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Abstract

To date, transformer-based models such as
BERT have been less successful in predict-
ing compositionality of noun compounds than
static word embeddings. This is likely related
to a suboptimal use of the encoded information,
reflecting an incomplete grasp of how the mod-
els represent the meanings of complex linguis-
tic structures. This paper investigates variants
of semantic knowledge derived from pretrained
BERT when predicting the degrees of composi-
tionality for 280 English noun compounds as-
sociated with human compositionality ratings.

Our performance strongly improves on earlier
unsupervised implementations of pretrained
BERT and highlights beneficial decisions in
data preprocessing, embedding computation,
and compositionality estimation. The distinct
linguistic roles of heads and modifiers are re-
flected by differences in BERT-derived repre-
sentations, with empirical properties such as
frequency, productivity, and ambiguity affect-
ing model performance. The most relevant rep-
resentational information is concentrated in the
initial layers of the model architecture.

1 Introduction

The meaning of multiword expressions such as
noun compounds is notoriously difficult to model,
particularly because of variability in their degree
of compositionality, i.e. the relatedness of the
meaning of a compound (e.g. flea market) to that
of the individual constituents (flea and market).
The degree of compositionality has been success-
fully predicted using static word embeddings, but
transformer-based models such as BERT (Devlin
et al., 2019) have so far been less successful. This
might be related to a suboptimal use of the infor-
mation encoded by the models, reflecting our in-
complete grasp of how they represent the meanings
of complex linguistic structures.

In this paper, we aim to improve this understand-
ing, as well as produce actionable methodological

recommendations. We predict the degrees of com-
positionality of 280 English noun compounds as-
sociated with human compositionality ratings. We
extract their occurrences from a web corpus and
model them using pretrained BERT. Like previous
work, we assume that the contextualized nature
of these representations may capture key aspects
of compound semantics. But we do not expect
this information to be equally accessible across the
model or independent from underlying linguistic
properties. We therefore experiment with variants
of BERT-derived semantic knowledge (comprising
over 40,000 ways of computing the degree of com-
positionality), and analyze the linguistic roles of
compound constituents and their empirical proper-
ties (frequency, ambiguity, and productivity). We
provide the following contributions:

* We identify a robust setup to extract compo-
sitionality information from pretrained BERT.
It strongly improves on earlier unsupervised
implementations and highlights beneficial de-
cisions in data preprocessing, embedding com-
putation, and compositionality estimation.

* We show that the distinct linguistic roles of
heads and modifiers are reflected by differ-
ences in BERT-derived representations. Fur-
ther focusing on compound heads, we find
clear effects of their empirical properties on
model performance.

* Our results support the view that pretrained
BERT encodes at least some aspects of the
semantics of multiword expressions, and also
show that the most relevant information is
found in the model’s initial layers.

The remainder of this paper is organized as fol-
lows. We first review related studies (§2), and then
introduce our data (§3) and experimental setup (§4).
We then analyze and discuss the results (§5) and
provide a conclusion (§6).
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2 Related work

The meaning of noun compounds is modeled from
a broad range of perspectives. In psycholinguistics,
for example, there is a long tradition of research
on human processing of compound semantics. Its
focus is usually on semantic transparency, which
is operationalized using measures including the
semantic relatedness of the constituents and the
retention of their meaning in the compound (e.g.
Bell and Schifer, 2016; Auch et al., 2020; Giinther
et al., 2020). Computational studies have examined
a similar range of compound properties, aiming
to predict the meaning of the whole compound
(Mitchell and Lapata, 2008; Dima et al., 2019),
the semantic relations between a compound’s con-
stituents (() Séaghdha, 2007; Dima et al., 2014), or
the compound’s degree of compositionality. The
latter issue is also the focus of our work.

The ability of computational models of com-
pound semantics to predict the degree of compo-
sitionality is usually evaluated on a ranking task
with gold standard data in form of human com-
positionality ratings, which exist for languages in-
cluding English (Reddy et al., 2011), German (von
der Heide and Borgwaldt, 2009; Schulte im Walde
et al., 2016), French and Portuguese (Cordeiro
et al., 2019). Strong results have been obtained us-
ing static word embeddings, generally by learning
dedicated representations for the whole compound
and comparing them against the representations of
the individual constituents, often combined using
composition functions (Reddy et al., 2011; Schulte
im Walde et al., 2013, 2016; Salehi et al., 2014,
2015; Cordeiro et al., 2019; Alipoor and Schulte
im Walde, 2020). Most studies predict the com-
positionality of the whole compound, but differ-
ences between heads and modifiers have been un-
derscored. Reported effects on model performance
are related to their distinct linguistic roles and em-
pirical properties such as frequency, productivity,
and ambiguity (Schulte im Walde et al., 2013, 2016;
Alipoor and Schulte im Walde, 2020).

More recently, compositionality prediction has
been addressed using pretrained transformer-based
models. While BERT-derived representations used
in a subsequently trained classifier performed well
on binary classification (Shwartz and Dagan, 2019),
their unsupervised use in the standard ranking task
formulation has been less successful. For instance,
an implementation based on comparisons between
contextualized and non-contextualized compound

representations obtained significantly poorer re-
sults compared to static word embeddings, leading
to a suggestion that these models do not capture
compositionality in a way similar to human anno-
tators (Garcia et al., 2021a). Stronger correlations
with human judgment were obtained in a probing
study, but using external linguistic knowledge —
gold standard synonyms of noun compounds (Gar-
cia et al., 2021b). We are unaware of unsupervised
implementations of BERT-derived representations
that are competitive with static word embeddings
on this task.

