recall curve (AUPR;
Elflein et al., 2021). The main reason is that we

would like to use a threshold as low as possible to
detect ODD samples and more details are referred
to Kong et al. (2020).
Target. In our experiments, we are interested in
answering the following questions:

1. Does THEM achieve better calibration com-
pared to baselines?

2. Does THEM improve OOD detection?
3. The effect of temperature and the size of

memory bank on THEM, JEM(CL) and
HDGE(CL).

Datasets. We consider the eight datasets of GLUE
used in He et al. (2021) to evaluate the ID calibra-
tion, since there are no out-of-distribution samples
in GLUE. We use the official code1 to acquire the
development and test dataset of GLUE. Further-
more, we consider six more datasets used in Kong
et al. (2020) to evaluate both ID calibration and
OOD detection. Details of the datasets are in Table
4 and 5 in Appendix.
Baselines. For GLUE datasets, we compare our
method against that of He et al. (2021), which
is state-of-the-art EBMs on natural language un-
derstanding models. Their method is based on
Residual-EBM which can work with more flexi-
ble energy functions, but the computational cost
is also huge compared to our method. We also
compare with other three strong baselines for cali-
bration: finetune, Scal-bin and T-scale used in He
et al. (2021). For fair comparisons, we follow the
experiment settings in their work. We use Roberta
as the backbone and the bins of ECE is set to 20.

For the additional six datasets, we compare
our methods with nine strong baselines in Kong
et al. (2020) including (1) BERT finetuning, (2)
Post-calibration method: Temperature Scaling
(TS; Guo et al., 2017), (3) Model ensemble:
Monte Carlo Dropout (MCDP; Gal and Ghahra-
mani, 2016), (4) Over-confident correction: La-
bel Smoothing (LS; Müller et al., 2019), Entropy
Regularized Loss (ERL; Pereyra et al., 2017),
Virtual Adversarial Training (VAT; Miyato et al.,
2018), and (5) Data-augmentation: Mixup (Zhang
et al., 2018), Manifold-Mixup (M-Mixup; Verma
et al., 2019), and Manifold-regularization (M-
regularization; Kong et al., 2020). We use BERT as
the backbone and the bins of ECE is set 15 just as
Kong et al. (2020). Besides, we also use NBAUCC
as the misclassification evaluation to make fair and

1We use the official code: https://github.com/
salesforce/ebm_calibration_nlu
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comprehensive comparisons. For these datasets,
we don’t compare our method with that of He et al.
(2021) since it is time-consuming and needs more
computational resources to finetune a noise dis-
tribution and generate negative samples for NCE
training. At last, we use NBAUCC0.5 as the evalua-
tion metric for OOD detection. The OOD datasets
often need an ID dataset for training and an OOD
dataset for OOD detection evaluation. More details
of datasets can be found in Appendix A.
Implementation Details. We employ ADAM
(Kingma and Ba, 2014) as the optimizer for all
experiments with the following parameters: β1 =
0.9, β2 = 0.999, gradient clip of 1.0, and L2

weight decay of 0.1. We search learning rate in
[1e−5, 2e−5, 3e−5, 5e−5] with the training epochs
in [2, 3, 5, 10]. Our model is built with a classifier
on the top of the pretrained language models includ-
ing BERT (Devlin et al., 2019) and Roberta (Liu
et al., 2019) using the implementation of Hugging-
face (Wolf et al., 2020). For contrastive learning,
we set the size of memory bank N to 65536 and
the temperature τ to 0.1. All experiments run 5-
times and we report the average performance on
test dataset. The test result is selected based on
loss and accuracy on the development dataset2. All
experiments are conducted on a single NVIDIA
RTX 2080TI 12G GPU. Our implementation is
based on the official codes of MoCo3 and Manifold-
regularization4.
Results on ID Calibration. Table 1 and 2 show
the accuracy (acc) and ECE results for GLUE tasks
and the six additional datasets respectively, with
different baseline methods. Except our proposed
THEM, we also include (1) HDGE: log p(x|y) +
log p(y|x), (2) JEM: log p(y|x) + log p(x), (3)
IGEMB: log p(x|y) but trained with contrastive
learning (CL) proposed in this paper. These three
EBMs are trained by MCMC for images in previ-
ous literatures, while we are the first to train them
by contrastive learning for NLU tasks.

