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Abstract

Large-scale language-agnostic sentence em-
bedding models such as LaBSE (Feng
et al., 2022) obtain state-of-the-art perfor-
mance for parallel sentence alignment. How-
ever, these large-scale models can suffer
from inference speed and computation over-
head. This study systematically explores
learning language-agnostic sentence embed-
dings with lightweight models. We demon-
strate that a thin-deep encoder can construct
robust low-dimensional sentence embeddings
for 109 languages. With our proposed distil-
lation methods, we achieve further improve-
ments by incorporating knowledge from a
teacher model. Empirical results on Tatoeba,
United Nations, and BUCC show the effec-
tiveness of our lightweight models. We re-
lease our lightweight language-agnostic sen-
tence embedding models LEALLA on Tensor-
Flow Hub.1

1 Introduction

Language-agnostic sentence embedding mod-
els (Artetxe and Schwenk, 2019b; Yang et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2022;
Mao et al., 2022) align multiple languages in a
shared embedding space, facilitating parallel sen-
tence alignment that extracts parallel sentences for
training translation systems (Schwenk et al., 2021).
Among them, LaBSE (Feng et al., 2022) achieves
the state-of-the-art parallel sentence alignment ac-
curacy over 109 languages. However, 471M pa-
rameters of LaBSE lead to the computationally-
heavy inference. The 768-dimensional sentence
embeddings of LaBSE (LaBSE embeddings) make
it suffer from computation overhead of downstream
tasks (e.g., kNN search). This limits its applica-
tion on resource-constrained devices. Therefore,

∗Currently at Kurohashi-Chu-Murawaki Lab., Kyoto Uni-
versity. Work done during Google internship.

1https://tfhub.dev/s?q=LEALLA

we explore training a lightweight model to gener-
ate low-dimensional sentence embeddings while
retaining the performance of LaBSE.

We first investigate the performance of
dimension-reduced LaBSE embeddings and show
that it performs comparably with LaBSE. Subse-
quently, we experiment with various architectures
to see whether such effective low-dimensional em-
beddings can be obtained from a lightweight en-
coder. We observe that the thin-deep (Romero et al.,
2015) architecture is empirically superior for learn-
ing language-agnostic sentence embeddings. Di-
verging from previous work, we show that low-
dimensional embeddings based on a lightweight
model are effective for parallel sentence alignment
of 109 languages.

LaBSE benefits from multilingual language
model pre-training, but no multilingual pre-trained
models are available for the lightweight architec-
tures. Thus, we propose two knowledge distillation
methods to further enhance the lightweight models
by forcing the model to extract helpful information
from LaBSE. We present three lightweight mod-
els improved with distillation: LEALLA-small,
LEALLA-base, and LEALLA-large, with 69M,
107M, and 147M parameters, respectively. Fewer
model parameters and their 128-d, 192-d, and 256-
d sentence embeddings are expected to accelerate
downstream tasks, while the performance drop of
merely up to 3.0, 1.3, and 0.3 P@1 (or F1) points is
observed on three benchmarks of parallel sentence
alignment. In addition, we show the effectiveness
of each loss function through an ablation study.

2 Background: LaBSE

LaBSE (Feng et al., 2022) fine-tunes dual encoder
models (Guo et al., 2018; Yang et al., 2019) to
learn language-agnostic embeddings from a large-
scale pre-trained language model (Conneau et al.,
2020). LaBSE is trained with parallel sentences,
and each sentence pair is encoded separately by
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a 12-layer Transformer encoder. The 768-d en-
coder outputs are used to compute the training
loss and serve as sentence embeddings for down-
stream tasks. Expressly, assume that the sentence
embeddings for parallel sentences in a batch are
{(xi,yi)}Ni=1 where N denotes the number of the
sentence pairs within a batch. LaBSE trains the
bidirectional additive margin softmax (AMS) loss:

Lams =
1

N

N∑

i=1

(L(xi,yi) + L(yi,xi)), (1)

where the loss for a specific sentence pair in a single
direction is defined as:

L(xi,yi) = − log
eφ(xi,yi)−m

eφ(xi,yi)−m +
∑

n6=i e
φ(xi,yn)

.