This might be related to a suboptimal use of the
information encoded by BERT, as the layers in its
architecture capture different aspects of linguistic
structure (Rogers et al., 2020). For instance, it has
been suggested that semantic knowledge in general
(Jawahar et al., 2019) and word sense information
in particular (Coenen et al., 2019) is encoded in
higher layers, but also that type-level information is
encoded in lower layers (Vulié et al., 2020). More
generally, these and other types of implementation
decisions impact BERT performance on other lin-
guistically oriented tasks (e.g. Laicher et al., 2021).
To the best of our knowledge, these patterns have
not been investigated in detail for compound se-
mantics, with the cited studies generally relying on
widely used solutions (e.g. computing a token-level
embedding by averaging over the last four layers).

3 Data

This section introduces the data resources we used.
For details on licenses, see Appendix A.

3.1 Gold standard of noun compounds

We use the set of 280 English noun compounds
introduced by Cordeiro et al. (2019). It includes an
initial set of 90 compounds created by Reddy et al.
(2011)! and a further 190 compounds annotated by
Cordeiro and colleagues using the same rating pro-
cedure.” Human annotators were asked to provide
compositionality ratings in terms of literality, on
a scale from O (not at all literal) to 5 (very literal).
They provided scores for the interpretation of the
whole compound (e.g. crash course), as well as
for the use of the modifier (crash) and the head
(course) within it. Sample compounds and their
ratings are shown in Table 1.

1http: //www.dianamccarthy.co.uk/downloads.html
Zhttps://pageperso.lis-lab.fr/carlos.ramisch/
?page=downloads/compounds
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Compositionality rating

Compound Modifier Head Phrase

guinea pig 047 £072 0474072 0.24 +£0.56
flea market 0.38 +£0.81 4.71 £0.84 1.52+1.13
biological clock 471 £047 176 +£135 229 +1.21
health insurance 4.53 £0.88 4.83 £058 4.40 +£1.17

Table 1: Sample gold standard compounds with compo-
sitionality ratings (mean and standard deviation).

3.2 Corpus

As corpus data for the modeled noun compounds,
we rely on the widely used ENCOW corpus,
obtained by crawling web data and containing
~ 9.6 billion words (Schifer and Bildhauer, 2012;
Schifer, 2015). For each compound, all tokenized
sentences in which it appears are extracted. We
only use singular forms so as to avoid potential
variability related to grammatical number in BERT.

3.3 Empirical compound properties

Parts of our analysis use information on empirical
properties of compound constituents (in particular,
their heads), and specifically (i) frequencys; (ii) pro-
ductivity, i.e. the number of compound-types in
which they appear; and (iii) ambiguity, i.e. their
number of senses. We use the information on these
properties created by Schulte im Walde et al. (2016)
for the Reddy et al. (2011) dataset. They derived
frequency and productivity information from the
ENCOW corpus, and calculated ambiguity based
on WordNet (Fellbaum, 1998). We apply the same
procedures to calculate the information for the com-
pounds from the Cordeiro et al. (2019) dataset.

4 Experimental setup

4.1 BERT representations

We use BERT-base-uncased, a 768-dimension, 12-
layer version of the model (110 million parameters)
pretrained on English data, from the Hugging Face
implementation (Wolf et al., 2020). We run the ex-
periments on a CPU computing server (2x 12 3GHz
cores with 768GB RAM) over ~ 5 days. In order
to facilitate the analysis of modeling properties, we
deliberately adopt a straightforward setup without
fine-tuning. Each sequence from the corpus is fed
into the model, which returns multiple vector rep-
resentations for each token in the sequence. For
all sequences of a compound, we retain the rep-
resentations for each token in the sequence; these
correspond to the input embedding layer and the

outputs of the 12 hidden states. We test different
ways of combining the obtained information.

Embedding types. BERT produces contextual-
ized representations for each token in the sequence,
which we use both individually and by combining
multiple token representations (see pooling func-
tions below). We compute the following types of
embeddings. (i) modif: representation of the modi-
fier, corresponding to its contextualized embedding.
(ii) head: representation of the head, corresponding
to its contextualized embedding. (iii) comp: rep-
resentation of the full compound, corresponding
to pooled modif and head embeddings. (iv) cont:
representation of the context in which the com-
pound appears, corresponding to the merged em-
beddings of all tokens in the sequence apart from
modif, head, [CLS], and [SEP]. (v) cls: embed-
ding of the [CLS] token, taken to correspond to a
representation of the full sequence.

BERT’s tokenizer splits out-of-vocabulary to-
kens into subwords with known representations.
When this occurs for modif or head, the subword
representations are pooled into a single embedding.

Layer combinations. We test all contiguous
spans of layers, across the input embedding and
the 12 hidden state outputs, for a total of 91 layer
combinations. The smallest combination is a single
layer, and the largest is the full range of 13 layers.