From Table 1, EBMs with contrastive learning
achieves significant improvements on ECE with
competitive accuracy, compared to He et al. (2021).
He et al. (2021) redefines energy function based
on Residual-EBM and estimates parameters us-
ing NCE with a finetuned GPT (Radford et al.)

2Following He et al. (2021), we don’t use ECE as the
metric to select the best model for evaluation

3https://github.com/facebookresearch/moco
4https://github.com/Lingkai-Kong/

Calibrated-BERT-Fine-Tuning

on dataset as noise distribution. Not only does
it need more computing resources to finetune a
GPT model for each dataset, but also the quan-
tity and quality of negative samples generated by
noise distribution have big impacts for accurate pa-
rameters estimation using NCE (He et al., 2021;
Gutmann and Hyvärinen, 2010). In contrast, our
model achieves better results with negligible com-
putational resource compared to standard finetun-
ing.

From Table 2, our method achieves the best
ECE on six multiclass datasets on various domains.
Compared to M-regularization (Kong et al., 2020)
which is specifically designed to prevent overconfi-
dent predictions for both in-distribution and out-of-
distribution, our framework without an explicit cal-
ibration mechanism achieves the best ECE, demon-
strating the effectiveness of EBMs trained with
contrastive learning paradigm. On average, the re-
sult of the proposed THEM is very close to the best
one in terms of ECE.

Results on OOD Detection. In general, OOD de-
tection is a binary classification problem, where
the model is required to produce a score for a
data point to detect whether it is an ID or OOD
sample. Here we use equation (17) as score func-
tion and NBAUCC0.5 as evaluation metric. Ta-
ble 3 summarizes the NBAUCC0.5 for misclassi-
fication detection and OOD detection. It can be
seen that compared with all baselines, especially
the strong baseline M-regularization (Kong et al.,
2020), our method achieves the best misclassifica-
tion on all data sets with significant improvements.
In terms of OOD detection, our results averaged on
six datasets are comparable to the performance of
M-regularization and are superior to other baselines
on all datasets except M-regularization on Yahoo.
These results shows that THEM provides a simple
yet effective way to improve OOD detection.

Analysis of Generative Density. From Table 1 and
Table 2, the generative density including marginal
data density pθ(x) and class conditional data den-
sity pθ(x|y) are mainly contributed to the improve-
ments of ID calibration and OOD detection com-
pared to standard finetuning and previous calibra-
tion methods. However, different generative terms
may have different impacts on final performance.
In most NLU tasks, JEM(CL) achieves better ID
and OOD calibration performance compared to
HDGE(CL) which is different from the experimen-
tal results observed in Liu and Abbeel (2020) on
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Table 1: Test-set accuracy and ECE results for different methods on GLUE tasks. The leading zeros are omitted
to save space. Note that the hyperparameters of T-Scal and Scal-bin are searched on the development dataset and
applied to test dataset. The average value is compute on all nine test sets. For each task, the method that achieves
best calibration are shown in bold.

Method SST-2 MNLI MNLI(mm) QNLI QQP MRPC COLA RTE WNLI AVG
acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE

Baseline (He et al., 2021)
finetune .942 .050 .876 .067 .872 .068 .929 .043 .904 .034 .862 .133 .539 .182 .724 .279 .571 .058 .802 .102

Scal-bin(dev) .944 .019 .876 .030 .870 .032 .931 .021 .905 .021 .862 .062 .557 .048 .731 .042 .542 .189 .802 .052
T-Scale(dev) .942 .037 .876 .024 .872 .026 .929 .018 .904 .026 .862 .126 .539 .109 .724 .235 .571 .046 .802 .072