(2)
m is a margin for optimizing the separation be-
tween translations and non-translations. φ (xi,yi)
is defined as Cosine Similarity between xi and yi.

3 Light Language-agnostic Embeddings

To address the efficiency issue of LaBSE, we
probe the lightweight model for learning language-
agnostic embeddings with the following experi-
ments: (1) We directly reduce the dimension of
LaBSE embeddings to explore the optimal embed-
ding dimension; (2) We shrink the model size with
various ways to explore the optimal architecture.

3.1 Evaluation Settings
We employ Tatoeba (Artetxe and Schwenk, 2019b),
United Nations (UN) (Ziemski et al., 2016), and
BUCC (Pierre Zweigenbaum and Rapp, 2018)
benchmarks for evaluation, which assess the model
performance for parallel sentence alignment. Fol-
lowing Feng et al. (2022) and Artetxe and Schwenk
(2019b), we report the average P@1 of bidirec-
tional retrievals for all the languages of Tatoeba,
the average P@1 for four languages of UN, and
the average F1 of bidirectional retrievals for four
languages of BUCC.2 Refer to Appx. A for details.

3.2 Exploring the Optimal Dimension of
Language-agnostic Sentence Embeddings

Mao et al. (2021) showed that a 256-d bilingual
embedding space could achieve an accuracy of
about 90% for parallel sentence alignment. How-
ever, existing multilingual sentence embedding

2For BUCC, we use margin-based scoring (Artetxe and
Schwenk, 2019a) for filtering translation pairs.
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Figure 1: Dimension reduction for LaBSE.

models such as LASER (2019b), SBERT (2020),
EMS (2022), and LaBSE use 768-d or 1024-d sen-
tence embeddings, and whether a low-dimensional
space can align parallel sentences over tens of lan-
guages with a solid accuracy (>80%) remains un-
known. Thus, we start with the dimension reduc-
tion experiments for LaBSE to explore the optimal
dimension of language-agnostic sentence embed-
dings.

We add an extra dense layer on top of LaBSE
to transform the dimension of LaBSE embeddings
from 768 to lower values. We experiment with
seven lower dimensions ranging from 512 to 32.
We fine-tune 5k steps for fitting the newly added
dense layer, whereas other parameters of LaBSE
are fixed. Refer to Appx. B for training details.

As shown in Fig. 1, the performance drops more
than 5 points when the dimension is 32 on Tatoeba,
UN, and BUCC. Meanwhile, given sentence em-
beddings with a dimension over 128, they performs
slightly worse than 768-d LaBSE embeddings with
a performance drop of fewer than 2 points, show-
ing that low-dimensional sentence embeddings can
align parallel sentences in multiple languages. Re-
fer to Appx. D for detailed results.

3.3 Exploring the Optimal Architecture

Although we revealed the effectiveness of the low-
dimensional embeddings above, it is generated
from LaBSE with 471M parameters. Thus, we
explore whether such low-dimensional sentence
embeddings can be obtained from an encoder with
less parameters. We first reduce the number of
layers (#1 and #2 in Table 1) and the size of hid-
den states (#3 and #4) to observe the performance.
Subsequently, inspired by the effectiveness of Fit-
Net (Romero et al., 2015) and MobileBERT (Sun
et al., 2020) and taking advantage of the low-
dimensional sentence embeddings shown above,
we experiment with thin-deep architectures with 24
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# L dh H P PE Tatoeba UN BUCC
LaBSE
0 12 768 12 471M 85M 83.7 89.6 93.1
Fewer Layers
1 6 768 12 428M 42M 82.9 88.6 91.9
2 3 768 12 407M 21M 82.2 87.5 91.2
Smaller Hidden Size
3 12 384 12 214M 21M 82.6 88.4 92.1
4 12 192 12 102M 6M 81.0 87.0 91.3
Thin-deep Architecture
5 24 384 12 235M 42M 83.2 88.6 92.4
6 24 256 8 147M 19M 82.9 88.5 92.2
7 24 192 12 107M 11M 81.7 87.4 91.9
8 24 128 8 69M 5M 80.3 86.3 90.4

Table 1: Results of LaBSE variants. L, dh, H, P, and
PE denote the number of layers, dimension of hidden
states, number of attention heads, number of parame-
ters, and number of encoder parameters (except for the
word embedding layer). Refer to Appx. E for detailed
results.

layers (#5 - #8), leading to fewer encoder parame-
ters.3 Refer to Appx. B for training details.