Pooling functions. Multiple vectors can be com-
bined in different ways; we test two options, aver-
aging (avg) or summing (sum) over them. This is
applied (i) token-wise, if merging multiple token
representations; (ii) layer-wise, if merging multiple
layers; (iii) sequence-wise, if creating a type-level
representation (see below). In order to streamline
the experimental setup, the same pooling function
is used in all three cases.

Sequence length. We test if using longer se-
quences can be beneficial based on the assumption
that a larger context may be more semantically dis-
criminating. We either retain only sequences with
at least 20 space-separated tokens, or do not im-
pose any threshold; this technically corresponds to
a minimum of 3 tokens, i.e. the lowest sequence
length in the corpus.

Number of sequences. From a similar perspec-
tive, we examine the effect of increasing the num-
ber of modeled sequences, experimenting with 10,
100, and 1,000 sequences per compound. The sets
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of sequences are not resampled; rather, the smaller
sets are included in the larger ones. This criterion
is combined with that of sequence length: for in-
stance, we extract 1,000 sequences of any length
as well as 1,000 sequences with at least 20 tokens,
although these may partly overlap. For compounds
whose corpus frequency is lower than the threshold,
all available occurrences are used.

4.2 Compositionality estimates

As stated above, we expect that the contextualized
representations we use may carry semantic infor-
mation reflecting the degree of compositionality of
a compound, but it is unclear which specific com-
bination of representations is the most efficient.

Direct estimates. We directly compute pairwise
cosine scores between pairs of embeddings, test-
ing all 10 pairs of embedding types (head—modif,
head—comp, head—cont, and so forth).

Composite estimates. We further combine the
directly measured information pertaining to the
head and the modifier of a compound using the
same composition functions as Reddy et al. (2011).
Specifically, we use head and modif embeddings
in combination with one of the following: comp,
cont, and cls. Taking comp as an example, we
compute the composite estimates as follows:

ADD = cos(comp, modif) + cos(comp, head)
MULT = cos(comp, modif) - cos(comp, head)
COMB = ADD + MULT

Token-level vs. type-level. The information from
individual occurrences can be aggregated into a
single numerical score in different ways. (i) In
the token-level approach, we compute a composi-
tionality estimate for each individual occurrence,
and then average over those values to get a sin-
gle score. (ii) In the type-level approach, we first
compute a type-level representation by applying
a pooling function; as an example, we average or
sum over all individual head embeddings to pro-
duce a type-level head embedding. This type-level
representation is then used to directly compute a
single compositionality estimate.

The combinations of the presented experimental
parameters correspond to a total of 41,496 ways
of computing a numerical estimate of the degree
of compositionality. In a trial run, we also experi-
mented with other parameters (e.g. restrictions on
the position of the compound within the sequence),

but they did not exhibit strong effects and for clarity
are not included in the present discussion.

5 Results and discussion

We evaluate each constellation of parameters by
calculating Spearman’s rank correlation coefficient
between the compositionality estimates it produces
and human judgments from the test set. All im-
plementations are evaluated on three prediction
targets: compositionality scores for the compound
as a whole, the head, and the modifier.

5.1 Overview of model performance

We begin by looking at general trends in model per-
formance (Table 2). The highest correlation coeffi-
cient we obtain stands at 0.706 for compound-level
compositionality. Compared to previous studies on
the same dataset, it is in a similar range as the result
reported by Cordeiro et al. (2019) using static word
embeddings (p = 0.726).> Their best performance
was obtained by training a word2vec model on a
corpus in which compound occurrences had been
joined into single tokens. The cosine scores be-
tween those representations and compositionally
constructed vectors were then used to predict the
degree of compositionality. Interestingly, this pro-
cedure strongly relies on the context in which the
compounds occur, which is also a key component
of our best approaches (see below).

The highest performance we obtain substantially
improves on the best BERT-derived score reported
by Garcia et al. (2021a) based on comparisons be-
tween contextualized and non-contextualized rep-
resentations of a compound (p = 0.37). In another
BERT-based experiment, Garcia et al. (2021b) ob-
tain a higher correlation using similarity measure-
ments between compounds and gold standard syn-
onyms (p = 0.67); by contrast, we do not rely on
external linguistic knowledge.

The implementations we tested are strongest at
predicting compound-level compositionality. This
is followed by the compositionality of the head
(maximum p = 0.645) and then of the modifier
(maximum p = 0.553). Predicted values for the
three types of scores are strongly correlated (p >
0.9 for all three pairwise comparisons), but the best
performing parameter constellations clearly differ.

