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Abstract

The Backpack is a Transformer alternative
shown to improve interpretability in English
language modeling by decomposing predic-
tions into a weighted sum of token sense com-
ponents. However, Backpacks’ reliance on
token-defined meaning raises questions as to
their potential for languages other than English,
a language for which subword tokenization
provides a reasonable approximation for lex-
ical items. In this work, we train, evaluate,
interpret, and control Backpack language mod-
els in character-tokenized Chinese, in which
words are often composed of many characters.
We find that our (134M parameter) Chinese
Backpack language model performs compara-
bly to a (104M parameter) Transformer, and
learns rich character-level meanings that log-
additively compose to form word meanings.
In SimLex-style lexical semantic evaluations,
simple averages of Backpack character senses
outperform input embeddings from a Trans-
former. We find that complex multi-character
meanings are often formed by using the same
per-character sense weights consistently across
context. Exploring interpretability-through con-
trol, we show that we can localize a source of
gender bias in our Backpacks to specific char-
acter senses and intervene to reduce the bias.

1 Introduction

Language modeling is a crucial task in natural lan-
guage processing, where the goal is to compute the
probability of the next word in a sequence given the
preceding words. Recently, large language models
based on the Transformer architecture (Vaswani
et al., 2017) have achieved remarkable success in
various NLP applications, including text genera-
tion (Radford et al., 2018b; Brown et al., 2020;
Wang and Komatsuzaki, 2021), machine transla-
tion (Bawden et al., 2019; Lewis et al., 2019), and
question-answering (Miller et al., 2017; Karpukhin
et al., 2020; Ram et al., 2021). However, Trans-
formers are notoriously hard to interpret and con-
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Figure 1: The general structure of the character-level
Chinese Backpack Language Model. The next char-
acter is predicted by the weight sum of the senses of
characters in the previous context. The sense vector of
" 5" (show) provides information for word composition,
while the senses of "Fi" and "fili" (computer) provide
semantic information through linear combination.

trol. Their non-linear contextualization functions
imply that intervening on their internal activations
can have unpredictable consequences.

The recently proposed Backpack architec-
ture (Hewitt et al., 2023) tackles the interpretability
problem by decomposing its predictions as a sum of
non-contextual vectors, which then provide an in-
terface for interpretability. Intuitively, it combines
the expressivity of Transformers with some of the
interpretability and control benefits of log-linear
models. It was shown to have similar language
modeling capacity to Transformers on English, and
performed comparably on perplexity and LAM-
BADA (Paperno et al., 2016) tests, at a tax of 1.4x
more parameters.

The effectiveness of the Backpack architecture in
languages with different morphological structures
than English remains uncertain due to challenges
in interpreting and controlling individual tokens
without stable explicit semantics. In Chinese, most
vocabulary consists of compound words with mul-
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tiple characters. However, these characters often
have implicit meanings (Packard, 2011; Cui et al.,
2018), making it challenging to infer the meaning
of these words based solely on the individual mean-
ings of their constituent characters. Additionally,
some characters represent the pronunciation of for-
eign words and lack semantic associations, which
requires characters to learn more complex seman-
tic connections within limited sense vectors. The
English-based Backpack model is trained on often
complete words with more explicit meanings, mak-
ing it uncertain whether Backpacks will perform
well in character-level Chinese.

In this paper, we trained the first non-English
(and first character-based language) Backpack lan-
guage model and evaluate its performance and
learned lexical semantics on character level.! We
trained several Backpack and Transformer base-
line models and evaluated them on perplexity and
word prediction accuracy tasks. Our experiments
show that our pretrained 134M Backpack Lan-
guage Model with 16 sense vectors, which uses
character-based tokenization, performs comparably
to a 104M Transformer model.

To understand the Backpack’s success, we first
study how it composes word meaning from non-
contextual token senses. We hypothesize word
meaning is formed because tokens of a multi-
character word receive similar weighting in the
Backpack’s sum across all contexts the word ap-
pears in. We find that indeed the proportion of
these composed characters on each sense vector
changes by no more than 20% in over 90% of
cases. Moreover, we achieve better word repre-
sentation under three Chinese corpora by simply
averaging the sense vectors of composed charac-
ters compared to the character embeddings of the
pretrained Transformer model. Additionally, we
propose and evaluate character-level interventions
to mitigate gender bias and control how word mean-
ing is composed from character meaning , which
demonstrate promising results for generating con-
trollable text in character-based Chinese Backpack
models. These experiments show that our Chinese
Backpack Model learns the implicit semantics of
characters, making it possible to control the em-
phasis or weakening of certain characteristics of a
word during generation tasks.