Residual-EBM-NCE (He et al., 2021)
ebm-scalar .942 .033 .871 .038 .871 .047 .927 .016 .899 .034 .862 .098 .540 .150 .753 .207 .542 .033 .801 .073
ebm-hidden .956 .032 .869 .032 .868 .044 .923 .016 .900 .033 .867 .099 .545 .131 .797 .148 .542 .036 .807 .063

ebm-s-hidden .947 .038 .875 .027 .872 .031 .930 .016 .900 .032 .862 .089 .563 .133 .811 .182 .571 .073 .815 .069
Ours

HDGE(CL) .938 .036 .870 .040 .864 .049 .927 .024 .908 .023 .862 .056 .539 .101 .753 .069 .571 .051 .803 .048
JEM(CL) .926 .043 .872 .033 .868 .023 .927 .021 .907 .009 .877 .060 .562 .107 .753 .073 .571 .057 .806 .047

IGEBM(CL) .922 .054 .868 .124 .869 .125 .931 .065 .910 .087 .867 .029 .549 .060 .789 .052 .571 .044 .808 .071
THEM .922 .035 .867 .043 .866 .043 .928 .028 .910 .019 .872 .062 .551 .085 .724 .082 .571 .050 .801 .049

Table 2: ECE and accuracy (in percentage) on test set for different methods on six multiclass datasets listed in
Table 5. We report the average performance of 5 random initializations. For each task, the method that achieves best
calibration are shown in bold.

Method 20NG15 20NG WOS100 WOS Yahoo8 Yahoo AVG
acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE acc ECE

baseline (Kong et al., 2020)
BERT 87.42 9.24 84.55 11.61 81.94 6.81 79.40 6.74 73.58 10.11 71.89 10.54 79.79 9.17

TS 87.42 4.42 84.55 8.17 81.94 3.63 79.40 4.43 73.58 5.18 71.89 4.24 79.79 5.01
MCDP 87.45 6.88 84.55 9.17 82.09 4.00 79.67 3.55 73.67 6.54 71.99 6.72 79.90 6.14

LS 87.54 4.35 85.02 6.15 81.95 4.35 79.47 4.67 73.66 4.89 71.54 3.61 79.86 4.67
ERL 87.67 7.16 84.83 6.10 81.96 3.74 79.48 3.35 73.63 3.42 72.01 2.96 79.92 4.45
VAT 87.61 9.07 85.20 11.28 81.65 7.27 79.71 6.76 73.71 10.96 72.08 7.92 79.99 8.87

Mixup 87.49 5.98 84.86 9.02 81.97 4.72 79.51 4.21 73.88 4.60 71.82 5.18 79.92 5.61
M-Mixup 87.40 5.04 84.45 7.78 81.77 6.48 79.57 6.68 72.03 7.01 72.03 6.07 79.54 6.51

M-regularization 87.44 3.69 84.53 4.43 81.59 3.24 79.06 3.04 73.71 3.03 72.17 3.42 79.75 3.47
Ours

HDGE(CL) 87.34 4.71 84.47 7.76 81.14 4.00 78.68 4.12 73.53 4.02 71.62 5.97 79.46 5.09
JEM(CL) 87.98 3.10 84.81 2.17 81.80 3.47 78.74 3.27 73.72 2.17 72.60 1.64 79.86 2.58

IGEBM(CL) 88.35 2.47 84.06 3.87 81.51 11.72 78.46 13.73 73.01 4.00 70.82 2.01 79.36 6.30
THEM 88.35 2.09 84.99 3.91 81.05 3.01 78.72 3.19 73.80 1.55 72.00 2.19 79.81 2.65

computer vision tasks. The main reason may lie
on the estimation methods that it is more stable
and effective to approximate the log-likelihood
with contrastive loss compared to MCMC or score-
matching for calibration, when the generation abil-
ity is not under consideration. While our model
achieves comparable ID calibration performance
across various datasets on average and better OOD
detection.