More generally, the summary in the table un-
derscores the wide range of obtained values; the

3This result is reported for a subset of the same dataset
containing 180 compounds.
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p layers pool len seqs estimate agg p layers pool len seqs estimate agg

Comp | 0.706 1-1 sum 3 1k CcOMB cont token -0.642  2-3 avg 3 1k cont cls type
0.706  1-1 avg 3 1k COMB cont token -0.644  3-3 avg 3 1k cont cls type

0.706  1-1 sum 20 1k MULT cont token -0.645 1-5 avg 3 1k cont cls type

0.706  1-1 avg 20 1k MULT cont token -0.646 24 avg 3 1k cont cls type

0.706  1-1 sum 3 1k MULT cont token -0.649 14 avg 3 1k cont cls type

HEAD | 0.645 1-1 sum 3 1k head cont token -0.598  0-7 avg 3 1k cont cls type
0.645 1-1 avg 3 1k head cont token -0.599 14 avg 3 1k cont cls type

0.638  1-1 sum 3 1k COMB cont token -0.600  0-6 avg 3 1k cont cls type

0.638  1-1 avg 3 1k CcoOMB cont token -0.604 1-5 avg 3 1k cont cls type

0.638  1-1 sum 3 1k ADD cont token -0.606  1-6 avg 3 1k cont cls type

MopbIF | 0.553 1-1 avg 20 1k modif cont token -0.464  2-4 avg 3 1k cont cls type
0.553 1-1 sum 20 1k modif cont token -0.465 1-5 avg 3 1k cont cls type

0.548  1-1 sum 3 1k modif cont token -0.471 1-3 avg 3 1k cont cls type

0.548 1-1 avg 3 1k modif cont token -0474 14 avg 3 1k cont cls type

0.546  1-1 avg 20 1k modif cont type -0.476  1-2 avg 3 1k cont cls type

Table 2: Best (left) and worst (right) evaluated implementations. Abbreviations: pool = pooling function; len =
minimum tokens per sequence; seqs = minimum number of modeled sequences; agg = aggregation of occurrences

(type vs. token-level).

weakest implementations yield negative correla-
tions, with a low of —0.649. This confirms the
relevance of the parameters we tested and the im-
portance of understanding the optimal choices in
implementing them. Trends suggested by the ini-
tial overview include better performance of (i) the
first hidden layer in isolation; (ii) token-level rather
than type-level modeling; (iii) cont embeddings,
when paired with another relevant type of informa-
tion; (iv) embeddings targeting the compound as
a whole, the head, or the modifier for the corre-
sponding compositionality score. Strikingly, all the
weakest constellations are closely similar to one
another, the only distinguishing characteristic be-
ing the span of layers. But some of these parameter
choices are also found in the best performing imple-
mentations; more generally, the direction and rel-
evance of all trends are not immediately apparent.
We therefore now more closely examine individual
parameters.

Sequence length. Using sequences with at least
20 tokens leads to lower mean correlations. How-
ever, their minimum values are higher and maxi-
mum values are comparable (Table 3). The overall
lack of a clear effect suggests that beneficial dis-
tinctions made by the model are primarily based
on the most immediate linguistic context.

Number of modeled sequences. There is a clear
trend towards an increase in performance with an
increase in the number of modeled sequences (Ta-
ble 4), likely because this facilitates disambiguation
and limits the effect of sampling differences. Look-
ing at the maximum values, the shift from 10 to

min. 20 tokens
0.134 (-0.587, 0.706)
0.087 (-0.561, 0.637)
0.093 (-0.460, 0.553)

min. 3 tokens
CoMP  0.146 (-0.649, 0.706)
HEAD 0.102 (-0.606, 0.645)
MODIF 0.099 (-0.476, 0.548)

Table 3: Spearman’s p (mean, min, max) for minimum
sequence length.

10 sequences
C  0.135 (-0.394, 0.622)
H 0.093 (-0.384, 0.565)
M 0.089 (-0.367, 0.495)

100 sequences
0.142 (-0.607, 0.689)
0.094 (-0.551, 0.621)
0.101 (-0.459, 0.544)

1,000 sequences
0.143 (-0.649, 0.706)
0.096 (-0.606, 0.645)
0.098 (-0.476, 0.553)

Table 4: Spearman’s p (mean, min, max) for number of
sequences. C, H, M = compound, head, modifier.

100 occurrences leads to a stronger improvement
(= 0.06 points) than the shift from 100 to 1,000
(= 0.02 points); this suggests that it is especially
important to avoid very low numbers of examples.
While increasing the number of occurrences also
leads to the lowest performances overall, this may
be due to the detrimental effect of other parameters.

We further assessed the impact of sampling dif-
ferences in the condition with 10 sequences, which
is the most inherently unstable. We ran the com-
positionality estimation 10 times, each time ran-
domly resampling the modeled occurrences. The
mean difference between the minimum and maxi-
mum values obtained by a parameter constellation
is 0.028. This variability does not alter the overall
parameter-level trends (see Appendix B).

Some compounds do not exceed the threshold
frequencies for some parameter combinations. This
affects 10 compounds for the 100 sequence thresh-
old, and 97 compounds for the 1,000 sequence
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avg

sum

ComMP  0.139 (-0.649, 0.706)
HEAD  0.094 (-0.606, 0.645)
MODIF 0.095 (-0.476, 0.553)

0.141 (-0.587, 0.706)
0.095 (-0.563, 0.645)
0.097 (-0.460, 0.553)

Table 5: Spearman’s p (mean, min, max) for pooling

functions.
token-level type-level
Comp 0.150 (-0.584,0.706)  0.130 (-0.649, 0.699)
HEAD  0.103 (-0.556,0.645) 0.085 (-0.606, 0.628)

MODIF  0.100 (-0.460, 0.553)

0.092 (-0.476, 0.546)

Table 6: Spearman’s p (mean, min, max) for token- vs.
type-level processing.

threshold. As a check, we calculated correlations
on a smaller set of compounds, excluding the 10
most affected by frequency issues. The results were
near-identical, with marginal improvements for the
top predictions (e.g. best p increasing from 0.706 to
0.710 for compound scores) and the same general
trend. As for the compounds with fewer than 1,000
sequences, the mean number of sequences avail-
able for these items was 510, which is still a strong
increase compared to the preceding threshold.