'Our code, weights, and demos are available at
https://github.com/SwordElucidator/nanoBackpackLM

2 Related Work

2.1 Word Representation with Deep Learning

Numerous word embedding techniques have been
proposed in the early stages of natural lan-
guage processing with deep learning, including
Word2Vec (Mikolov et al., 2013) and GLoVe (Pen-
nington et al., 2014), which represent words as
vectors. Word2Vec learns word embeddings by
predicting the probability of a word’s occurrence
given its context words or predicting the context
words given a central word. Hewitt et al. (2023)
showed that the Backpack is a generalization of
Word2Vec. While these methods produce high-
quality word representations that capture the se-
mantic and syntactic relationships between words
and have enabled rich interpetability studies as well
as bias auditing (Senel et al., 2017; Subramanian
et al., 2017; Swinger et al., 2018), they are not
suited to language modeling tasks due to a lack of
expressivity.

Subsequently, modern language models with the
Transformer architecture (Vaswani et al., 2017)
build contextualized word embeddings that are use-
ful for modeling language in a variety of settings.
However, as noted by Hewitt et al. (2023), these
models’ monolithic, non-linear processing of to-
ken sequences eschew any meaningful word-level
semantics, so word-level interpretability has no
direct connection to model behavior. Separately,
interpreting contextual representations is difficult
because each context maps arbitrarily to different
representations, making it difficult for word embed-
dings to directly represent non-contextual semantic
information and challenging to achieve predictable
intervention across all contexts.

2.2 Language Modeling with Deep Learning

Language modeling is a fundamental task in natu-
ral language processing, involving computing the
probability of the next word in a sequence given
the previous words. Early neural approaches to
language modeling used feed-forward networks
(Bengio et al., 2000), various Recurrent Neu-
ral Networks (RNNs) (Elman, 1990; Sutskever
et al., 2011) and attention mechanisms (Bahdanau
et al., 2014). More recently, modern language
models have adopted the Transformer architec-
ture (Vaswani et al.,, 2017), with the GPT se-
ries (Radford et al., 2018a,b; Brown et al., 2020)
by OpenAl achieving notable success in generating
high-quality and coherent text. This success has led
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to applications in various areas, such as story gener-
ation (Xu et al., 2020b; Chen et al., 2021) and chat-
bots (Lin et al., 2020; Roller et al., 2020; Shuster
et al., 2022). However, as previously discussed, in-
terpreting word embeddings in Transformer-based
language models poses a challenge.

2.3 The Backpack Architecture

Hewitt et al. (2023) introduced the Backpack, a neu-
ral architecture which achieves high performance
on contextualization and non-contextual word rep-
resentations. This approach represents each word
in a sequence as a linear combination of sense vec-
tors, with weights computed by an expressive net-
work such as the Transformer. (We’ll review the
Backpack in detail in Section 3.) The linearity of
the contributions of sense vectors to predictions en-
courages the sense vectors to specialize and encode
rich notions of word meaning during pretraining.
Furthermore, the authors conducted experiments
on sense vectors, demonstrating their potential for
predictable control across all contexts. We repro-
duced and pretrained it on character-based Chinese
language, demonstrating the Backpack model’s po-
tential for application to languages of this type.

2.4 Chinese Tokenization and Embeddings

One common approach for tokenization in Chinese
involves sub-word tokenization methods, such as
WordPiece (Schuster and Nakajima, 2012), byte
pair encoding (Sennrich et al., 2016), and uni-
gram language model segmentation (Kudo, 2018),
which were adopted by recent Chinese Pretrained
Language Models such as CPM (Zhang et al.,
2020). Furthermore, Si et al. (2023) proposed Sub-
Character Tokenization, which encodes each Chi-
nese character into a sequence of phonetic or stroke
symbols, and then utilizes a sub-word tokenization
method to construct the vocabulary. In our research,
to understand the performance of character-level
sense vectors, we used single Chinese character
tokenization method proven to be effective by Li
et al. (2019) and utilized by Chinese GPT2 (Du,
2019) and MacBERT (Cui et al., 2021, 2019).
Various studies have explored embeddings at
the word (Rumelhart et al., 1986; Bengio et al.,
2000; Mnih and Hinton, 2008), phrase (Socher
et al., 2010; Zhang et al., 2014; Yu and Dredze,
2015), sentence (Le and Mikolov, 2014; Socher
et al., 2013; Kalchbrenner et al., 2014), and doc-
ument (Srivastava et al., 2013; Le and Mikolov,
2014; Hermann and Blunsom, 2014) levels for rep-

resenting knowledge and semantics. In the case of
Chinese, character-level embeddings (Chen et al.,
2015; Li et al., 2015) have also been investigated
in relation to compounded word embeddings (Xu
et al., 2016). We investigated on character embed-
dings and conducted two methods for represent-
ing compounded words using the contextualization
weights learned during pretraining.