We report the results in Table 1. First, architec-
tures with fewer layers (#1 and #2) perform worse
than LaBSE on all three tasks and can only decrease
parameters by less than 15%. Second, increasing
the number of layers (#5 and #7) improves the per-
formance of 12-layer models (#3 and #4) with a lim-
ited parameter increase less than 10%. Referring
to LaBSE (#0), low-dimensional embeddings from
thin-deep architectures (#5 - #8) obtain solid results
on three benchmarks with performance drops of
only 3.4 points at most. Until this point, we showed
that thin-deep architecture is effective for learning
language-agnostic sentence embeddings.

4 Knowledge Distillation from LaBSE

Besides the large model capacity, multilingual
language model pre-training benefits LaBSE for
parallel sentence alignment. As no multilin-
gual pre-trained language models are available for
lightweight models we investigated in Section 3.3,
we instead explore extracting helpful knowledge
from LaBSE.

4.1 Methodology

Feature distillation and logit distillation have been
proven to be effective paradigms for knowledge dis-
tillation (Hinton et al., 2015; Romero et al., 2015;
Yim et al., 2017; Tang et al., 2019). In this section,

3Following MobileBERT, we attempted architectures that
have an identical size for hidden state and feed-forward hidden
state, but it works poorly than #5 - #8. (Refer to Appx. E)
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Figure 2: Feature and logit distillation from LaBSE.

we propose methods applying both paradigms to
language-agnostic sentence embedding distillation.
We use LaBSE as a teacher to train students with
thin-deep architectures which were discussed in
Section 3.3.
Feature Distillation We propose applying fea-
ture distillation to language-agnostic sentence em-
bedding distillation, which enables lightweight
sentence embeddings to approximate the LaBSE
embeddings via an extra dense layer. We em-
ploy an extra trainable dense layer on top of the
lightweight models to unify the embedding dimen-
sion of LaBSE and lightweight models to be 768-d,
as illustrated in Fig. 2.45 The loss function is de-
fined as follows:

Lfd = 1
N

∑N
i=1(‖ xti − f(xsi ) ‖22 + ‖ yti − f(ysi ) ‖22),

(3)
where xt (or yt) and xs (or ys) are the embeddings
by LaBSE and the lightweight model, respectively.
f(·) is a trainable dense layer transforming the
dimension from d (d < 768) to 768.
Logit Distillation We also propose applying logit
distillation to language-agnostic sentence embed-
ding distillation to extract knowledge from the sen-
tence similarity matrix as shown in Fig. 2. Logit
distillation forces the student to establish similar
similarity relationships between the given sentence
pairs as the teacher does. We propose the following

4SBERT (2020) used feature distillation to make mono-
lingual sentence embeddings multilingual, but distillation be-
tween different embedding dimensions has not been studied.

5We investigated another two patterns to unify the embed-
ding dimensions in Appx. C, but they performed worse.
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Model La. d P Ttb. UN BUCC
es fr ru zh avg. de fr ru zh avg.