Pooling functions. Averaging and summing per-
form similarly when creating a single embedding
from multiple vectors (Table 5). They obtain near-
identical mean and identical maximum values; av-
eraging leads to lower minimum values.

One of the ways we used pooling functions was
to merge representations for out-of-vocabulary to-
kens that are split up by BERT’s tokenizer. This af-
fected 14 compounds; some instances reflect deriva-
tional patterns (e.g. mail, ##ing in mailing list),
but others are more obscure (e.g. gr, ##av, ##y in
gravy train). Since it is unclear what some of these
representations capture, we checked their impact
by calculating correlations on a reduced set of com-
pounds, excluding those with OOV tokens. The
results were marginally higher (e.g. p increasing
from 0.706 to 0.710 for compound scores). This
issue therefore does not appear to have a strong
detrimental effect, at least when it is limited to a
small subset (5%) of target items.

Another frequently used pooling function is con-
catenation. Applying it across multiple tokens (e.g.
for out-of-vocabulary items) or multiple sequences
(to create a type-level representation) would re-
sult in comparisons between vectors with different
numbers of dimensions; we therefore did not in-
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Figure 1: Top: effect of the number of modeled layers
on compound-level compositionality prediction. Bot-
tom: mean correlations for compound compositionality
prediction across layer combinations. The min_layer
and max_layer values are start and end points of a con-
tiguous span of layers.

clude it in the full experimental setup. As a check,
however, we ran concatenation across layers, com-
bined with averaging over tokens and sequences. It
led to slightly higher mean correlations (0.147 for
compound scores), but it did not improve on the
maximum results so we did not experiment further.

Token vs. type-level. There is a clear preference
across the board for token-level processing (Ta-
ble 6). Most improvements over type-level are
~ 0.01-0.02 points; they reach ~ 0.06 points
when comparing the worst-performing configura-
tions. A potential explanation is that estimating
compositionality on individual occurrences — rather
than a merged type-level representation — may be
less sensitive to ambiguous or otherwise noisy data.

Layers. The results are affected by the number of
modeled layers (Figure 1). The best performance
is obtained with a single layer (mean p = 0.150
for compound scores) and decreases as the span
increases up to 9 layers (0.130). Larger spans fare
somewhat better, likely because they are bound to
capture some relevant representational information;
the best is the full range of 13 layers (0.137).

In terms of specific layers, the best result overall
is obtained by the first hidden layer in isolation
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(mean p = 0.373), followed by other combinations
and individual layers in the low-to-mid range. This
is plotted in Figure 1 for compound composition-
ality scores; head and modifier scores follow the
same trends (see Appendix C). The traditionally
used combination of the last four hidden layers (9—
12) is not among the best ones. It is in fact the
single weakest in terms of maximum values: 0.248
for compound scores, close to 0.5 below the best
implementation. However, it also has a compara-
tively high minimum value (—0.262), suggesting it
is more robust to the effect of other parameters.

Compositionality estimates. We summarize the
impact of compositionality estimates by looking at
performance across the five types of embeddings
which constitute the basis of subsequent score cal-
culations (Table 7); for a summary of results on
individual estimates, see Appendix D.

modif head comp cont cls

Comp  0.135 0.274 0.245 0.172 -0.128
-0.383  -0.133  -0.324  -0.649 -0.649

0.615 0.630 0.666 0.706 0.611

HEAD 0.071 0.242 0.194 0.130 -0.161
-0.384  -0.130  -0.327  -0.606 -0.606

0.464 0.645 0.598 0.645 0.558

MopbIr 0.106 0.167 0.164 0.133 -0.094
-0.274  -0.130 -0.229  -0.476 -0.476

0.553 0.415 0.517 0.553 0.477

Table 7: Spearman’s p (mean, min, max) for embedding
types, across all direct and composite estimates if used.

Looking at the mean values, head performs
stronger than modif as well as comp across the
prediction targets. This is coherent with the dom-
inant role of the head in the morphological con-
stituency of compounds. However, the maximum
values out of the three are obtained by comp for the
compound-level score, head for the head score, and
modif for the modifier score. This indicates that
representations targeting the whole compound or a
constituent of interest are successful in capturing
information specific to the respective element.

As for the two other embedding types, the mean
values for cont follow head and comp across pre-
diction targets. But its maximum values are the
single best (compound-level prediction) or joint
best (head and modifier predictions). By contrast,
clsis clearly in the lower range of performance. Its
maximum values remain around 0.1 points behind
the best implementations. This shows that using

the linguistic context surrounding the compound —
modeled by cont — is beneficial, and clearly more
so than using a representation of the full sequence.*

This might be explained by the redundancy of
using a representation of a compound or its con-
stituent, and comparing it with a representation of
the full sequence which encodes the same element.
It could also be the case that, as suggested before,
token-level embeddings are strongly influenced by
their immediate linguistic context; a balanced rep-
resentation of a broader range of information might
be complementary. Whatever the case, the results
show that the similarity between a compound and
its linguistic context is reflective of the degree of
compositionality. This might explain why previous
implementations using neutral contexts were less
successful in capturing these trends.