The hyper-parameters study of InfoNCE on ID
calibration and OOD detection. To study the
effect of the hyper-parameters including the sam-
ple size, and temperature of InfoNCE for training
THEM, JEM(CL) and HDGE(CL), we conduct nu-
merous experiments on 20NG, Yahoo and WOS
dataset. Due to the limited computational resources,
we set temperature to 0.1 and vary the size of mem-
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Figure 1: The effect of the memory bank size and tem-
perature for ECE and OOD on WOS dataset.

ory bank from 128 to 65536 to study the effect of
the memory bank size on ECE and OOD. Similarly,
we set the memory bank size to 65536 and vary the
temperature from 0.01 to 0.2 to study the effect of
the temperature on ECE and OOD.
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Table 3: NBAUCC0.5 on misclassification detection and OOD detection (in percentage) for different methods on six
multiclass datasets listed in Table 5. We report the average performance of 5 random initializations.

Misclassification(↑) OOD Detection(↑)
Data 20NG15 20NG WOS100 WOS Yahoo8 Yahoo AVG 20NG15 20NG WOS100 WOS Yhaoo8 Yahoo AVG(OOD) 20NG5 SST-2 WOS34 AGnews Yhaoo2 Yelp

baseline (Kong et al., 2020)
BERT 2.30 2.86 16.53 20.52 7.47 8.43 9.68 2.66 21.65 23.12 49.84 8.35 13.88 19.91

TS 6.08 5.74 21.20 23.76 10.48 12.74 13.33 6.62 32.64 28.12 53.32 11.55 20.27 25.42
MCDP 4.37 5.28 20.44 24.16 10.12 10.75 12.52 3.99 25.10 27.28 53.52 9.98 15.93 22.63

LS 4.72 6.75 20.37 23.56 11.19 16.15 13.79 5.70 41.08 27.12 58.48 12.02 19.81 27.36
ERL 8.54 10.35 20.49 25.13 12.89 15.47 15.47 8.78 47.00 27.73 56.67 13.78 23.47 29.57
VAT 2.52 3.36 18.70 19.96 6.54 10.37 10.24 2.96 29.62 23.41 54.60 7.42 17.65 22.61

Mixup 4.99 4.51 20.65 24.80 10.75 11.29 12.83 5.86 31.84 26.77 58.02 11.62 19.84 25.65
M-mixup 2.16 3.16 16.94 19.39 9.09 11.79 10.42 2.36 26.08 24.08 51.39 10.08 22.41 22.73

M-regularization 9.10 10.76 26.93 30.80 14.34 17.88 18.30 9.69 63.92 35.60 71.13 14.94 29.40 37.44
Ours

HDGE(CL) 7.99 6.68 25.25 27.82 12.31 14.72 15.79 7.42 57.09 34.81 68.29 11.55 20.62 33.29
JEM(CL) 15.31 14.88 25.55 32.97 16.25 16.16 20.18 12.23 61.99 34.70 72.31 16.17 19.80 36.20

IGEBM(CL) 13.87 15.34 14.37 15.64 14.52 21.83 15.92 14.47 64.75 23.67 57.94 17.93 24.22 33.83
THEM 11.56 11.11 31.82 33.02 16.11 18.25 20.31 9.36 62.86 40.16 71.94 17.28 19.73 36.88

210 214
The size of Memory Bank(Log-Scale)

10

20

30

OO
D 
De
te
ct
io
n

a1

0.0 0.1 0.2
The Temperature 

0

10

20

30

OO
D 
De
te
ct
io
n

a2
THEM
JEM(CL)
HDGE(CL)

210 214
The size of Memory Bank(Log-Scale)

0

5

10

EC
E

a3

0.0 0.1 0.2
The Temperature 

0

5

10

EC
E

a4

Figure 2: The effect of the memory bank size and tem-
perature for ECE and OOD on Yahoo dataset.
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Figure 3: The effect of the memory bank size and tem-
perature for ECE and OOD on 20NG dataset.

From the trends of memory bank size and tem-
perature on WOS(134-class) in Fig 1, HDGE per-
forms better than THEM and JEM(CL) in terms
of ECE. However, it performs significantly worse
than THEM and JEM(CL) in terms of OOD. On
the other hand, they are all stable in terms of ECE
and OOD from the trend of memory bank size.