3 Approach

3.1 Backpack language model

Drawing directly from Hewitt et al. (2023), a Back-
pack language model is a probabilistic model

p(x; | X<i) = softmax(EToi_l), €))

where x7.; is a sequence of elements from finite
vocabulary V, E € R4Vl and o0;_; is a Back-
pack representation of x;. In turn, a Backpack
representation is constructed in two pieces:

Sense vectors. For each word in the vocabulary
V), a backpack learns k sense vectors, each like a
specialized word2vec vector. We write the sense
vectors for x € V as {C(x)¢}}_,. When presented
with a sequence x;.;, the Backpack constructs its
sense vectors for the words in the sequence:

C(Xl),...,C(XZ‘). (2)

Weighted sum. The Backpack representation o;
is just a weighted sum of the sense vectors of the
sequence:

n k
0i=> Y ag;C(x))e, 3)

j=1t=1

where ay;; is defined by a contextualization func-
tion @ = A(X1.,), and A : YV — RFX™X7 and all
agij > 0.

3.2 A note on Backpack token semantics

Intuitively, the contribution of each sense C'(x)¢
to any prediction is independent of context. We
find it instructive to write out what this means for
token-level semantics. The score (E'0;)y of a
word w € V in context X.; is the unnormalized
log-probability of that word. Because of linearity,
we have:

n k
ETOz' = Z aéijETC(Xj)Ev “4)
j=1 ¢=1
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The contribution of a sense C'(x;), to that word’s
score is thus

O(gij/ETC(Xj/)g S R'V‘ ®))

Because all « are non-negative, the meaning or use
of a sense is simply its set of scores over the vo-
cabulary E'"C(x;/), which depends only on the
word (not the context); only the importance of that
meaning is determined by context. As such, vi-
sualizations of the “highest-scoring words” for a
sense—as we provide in future sections—have a
particularly transparent connection to model behav-
ior.

3.3 Parameterizing Backpack Language
Models

The sense function is parameterized C(z) =
FF(Ex) where FF: R? — R¥F is a a feed-
forward network, and contextualization weights
A(X1.,) = o where

oy = softmax(h/, KOTQOn,.,) (6)

for each predictive sense ¢ with matrices
K(@,Q“) € RI>d/k and hy., calculated by a
Transformer (Vaswani et al., 2017) with autore-
gressive masking, i.e.

h;.,, = Transformer(EXy.y,) @)

We introduced a series of minor adjustments to
the implementation details of the original backpack
language model with the objective of enhancing
training stability and facilitating a more compre-
hensive comparison between our model and the
GPT model as discussed in Appendix A.

3.4 Baselines

We employed a GPT2-like Transformer model
(Radford et al., 2018b) as a baseline, pretrained
using the same datasets, hyperparameters, and ran-
dom seed as our Backpack model. The Trans-
former and Backpack models have equal con-
textual parameters in the Transformer structure,
whereas the Backpack model contains additional
non-contextual parameters for the sense vectors.
The Transformer and Backpack models share the
same tokenizer and have an identical embedding
size, as well as the same number of layers and
heads for contextualization.

4 Experiment Training Backpack LMs

To compare the performance of our models against
the baseline models in general language model-
ing evaluations, We first pretrained our 134M
"Backpack-small" and 27M "Backpack-micro" Chi-
nese Backpack language models and the base-
line 104M "GPT2-small" and 18M "GPT2-micro"
GPT2 models on large Chinese corpus. These sizes
are set so the Transformer used in the Backpack’s
weight computation is the same size as the corre-
sponding GPT2-like Transformer model.

4.1 Data

For pretraining, we employed three corpora:
wiki2019zh (Xu, 2019a), news2016zh (Xu, 2019a),
and webtext2019zh (Xu, 2019a), which are com-
posed of 1.04 million Wikipedia entries, 2.5 mil-
lion news articles, and 4.1 million Q&As, respec-
tively, resulting in a total dataset size of 14.3G.
This dataset was used to pretrain ALBERT Chi-
nese (Xu, 2019b; Lan et al., 2020). To prepare the
data, we set aside 1% of the data for the test set
and 0.5% for the development set. The data was
randomly partitioned into blocks of size 1,024 for
each training step on each GPU.

4.2 Evaluation method

To evaluate the contextual performance of the Back-
pack and Transformer baseline models, we com-
puted perplexities on the test set of our web corpus.
We also used the Chinese WCPC dev set (Ge et al.,
2021), an open-ended Chinese cloze task similar to
LAMBADA (Paperno et al., 2016), which includes
4,827 test cases and is used for assessing top-1
word accuracy in word prediction with long-term
context, to evaluate the models’ ability to contex-
tualize and predict words accurately. Specifically,
each test case comprised a long sentence with at
least 150 Chinese characters, with the last signif-
icant word being masked and having a length of
2 to 4 characters. The objective of the task was
to predict the masked word, and we evaluated the
performance of the models based on their top-1
and top-3 accuracy. As this task was originally
tested on masked language models which can see
the sentence’s ending tokens, we designed a sam-
pling method to evaluate our autoregressive models
more fairly: we generated characters with beam
search until the length of the output tokens equaled
the length of the original sentence. We retained ten
generations from the beam in every step, penalized
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the outputs by adding the log probability of the
original ending characters, and then selected the
top generations.