LASER (2019b) 93 1024 154M 65.5 - - - - - 95.4 92.4 92.3 91.7 93.0
m-USE (2020) 16 512 85M - 86.1 83.3 88.9 78.8 84.3 88.5 86.3 89.1 86.9 87.7
SBERT (2020) 50 768 270M 67.1 - - - - - 90.8 87.1 88.6 87.8 88.6
EMS (2022) 62 1024 148M 69.2 - - - - - 93.3 90.2 91.3 92.1 91.7
LaBSE (2022) 109 768 471M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
LEALLA-small 109 128 69M 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5
LEALLA-base 109 192 107M 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4
LEALLA-large 109 256 147M 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table 2: Results of LEALLA. We mark the best 3 scores in bold. La., d, P, and Ttb. indicate the number of
languages, dimension of sentence embeddings, number of parameters, and Tatoeba.
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Figure 3: LEALLA with different loss combinations.
AMS, FD, and LD mean Lams, Lfd, and Lld.

mean squared error (MSE) loss:

Lld = 1
N2

∑N
i=1

∑N
j=1

((
φ
(
xti,y

t
j

)
− φ

(
xsi ,y

s
j

))
/T
)2
,

(4)
where T is a distillation temperature, and other
notations follow those in Eq. 2 and 3.
Combined Loss Finally, we combine two knowl-
edge distillation loss functions with the AMS loss
(Eq. 1) to jointly train the lightweight model:

Llealla = αLams + βLfd + γLld. (5)

Here α, β, and γ are weight hyperparameters,
which are tuned with the development data.

4.2 Experiments

Training We train three models, LEALLA-small,
LEALLA-base, and LEALLA-large, using the
thin-deep architectures of #8, #7, and #6 in Table 1
and the training loss of Eq. 5. Refer to Appx. B for
training and hyperparameter details.
Results The results of LEALLA on Tatoeba, UN,
and BUCC benchmarks are presented in Table 2.
Overall, LEALLA can yield competitive perfor-
mance compared with previous work. LEALLA-
large performs comparably with LaBSE, where the

Loss LEALLA-small LEALLA-base LEALLA-large
Tatoeba UN Tatoeba UN Tatoeba UN

all 80.7 87.3 82.4 88.7 83.5 89.3
Lams 80.3 86.3 81.7 87.4 82.9 88.5
Lfd 78.2 85.2 81.1 88.1 82.4 88.1
Lld 75.1 2.3 80.6 63.1 82.3 84.1

Table 3: Results of LEALLA with each loss function.
“all” denotes LEALLA without ablation (with all the
loss functions).

average performance difference on three tasks is
below 0.3 points. LEALLA-base and LEALLA-
small obtain strong performance for high-resource
languages on UN and BUCC, with a performance
decrease less than 0.9 and 2.3 points, respectively.
They also achieve solid results on Tatoeba with 1.3
and 3 points downgrades compared with LaBSE.
The solid performance of LEALLA on Tatoeba
demonstrates that it is effective for aligning parallel
sentences for more than 109 languages. Moreover,
all the LEALLA models perform better or compa-
rably with previous studies other than LaBSE.

Ablation Study We inspect the effectiveness of
each loss component in an ablative manner. First,
we compare settings with and without distillation
loss functions. As shown in Fig. 3, by adding
Lfd or Lld, LEALLA trained only with Lams is
improved on Tatoeba and UN tasks. By further
combining Lfd and Lld, LEALLA consistently
achieves superior performance. Second, we sepa-
rately train LEALLA with each loss. Referring to
the results reported in Table 3, LEALLA trained
only with Lfd yields solid performance in the
“small” and “base” models compared with Lams,
showing that distillation loss benefits parallel sen-
tence alignment. Lfd and Lld perform much worse
in the “small” model, which may be attributed
to the discrepancy in the capacity gaps between
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the teacher model (LaBSE) and the student model
(“small” or “base”).6 Refer to Appx. F for all de-
tailed results in this section.

5 Conclusion

We presented LEALLA, a lightweight model for
generating low-dimensional language-agnostic sen-
tence embeddings. Experimental results showed
that LEALLA could yield solid performance for
109 languages after distilling knowledge from
LaBSE. Future work can focus on reducing the
vocabulary size of LaBSE to shrink the model fur-
ther and exploring the effectiveness of lightweight
model pre-training for parallel sentence alignment.