However, for Yahoo(10-class) in Fig 2 and
20NG(20-class) in Fig 3, from the trend of mem-

ory bank size, THEM and HDGE are superior to
JEM(CL) in terms of OOD. THEM and JEM(CL)
perform better than HDGE in terms of ECE. From
the trend of temperature, THEM performs better
than JEM(CL) and HDGE in all evaluation metrics.
In general, THEM is more stable in terms of ECE
from the trend of temperature and memory bank
size.

5 Conclusion

In our work, we propose a triple-hybrid EBM
with combination of classifier, conditional gen-
erative model and marginal generative model
into a unified framework called THEM. To train
EBMs effectively and efficiently, we leaverage con-
trastive learning to approximate the log-likelihood
of EBMs with negligible computational resources.
Extensive experiments demonstrates that our model
outperforms the state-of-art methods in terms of ID
calibration and OOD detection with competitive
accuracy. We further apply contrastive learning to
JEM and IGEBM without considering the genera-
tion ability to obtain JEM(CL) and IGEBM(CL) re-
spectively. Compared to JEM(CL) and HDGE(CL),
our model is more robust to the hyper-parameters
of contrastive learning including the temperature
and size of memory bank in terms of ID calibration
and OOD detection.

6 Limitations

In our work, our model is derived from the per-
spective of EBMs. However, it lacks of generation
ability due to the approximation of log-likelihoods
with contrastrive learning which may limit the
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power of generative modeling such as data aug-
mentation (Grathwohl et al., 2019). We will ex-
plore MCMC-based methods such as (Eikema et al.,
2021; Qin et al., 2022) to train THEM to take ad-
vantage of generative modeling. As for OOD detec-
tion, we only use Maximum Prediction Probability.
But many other OOD scoring functions are pro-
posed from the perpective of EBMs (Ouyang et al.,
2021; Zhou et al., 2021; Liu et al., 2020; Elflein
et al., 2021; Grathwohl et al., 2019). And it may
be explored in future works to study the OOD per-
formance with different scoring functions.

7 Acknowledgements

This research of Zhang is supported by the National
Natural Science Foundation of China (NSFC grant
nos. 12101241).

References
Pavel Blinov, Manvel Avetisian, Vladimir Kokh, Dmitry

Umerenkov, and Alexander Tuzhilin. 2020. Predict-
ing clinical diagnosis from patients electronic health
records using bert-based neural networks. In In-
ternational Conference on Artificial Intelligence in
Medicine, pages 111–121. Springer.

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and
Vivek Srikumar. 2008. Importance of semantic repre-
sentation: Dataless classification. In Aaai, volume 2,
pages 830–835.

Junya Chen, Zhe Gan, Xuan Li, Qing Guo, Liqun
Chen, Shuyang Gao, Tagyoung Chung, Yi Xu,
Belinda Zeng, Wenlian Lu, et al. 2021a. Sim-
pler, faster, stronger: Breaking the log-k curse on
contrastive learners with flatnce. arXiv preprint
arXiv:2107.01152.

Si-An Chen, Chun-Liang Li, and Hsuan-Tien Lin.
2021b. A unified view of cgans with and without
classifiers. Advances in Neural Information Process-
ing Systems, 34.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,
and Marc’Aurelio Ranzato. 2019. Residual energy-
based models for text generation. In International
Conference on Learning Representations.

Shrey Desai and Greg Durrett. 2020. Calibration of
pre-trained transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 295–302.

J. Devlin, M. W. Chang, K. Lee, and K Toutanova. 2019.
Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186.

Yilun Du and Igor Mordatch. 2019. Implicit generation
and modeling with energy based models. Advances
in Neural Information Processing Systems, 32.

David Duvenaud, Jacob Kelly, Kevin Swersky, Milad
Hashemi, Mohammad Norouzi, and Will Grathwohl.
2021. No mcmc for me: Amortized samplers for fast
and stable training of energy-based models.