5.2 Ablation study

In order to further validate the parameter-level
trends observed thus far, we conduct an ablation
study. We start from the parameter constellation
that obtained the best results on predicting the com-
positionality of the compound as a whole (see Ta-
ble 2; the top two configurations obtained identical
results). For each parameter, we then test all other
potential values, one at a time, while keeping the
remaining parameters unchanged. The results are
presented in Figure 2.

O
estimate 1 ¢

layers A

00
nseqs+4 ¢ ¢

o
type / token 4 ¢
o}
seq. len. 1 ¢
o comp
) Q ¢ head
pooling 1 ¢ modif

0.0 0.2 0.4 0.6 0.8 1.0
reduction in rho

Figure 2: Effect of alternative parameter values com-
pared to the top parameter constellation.

*A more direct comparison would involve a merged repre-
sentation of all the tokens in the sequence rather than the cls
embedding. We nevertheless think that we capture the same
range of information.
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Figure 3: Effect of empirical properties of the head on model performance, observed across the evaluated implemen-
tations. Values on the x-axis indicate prediction targets (compound, head, and modifier scores).

Several parameters exhibit no or limited differ-
ences with respect to the top parameter constella-
tion: pooling functions, minimum sequence length,
and type vs. token-level modeling. Clearer effects
on performance are observed for the number of
modeled sequences; the drop is strongest for the
smallest number of sequences. The choice of layers
shows a very strong effect, with a clear tendency
towards a drop in performance with both (i) a shift
from initial to later hidden states, and (ii) an in-
crease in layer span size. The strongest effect is
exhibited by the estimate used to predict the degree
of compositionality. All weakest estimates (reduc-
tion in p > 0.4) involve the cls embedding. All
strongest estimates (reduction in p < 0.1) involve
the cont embedding.

These results overall confirm the trends previ-
ously discussed for individual parameters. They
also provide further evidence that model perfor-
mance is most strongly affected by the choice of
representational information to be used, i.e. the lay-
ers and the modeled tokens in the sequence. Subop-
timal values for either of these parameters can lead
to compositionality predictions that are fully decor-
related from human judgment. Performance does
not depend to the same extent on the way in which
data is preprocessed and representational informa-
tion is combined. Howeyver, the effect of some of
these parameters is not negligible, especially cumu-
latively, and as such should not be disregarded.

5.3 Empirical properties of compounds

We now turn to the potential impact of empiri-
cal properties of the compounds on model perfor-
mance. We focus on key characteristics of the com-
pounds’ heads, given their importance indicated by
the trends for compositionality estimates.

As previously stated, we examine the impact of
three empirical properties: frequency, productivity,
and ambiguity (for sources of this information, see
Section 3.3). For each property, we rank the 280
compounds based on the values they exhibit and
split them into five sets containing 56 compounds
each. We retain the first, third, and fifth set, which
we take to clearly reflect the low, mid, and high
ranges for each empirical property. The remaining
two sets are excluded in order to avoid overlapping
or closely similar values in adjoining sets.

A summary of the splits across the three features
is presented in Table 8. For each feature, we com-
pute correlations with human judgments separately
for each of the three splits of compounds, across
all evaluated constellations of parameters. The dis-
tribution of the obtained values is plotted in Figure
3 and further discussed below.

Feature Mean Std. Example
Frequency 42 +30 silver spoon
(thousands) 452 +108 labor union
3,614 42438 crash course
Productivity 7 +5 night owl
75 +19 time difference
448 +208 Dbirth rate
Ambiguity 2 +1 research project
5 +1 flea market
13 +4 application form

Table 8: Mean and standard deviation for the low, mid,
and high range splits across empirical features. A sam-
ple compound from each split is provided.

Frequency. In predicting the compound and head
compositionality scores, the best performance is
obtained for low-frequency heads (mean p = 0.18
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and 0.16, respectively). For the compound score,
performance across the mid and high range is sim-
ilar; for the head score, it is clearly lower in the
mid range. As for the modifier score, performance
is overall stable (mean p = 0.10 across the three
splits); this is not especially surprising given the
focus on the frequency of the head. This contrasts
the previously reported improvements in perfor-
mance with a higher number of modeled sequences.
However, head frequency is correlated with both
productivity and ambiguity (p = 0.87 and 0.50,
respectively, across the 280 compounds). Poorer
performance in higher frequency ranges is consis-
tent with an indirect effect of these two properties.

Productivity. Overall, low-productivity heads
clearly obtain the best results for compound and
head compositionality scores (mean p = 0.21 and
0.16, respectively). Low- and high-productivity
heads obtain similar results for the modifier scores
(mean p = 0.11 and 0.12, respectively). Across the
prediction targets, mid-productivity heads have the
poorest performance; this drop is the strongest for
head scores (mean p = 0.01). The overall better
performance at modeling low-productivity heads
is likely explained by their very nature of being
used with fewer distinct modifiers, which might
facilitate the learning of those compound mean-
ings. This is opposed to higher productivity ranges,
which potentially imply more dispersion.