Limitations

In this study, we used the same training data as
LaBSE (refer to Fig. 7 of (Feng et al., 2022)),
where more training data for high-resource lan-
guages may cause the biased model accuracy for
those languages. Second, evaluation for low-
resource languages in this study depended only on
the Tatoeba benchmark, which contains only 1,000
positive sentence pairs for each language with En-
glish. The same limitation exists in all the related
work, such as LaBSE and LASER. Further evalua-
tion for low-resource languages will be necessary
in the future once larger evaluation benchmarks, in-
cluding over 100k gold parallel sentences for low-
resource languages, are available. Third, all the
training data used in this work are English-centric
sentence pairs, which may result in the inferior
model performance for aligning parallel sentences
between non-English language pairs.
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A Evaluation Benchmarks

Tatoeba (Artetxe and Schwenk, 2019b) supports the
evaluation across 112 languages and contains up to
1,000 sentence pairs for each language and English.
The languages of Tatoeba that are not included in
the training data of LaBSE and LEALLA serve as
the evaluation for unseen languages. UN (Ziemski
et al., 2016) is composed of 86,000 aligned bilin-
gual documents for en-ar, en-es, en-fr, en-ru, and
en-zh. Following Feng et al. (2022), we evaluate
the model performance for es, fr, ru, and zh on the
UN task. There are about 9.5M sentence pairs for
each language with English after deduping. BUCC
shared task (Pierre Zweigenbaum and Rapp, 2018)
is a benchmark to mine parallel sentences from
comparable corpora. We conduct the evaluation us-
ing BUCC2018 tasks for en-de, en-fr, en-ru, and en-
zh, following the setting of Reimers and Gurevych
(2020).7 For the results of LaBSE reported in Ta-
ble 2, we re-conduct the evaluation experiments
using the open-sourced model of LaBSE.8

B Training Details

All of the models in this work are trained with
the same training data and development data as
LaBSE (Feng et al., 2022). Refer to Section 3.1 and

7https://github.com/UKPLab/
sentence-transformers/blob/master/examples/
applications/parallel-sentence-mining/bucc2018.
py

8https://tfhub.dev/google/LaBSE
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Model Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LEALLA-small
Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4
Lams + Ldf 80.0 89.4 86.3 88.1 83.9 86.9 93.8 90.1 91.1 88.9 91.0
Lams + Lsyn 80.2 88.5 85.0 87.1 82.8 85.9 93.6 89.9 90.9 88.7 90.8
LEALLA-base
Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3
Lams + Ldf 81.8 90.0 87.3 89.2 86.3 88.2 94.7 91.4 91.7 90.9 92.2
Lams + Lsyn 81.9 89.7 86.7 88.8 85.9 87.8 94.5 91.1 91.7 90.3 91.9
LEALLA-large
Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8
Lams + Ldf 83.0 90.3 87.6 89.7 87.2 88.7 95.3 91.9 92.0 91.7 92.7
Lams + Lsyn 83.0 90.0 87.4 89.7 86.8 88.5 94.9 91.7 91.8 91.4 92.5

Table 4: Results of comparisons among three feature distillation objectives. Ldf and Lsyn indicate “Distillation-
first” and “Synchronized” objectives in Fig. 4.

Hyperparameter Bound

α 1
β 1e02, 1e03, 1e04, 1e05
γ 1e-01, 1e-02, 1e-03
batch size 2,048, 4,096, 8,192
learning rate 1e-4, 5e-4, 1e-3

Table 5: Hyperparameter bounds.

Appx. C of Feng et al. (2022) for dataset and sup-
ported language details. We train models on Cloud
TPU V3 with 32-cores with a global batch size of
8,192 sentences and a maximum sequence length
of 128. For a fair comparison with LaBSE for more
than 109 languages, we use the 501k vocabulary of
LaBSE (trained with BPE (Sennrich et al., 2016))
and do not consider modifying its size in this work.
We employ AdamW (Loshchilov and Hutter, 2019)
for optimizing the model using the initial learning
rate of 1e-03 for models with a hidden state size
larger than 384 and 5e-04 for models with a hidden
state size smaller than 256. For LEALLA-small
and LEALLA-base, α, β, and γ are set as 1, 1e03
and 1e-02. For LEALLA-large, they are set as 1,
1e04, and 1e-02, respectively. T in Eq. 4 is set to
100. All the models in Section 3.2 are trained for
5k steps. Models in Secton 3.3 and Section 4 with
a hidden state size over 256 are trained for 200k
steps, and those with a hidden state size below 192
are trained for 100k steps. It costs around 24 hours,
36 hours, and 48 hours to train LEALLA-small,
LEALLA-base, and LEALLA-large, respectively.
Hyperparameters are tuned using a held-out devel-
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Figure 4: Another two patterns of feature distillation.