B. Eikema, G. Kruszewski, H. Elsahar, and M. Dymet-
man. 2021. Sampling from discrete energy-based
models with quality/efficiency trade-offs.

Sven Elflein, Bertrand Charpentier, Daniel Zügner, and
Stephan Günnemann. 2021. On out-of-distribution
detection with energy-based models. arXiv preprint
arXiv:2107.08785.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Ja-
cobsen, David Duvenaud, Mohammad Norouzi, and
Kevin Swersky. 2019. Your classifier is secretly an
energy based model and you should treat it like one.
In International Conference on Learning Representa-
tions.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the thirteenth international conference on artificial
intelligence and statistics, pages 297–304. JMLR
Workshop and Conference Proceedings.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Tianxing He, Bryan McCann, Caiming Xiong, and
Ehsan Hosseini-Asl. 2021. Joint energy-based model
training for better calibrated natural language under-
standing models. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1754–1761.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.

282



Taehee Jung, Dongyeop Kang, Hua Cheng, Lucas
Mentch, and Thomas Schaaf. 2020. Posterior cal-
ibrated training on sentence classification tasks. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2723–
2730.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Shivesh Khaitan, Qin Lin, and John M Dolan. 2021.
Safe planning and control under uncertainty for self-
driving. IEEE Transactions on Vehicular Technology,
70(10):9826–9837.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-
brated language model fine-tuning for in-and out-
of-distribution data. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1326–1340.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S Gerber,
and Laura E Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. In 2017 16th IEEE
international conference on machine learning and
applications (ICMLA), pages 364–371. IEEE.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,
and F Huang. 2006. A tutorial on energy-based learn-
ing. Predicting structured data, 1(0).

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, Hong Yu, et al. 2019. Fine-
tuning bidirectional encoder representations from
transformers (bert)–based models on large-scale elec-
tronic health record notes: an empirical study. JMIR
medical informatics, 7(3):e14830.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2022. A survey of pretrained lan-
guage models based text generation. arXiv preprint
arXiv:2201.05273.

Linfeng Li, Peng Wang, Jun Yan, Yao Wang, Simin Li,
Jinpeng Jiang, Zhe Sun, Buzhou Tang, Tsung-Hui
Chang, Shenghui Wang, et al. 2020. Real-world data
medical knowledge graph: construction and applica-
tions. Artificial intelligence in medicine, 103:101817.

Hao Liu and Pieter Abbeel. 2020. Hybrid
discriminative-generative training via contrastive
learning. arXiv preprint arXiv:2007.09070.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. 2020. Energy-based out-of-distribution detection.
Advances in Neural Information Processing Systems,
33:21464–21475.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
2019. When does label smoothing help? Advances
in neural information processing systems, 32.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Yawen Ouyang, Jiasheng Ye, Yu Chen, Xinyu Dai, Shu-
jian Huang, and Jiajun Chen. 2021. Energy-based
unknown intent detection with data manipulation. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 2852–2861.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. 2019.
Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. Advances
in neural information processing systems, 32.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. 2017. Regularizing
neural networks by penalizing confident output dis-
tributions. arXiv preprint arXiv:1701.06548.

L. Qin, S. Welleck, D. Khashabi, and Y. Choi. 2022.
Cold decoding: Energy-based constrained text gener-
ation with langevin dynamics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Amir Rahimi, Amirreza Shaban, Ching-An Cheng,
Richard Hartley, and Byron Boots. 2020. Intra order-
preserving functions for calibration of multi-class
neural networks. Advances in Neural Information
Processing Systems, 33:13456–13467.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and
Degui Zhi. 2021. Med-bert: pretrained contextual-
ized embeddings on large-scale structured electronic
health records for disease prediction. NPJ digital
medicine, 4(1):1–13.

Nils Rethmeier and Isabelle Augenstein. 2021. A primer
on contrastive pretraining in language processing:
Methods, lessons learned and perspectives. arXiv
preprint arXiv:2102.12982.