Ambiguity. Across the prediction targets, low-
ambiguity heads clearly have the strongest perfor-
mance (mean p = 0.30 for compound scores; 0.25
for head scores; 0.18 for modifier scores). The
difference with respect to the two other ambiguity
ranges is the strongest for head scores; it amounts
to ~ 0.20 points. Performance is similar for mid-
and high-range ambiguity. For compound and head
scores, the mid range performs slightly better than
the high range; for modifier scores, it is the reverse.
Similarly to low productivity, the better results for
low ambiguity suggest that limited semantic disper-
sion across the occurrences of a given word makes
it easier for BERT to learn its meaning. This is in
turn beneficial for derived representations of more
complex linguistic structures such as compounds.

Overall, these results have shown that compound
properties affect predictions of the degree of com-
positionality, with better performance in the lower
ranges of all three properties. This directly echoes
the results for type-level word embeddings reported

by Schulte im Walde et al. (2016), who similarly
suggested that prediction performance is related
to broader effects of compound properties on the
quality of the underlying meaning representations.
Moreover, the prediction of compound and head
scores generally follows the same pattern across the
three empirical features. Although modifier scores
do not align as closely, they too point to an effect of
head properties. These results further underscore
the importance of the representations of compound
heads for the modeling approach we adopted.

6 Conclusion

We have presented an experiment on predicting the
degree of compositionality of 280 English noun
compounds using a wide range of variants of se-
mantic knowledge derived from pretrained BERT.
We have identified a competitive best implementa-
tion achieving p = 0.706 with human judgement
and highlighted clear takeaways.

In terms of preprocessing, stronger results were
obtained when modeling a larger number of oc-
currences per compound, whereas controlling for
sequence length did not have a clear effect. On em-
bedding computation, different pooling functions
led to comparable performance, but there was a
clear advantage for layers in the low-to-mid range,
which strongly improved on layer combinations
used in earlier studies. As for compositionality es-
timates, it was clearly beneficial to compute them
on the token rather than type level, as well as to use
(i) representations targeting the constituent of inter-
est; (ii) representations of the surrounding context;
(iii) comparisons across complementary — rather
than redundant — representational information.

Looking at empirical properties of com-
pounds, low-frequency, low-productivity, and low-
ambiguity heads obtain better compositionality pre-
dictions. This trend confirms that more limited
semantic dispersion makes it easier to model com-
pound meaning. The fact that it holds across com-
pound, head, and modifier compositionality scores
highlights the importance of the head in the linguis-
tic structure — and computational modeling — of
compounds. Taken together, our results point to
important practical decisions when running similar
implementations and contribute to our understand-
ing of the way in which BERT represents lexical
meaning, supporting the view that the pretrained
model encodes at least some aspects of compound
semantics.
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Limitations

Our experiments were limited to noun compounds
in a single pretrained model for English, with po-
tential implications for the generalizability of our
results. They may be partly related to the architec-
ture of this specific model. From a linguistic stand-
point, compound properties vary widely across lan-
guages. For instance, where English has productive
patterns combining two nouns, often in an open
(space-separated) compound, German has closed
compounds; Romance languages widely rely on
N-Prep-N patterns; the structure in many Slavic
languages involves patterns of nominal declension;
and so forth. The model might not capture the in-
formation relevant for compositionality prediction
in the same way across these cases. Additionally,
our results are strongly related to the central role of
compound heads; they may therefore be different
in multiword expressions with a different linguistic
structure, such as particle verbs and idioms. Finally,
we used token-level representations to predict type-
level compositionality judgments. This is relevant
in terms of assessing the general ability to infer
type-level information, but (i) performance may
be improved by controlling for the senses in the
modeled occurrences vs. those in the stimuli used
to collect human judgements; (ii) further work is
needed to fully understand the factors contribut-
ing to individual token-level representations of a
compound.
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distributed by their authors without a specific li-
cense. The ENCOW corpus and WordNet were
acquired prior to this study. Their licenses do not
have restrictions regarding research use.

B Effect of sampling differences

We found that resampling corpus occurrences (for
n = 10 occurrences per compound) led to minor
differences in model performance. However, they
did not impact parameter-level trends overall, with
the effect of parameter choices remaining the same
in the majority of cases. To illustrate this, we are
reporting the mean correlations with human judg-
ment based on different samples of occurrences:
three individual samples (those whose overall mean
correlations are the lowest, the closest to the mean,
and the highest), as well as the mean and standard
deviation for the 10 samples. Similarly to the main
analysis, the mean values are presented for differ-
ent parameter choices; for layers, this is limited to
a sample of layer spans. The results are split across
the three prediction targets: for the compound as a
whole in Table 9; for the head in Table 10; for the
modifier in Table 11.