opment dataset following Feng et al. (2022) with
a grid search. The bounds tuned for each hyperpa-
rameter are shown in Table 5.

C Discussion about Feature Distillation

We additionally investigate another two patterns
for feature distillation. As illustrated in Fig. 4,
“Distillation-first” modifies the position for comput-
ing the MSE loss compared with Lfd of Eq. 3. The
[CLS] pooler within the LEALLA encoder is used
to generate 768-d embeddings first. A dense layer
is employed to transform the 768-d embeddings
to low-dimension after calculating the MSE loss.
“Synchronized” transforms the LaBSE embeddings
to low-dimension, then the MSE loss is constructed
between two low-dimensional embeddings. As
the MSE loss is computed simultaneously with the
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Dimension Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

768 (LaBSE) 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
512 83.7 90.1 88.1 89.7 87.4 88.8 95.4 92.1 92.0 92.4 93.0
384 83.7 90.1 88.1 89.6 87.4 88.8 95.5 92.0 92.0 92.6 93.0
256 83.6 90.3 87.9 89.2 87.4 88.7 95.3 92.0 92.1 92.2 92.9
192 83.4 89.8 87.5 89.5 87.0 88.5 95.2 91.9 91.9 92.2 92.8
128 83.1 89.2 86.9 88.6 85.9 87.7 95.1 91.4 91.8 91.6 92.5
64 81.8 88.4 84.4 87.3 83.8 86.0 93.9 89.8 90.7 88.9 90.8
32 78.4 82.7 74.8 80.4 73.7 77.9 87.1 81.5 84.1 75.5 82.1

Table 6: Results of the dimension-reduced LaBSE embeddings.

# L dh dff H P PE Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LaBSE
0 12 768 3072 12 471M 85M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1
Fewer Layers
1 6 768 3072 12 428M 42M 82.9 90.2 87.4 89.2 87.4 88.6 94.3 90.9 91.2 91.1 91.9
2 3 768 3072 12 407M 21M 82.2 89.4 86.1 88.0 86.5 87.5 93.7 90.1 90.8 90.1 91.2
Smaller Hidden Size
3 12 384 1536 12 214M 21M 82.6 90.1 86.9 89.6 87.0 88.4 94.4 91.2 91.4 91.3 92.1
4 12 192 768 12 102M 6M 81.0 89.4 85.6 88.1 85.0 87.0 93.6 90.4 91.1 89.9 91.3
Thin-deep Architecture
5 24 384 1536 12 235M 42M 83.2 90.6 87.3 89.2 87.4 88.6 94.7 91.5 91.6 91.9 92.4
6 24 256 1024 8 147M 19M 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
7 24 192 768 12 107M 11M 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
8 24 128 512 8 69M 5M 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
9 24 64 256 8 33M 1M 75.2 83.7 78.6 83.0 72.1 79.4 87.9 83.0 86.0 75.1 83.0
MobileBERT-like Thin-deep Architecture
10 24 256 256 4 138M 10M 82.1 89.4 86.5 88.4 86.5 87.7 94.1 91.0 91.0 91.7 92.0
11 24 192 192 4 102M 6M 81.0 89.0 85.4 88.5 85.3 87.1 93.8 90.3 91.0 89.9 91.3
12 24 128 128 4 66M 2M 79.7 88.1 84.1 87.6 83.3 85.8 92.6 88.8 90.4 87.6 89.9

Table 7: Results of thin-deep and MobileBERT-like architectures. L, dh, dff , H, P, and PE indicate the number
of layers, dimension of hidden states, dimension of feed-forward hidden states, number of attention heads, number
of model parameters, and number of encoder parameters (except for the word embedding layer).