283



Sarah Sarabadani. 2019. Detection of adverse drug reac-
tion mentions in tweets using elmo. In Proceedings
of the Fourth Social Media Mining for Health Appli-
cations (# SMM4H) Workshop & Shared Task, pages
120–122.

Richard Socher, Yoshua Bengio, and Christopher D
Manning. 2012. Deep learning for nlp (without
magic). In Tutorial Abstracts of ACL 2012, pages
5–5.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon.
2020. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in
Artificial Intelligence, pages 574–584. PMLR.

Ting Sun and Miklos A Vasarhalyi. 2021. Predicting
credit card delinquencies: An application of deep
neural networks. In Handbook of Financial Econo-
metrics, Mathematics, Statistics, and Machine Learn-
ing, pages 4349–4381. World Scientific.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A
Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
2019. On mixup training: Improved calibration and
predictive uncertainty for deep neural networks. Ad-
vances in Neural Information Processing Systems,
32.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In In-
ternational Conference on Machine Learning, pages
6438–6447. PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3070–3079.

Max Welling and Yee W Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on
machine learning (ICML-11), pages 681–688. Cite-
seer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In International Conference on
Learning Representations.

Oliver Zhang, Mike Wu, Jasmine Bayrooti, and Noah
Goodman. 2021. Temperature as uncertainty in con-
trastive learning. arXiv preprint arXiv:2110.04403.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen.
2021. Contrastive out-of-distribution detection
for pretrained transformers. arXiv preprint
arXiv:2104.08812.

A Dataset

The details of dataset for evaluation of in-
distribution ECE and out-of-distribution detection.

Table 4: The detail information about GLUE

dataset task labels train/dev/test
RTE Similarity 2 2.5k/0.14k/0.14k

CoLA Grammatical 2 8.5k/0.51k/0.51k
WNLI Entailment 2 3.1k/0.03k/0.03k
MRPC Paraphrase 2 3.7k/0.20k/0.20k
QNLI Entailment 2 108k/2.5k/2.5k

MNLI-m Entailment 3 393k/4.8k/4.8k
MNLI-mm Entailment 3 393k/4.4k/4.4k

QQP Paraphrase 2 364k/20k/20k
SST-2 Classification 2 67k/0.43k/0.43k

Table 5: The detail information about six multiclass-
datasets

in-distribution labels train/dev/testout-of-distribution
20NG15 15 7k/1.7k/5.8k
20NG5 5 -/-/1.7k
20NG 20 9k /2.2k/7.5k
SST-2 2 -/-/1.8k

WOS100 100 16k/4.1k/14k
WOS34 34 -/-/ 4.8k

WOS 134 22k/5.6k /18k
AGnews 4 - /-/ 7.6k
Y ahoo8 8 16k/4k/48k
Y ahoo2 2 -/-/12k
Yahoo 10 20k/5k/60k
Yelp 2 -/-/38k

1. 20NG5. The 20 Newsgroups dataset (20NG)
contains news articles with 20 categories.
We use Stanford Sentiment Treebank (SST-
2) (Socher et al., 2012) as the OOD data.

2. 20NG15. We take the first 15 categories of
20NG as the in-distribution data and the other
5 categories (20NG5) as the OOD data.

5We use the 20 Newsgroups dataset from: http://qwone.
com/~jason/20Newsgroups/
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3. WOS (Kowsari et al., 2017). Web of Science
(WOS) dataset contains 134 categories of sci-
entific articles. We use AGnews (Zhang et al.,
2015) as the OOD data.

4. WOS100. We use the first 100 classes of WOS
as the in-distribution data and the other 34
classes (WOS34) as the OOD data.

5. Yahoo (Chang et al., 2008). This dataset con-
tains 10 categories posted to ‘Yahoo!Answers’
of questions. We randomly draw 2000 from
140,000 samples for each category as the train-
ing set. We use Yelp (Zhang et al., 2015) as
the OOD data.

6. Yahoo8. We use the first 8 classes of Yahoo as
the in-distribution data and the other 2 classes
(Yahoo2) as the OOD data.
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