Sample shuffles Mean Std
Seq. len.
3| 0136 0.148 0.157 | 0.146 0.006
20 | 0.117 0.135 0.151 | 0.138 0.011
Agg.
token | 0.134  0.146  0.161 | 0.149 0.008
type | 0.120  0.137  0.147 | 0.134 0.008
Pooling
avg | 0.126  0.141  0.153 | 0.141 0.008
sum | 0.127  0.142  0.155 | 0.143 0.008
Estimate
head | 0.265 0.276  0.280 | 0.274 0.006
modif | 0.132  0.134  0.145 | 0.136 0.006
comp | 0240 0.243 0.250 | 0.245 0.005
cont | 0.156 0.172  0.194 | 0.180 0.013
cls | -0.153 -0.119 -0.105 | -0.126  0.016
Layers
0-0 | 0.196 0.198  0.195 | 0.200 0.006
1-1 | 0.118 0.139 0.153 | 0.136 0.010
11-11 | -0.062 -0.036 -0.009 | -0.040 0.016
12-12 | 0.179 0.209 0.226 | 0.200 0.014
1-4 | 0310 0321 0317 | 0318 0.006
8-12 | -0.009 0.011 0.044 | 0.011 0.015

Table 9: Mean correlations for compositionality pre-
diction (of the compound as a whole) across parameter
choices.

Sample shuffles Mean Std

Seq. len.
3] 0095 0.098 0.120 | 0.104 0.009
20 | 0.083 0.086 0.106 | 0.095 0.010

Agg.
token | 0.094  0.097 0.123 | 0.106 0.010
type | 0.083  0.087 0.103 | 0.093 0.008

Pooling
avg | 0.089  0.091 0.113 | 0.099 0.009
sum | 0.089 0.092 0.113 | 0.100 0.009

Estimate
head | 0.238 0.240 0.249 | 0.241 0.006
modif | 0.075 0.064 0.086 | 0.075 0.007
comp | 0.196 0.187 0.202 | 0.195 0.005
cont | 0.113 0.126  0.163 | 0.143 0.019
cls | -0.165 -0.148 -0.132 | -0.152 0.013

Layers
0-0 | 0.145 0.151 0.150 | 0.151 0.007
1-1 | 0.090 0.095 0.120 | 0.101 0.010
11-11 | -0.055 -0.052 -0.013 | -0.047 0.015
12-12 | 0.185 0.184 0.228 | 0.192 0.017
1-4 | 0252 0261 0263 | 0262 0.009
8-12 | -0.015 -0.018  0.028 | -0.006 0.015

Table 10: Mean correlations for compositionality pre-
diction (of the head) across parameter choices.

Sample shuffles Mean Std
Seq. len.
31 0097 0.103 0.091 | 0.095 0.006
20 | 0.079 0.095 0.098 | 0.091 0.009
Agg.
token | 0.091 0.099 0.098 | 0.096 0.005
type | 0.085 0.099 0.092 | 0.090 0.007
Pooling
avg | 0.087 0.098 0.094 | 0.092 0.006
sum | 0.088 0.099 0.096 | 0.094 0.006
Estimate
head | 0.160 0.170 0.167 | 0.166 0.004
modif | 0.101  0.106 0.101 | 0.102 0.007
comp | 0.158 0.164 0.160 | 0.162 0.006
cont | 0.134  0.137  0.130 | 0.133 0.009
cls | -0.117 -0.090 -0.088 | -0.101 0.013
Layers
0-0 | 0.166 0.160 0.157 | 0.164 0.005
1-1 | 0.075 0.095 0.087 | 0.084 0.008
11-11 | -0.070 -0.038 -0.045 | -0.055 0.012
12-12 | 0.105 0.146  0.131 | 0.128 0.014
1-4 | 0227 0227 0216 | 0.223 0.007
8-12 | -0.029  0.000 -0.003 | -0.016 0.011

Table 11: Mean correlations for compositionality pre-
diction (of the modifier) across parameter choices.

C Effect of layer combinations

Model performance across layer combinations is
plotted in Figure 4.

D Effect of compositionality estimates

Model performance across individual composition-
ality estimates is plotted in Figure 5.
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Figure 4: Correlations for compositionality prediction across layer combinations. The min_layer and max_layer
values are start and end points of a contiguous span of layers. For each prediction target (compound, head, and
modifier compositionality score), the left panel corresponds to the mean correlation per layer combination; the
middle and the right panels correspond to the minimum and maximum values, respectively.

1511



modif_head 1 Prediction ﬁ_
N comp
[ head
head_comp 1 - modif
head_cont - E— S—
head_cls $
modif_comp A ‘ —{:Lﬁ

modif_cont - m
modif_cls - :——D_l_—<T-
comp_cont | e e
:ﬁu -
comp_cls 4 RREY .
cont_cls 1 %
comp ADD - ﬁ_
comp MULT A g
comp COMB - _‘@_
cont ADD - P —
cont MULT { p—
cont COMB | P s

3. 3

cls ADD A I ‘ | -.
pli g

cls MULT A 1 | -

I |

K]

cls COMB 1 I : | '-.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
value

Figure 5: Distribution of Spearman’s correlation coefficient for compositionality prediction across compositionality
estimates. Embedding types: modif = contextualized representation of the modifier; head = contextualized
representation of the head; comp = pooled representation of modif and head; cont = pooled representation of the
surrounding context (full sequence without the compound); cls = representation of the [CLS] token. The use of
ADD, MULT, and COMB involves the composite estimates described in Section 4.
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