AMS loss, it is denoted as “Synchronized”. For
“Synchronized”, it requires a fixed dense layer to
conduct the dimension reduction for the LaBSE
embeddings, for which we utilize the pre-trained
model introduced in Section 3.2. We denote these
two patterns of feature distillation as Ldf and Lsyn.

As reported in Table 4, Lams + Lfd (Lfd is fea-
ture distillation introduced in the main text) consis-
tently outperforms Lams + Ldf and Lams + Lsyn
in all the three LEALLA models. Lams + Ldf
and Lams + Lsyn perform comparably on Tatoeba
with the models trained without distillation loss.
Lams + Ldf obtains performance gains for high-
resource languages on UN and BUCC compared
with Lams, but still underperforms Lams + Lfd.

Ldf forces the lightweight model to approximate
the teacher embeddings first in the intermediate part
of the model, on top of which the low-dimensional

sentence embeddings are generated for computing
the AMS loss, while Lfd (Eq. 3) is calculated after
computing the AMS loss. As the AMS loss directly
indicates the evaluation tasks, we suppose Lfd is a
more flexible objective for feature distillation. In
addition, Lsyn is not beneficial because it depends
on a dimension-reduced LaBSE, which is a less
robust teacher compared with LaBSE.

D Results of Dimension-reduction
Experiments

We report all the results of Section 3.2 in Table 6.

E Results of Thin-deep and
MobileBERT-like Architectures

Table 7 presents the detailed results of each ar-
chitecture we explored in Section 3.3. Besides
showing the results for each language on UN and
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Model Tatoeba UN BUCC
es fr ru zh avg. de fr ru zh avg.

LEALLA-small
Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4
Lfd 78.2 89.0 84.6 87.5 79.6 85.2 94.2 90.5 91.2 88.9 91.2
Lld 75.1 1.5 1.1 0.9 5.6 2.3 0.1 0.0 0.1 0.0 0.1
Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4
Lams + Lld 80.6 89.6 85.8 88.6 84.4 87.1 94.1 90.3 91.2 90.0 91.4
Lams + Lfd + Lld 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5
LEALLA-base
Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9
Lfd 81.1 90.2 87.3 89.4 85.5 88.1 95.0 91.6 91.8 91.3 92.4
Lld 80.6 66.3 49.4 51.0 85.7 63.1 57.5 80.1 60.6 88.6 71.7
Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3
Lams + Lld 82.3 90.0 87.5 89.2 86.8 88.4 94.8 91.3 91.6 91.4 92.3
Lams + Lfd + Lld 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4
LEALLA-large
Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2
Lfd 82.4 89.8 87.2 89.4 86.1 88.1 95.3 91.8 92.0 92.2 92.8
Lld 82.3 87.2 78.8 83.3 86.9 84.1 88.4 87.4 86.9 91.8 88.6
Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8
Lams + Lld 83.4 90.6 87.9 90.0 87.7 89.1 95.3 91.8 91.7 92.4 92.8
Lams + Lfd + Lld 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table 8: Results of LEALLA with different loss functions and loss combinations.

BUCC for models #0 - #8, we provide the results
of a further smaller thin-deep architecture (#9) and
MobileBERT-like (Sun et al., 2020) thin-deep ar-
chitectures (#10 - #12). The 64-d thin-deep archi-
tecture contains only 33M parameters. However,
its performance on three evaluation benchmarks
downgrades by up to 7.4 points compared with #5 -
#8, which demonstrates that 128-d may be a lower
bound as universal sentence embeddings for align-
ing parallel sentences for 109 languages. Moreover,
#10 - #12 show the results of MobileBERT-like
architectures whose feed-forward hidden size is
identical to hidden size. They have fewer param-
eters than #5 - #8, but they perform worse than
#5 - #8, respectively (e.g., compare #10 with #6).
Therefore, we did not employ MobileBERT-like
architectures for LEALLA.

F Results of Ablation Study

We report all the results of the ablation study (Sec-
tion 4.2) in Table 8.
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