4.3 Experimental details

The pretraining process for the Backpack-micro
and the GPT2-micro baseline models involved
training on 3 x RTX3090 GPUs, using a batch size
of 184,320 tokens for 500,000 gradient steps with
cross-entropy loss, the AdamW (Loshchilov and
Hutter, 2017) optimizer, 2,000 warmup steps, and
linear decay on the learning rate starting from 6e-4
used by karpathy (2023). The model with the best
performance on the dev set was retained by evalu-
ating at intervals of 1000 steps. The Transformer
structure comprised 6 layers, 6 heads, and an em-
bedding size of 384, with dropout disabled for flash
attention (Dao et al., 2022) in Torch 2.0. Three at-
tempts were made to improve parameterization of
the Backpack language model. Compared to the
original paper, one layer was removed from the con-
textualization layer of the Transformer structure to
match the size of the corresponding Transformer
model. 134M Backpack-small and GPT2-small
were pretrained on one A100 GPU with a batch
size of 245,760 tokens for 500,000 gradient steps,
using 16 sense vectors and a Transformer structure
comprising 12 layers, 12 heads, and an embedding
size of 768.

4.4 Results

During the experiment, it was observed that pre-
training the Backpack model was more challenging
to stabilize compared to the Transformer model,
although the overall loss curve of the 16-sense
vector Backpack LM was similar to the Trans-
former. Specifically, in the Backpack architecture,
the lack of layer normalization in the representation
0;’s weighted sum computation can cause dramatic
changes in the sense vectors and lead to gradient
explosion during pretraining when encountering
low-quality batches.

In general, the Backpack models achieve similar
perplexity scores compared to the GPT2-like Trans-
former model of similar scale and demonstrate sig-
nificantly improved accuracy in WCPC (Ge et al.,
2021) (Table 1).

WCPC is a challenging evaluation task as it re-
quires the model to have long-distance contextu-
alization ability and some world knowledge to de-
termine the masked word. For the WCPC score,
we found that our 134M Backpack-small tied with

223M ALBERT-xxlarge Chinese (Xu et al., 2020a)
on top-1 accuracy and tied with the most performed
MacBERT-large(Cui et al., 2021) in Chinese BERT
family baselines (Devlin et al., 2018; Liu et al.,
2019; Cui et al., 2020, 2021) on top-3 accuracy
using the ending words penalizing strategy. Our
strategy penalizes language models for generating
predictions that do not end the sentence, improv-
ing evaluation alignment with masked language
models.

5 Analysis of Lexical Structure

5.1 Sense Vectors

5.1.1 Visualizing Senses

Following the Backpack paper, we projected the
sense vectors of characters onto the vocabulary,
denoted as E' C(x), € RV, to illustrate the con-
tribution of the sense vectors towards predictions.
The outcomes are in Table 2 and you can find a
detailed version in the appendix (see Table 7). As
hypothesized, specific sense vectors automatically
captured word composition rules during pretrain-
ing, whereas others captured semantic relatedness
or associations.

5.1.2 Word Representations

In character-based languages, words are con-
structed through one or several characters in a com-
plex manner. Linguistic studies have examined
the morphological, orthographic, and phonolog-
ical information within compound words (Zhou
et al., 1999; Packard, 2011). However, we distin-
guish them into the following categories based on
whether the characters convey meaning individu-
ally and the implicit information density within the
characters. In detail, some words are composed of
characters with sub-meanings ("compound word"),
while some borrowed words from foreign lan-
guages only use the pronunciations of the char-
acters ("loanword"). There are also four-character
words that represent lengthy allusions, with the
characters representing the critical objects in the
allusion ("idiom").

We explored methods for better representing
these vocabularies based on the sense vectors of the
compositional characters to test lexical relationship
on the words with explicit meanings. Here are the
two methods that we explored.

Firstly, We purposed a method which involved
simply computing the average value of the sense
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Model PPL| WCPCtop-1 ACCT WCPC top-3 ACC 1
Backpack-micro 16.25 2.98% 7.46%
GPT2-micro 16.66 2.44% 5.51%
Backpack-small 9.18 4.16% 10.6%
GPT2-small 8.87 4.27% 10.42%
BERT-base, Chinese - 7.3% 10.1%
RoBERTa-wwm-ext-base - 6.5% 9.8%
MacBERT-large, Chinese - 6.8% 10.6%
ALBERT-xxlarge, Chinese - 4.5% 6.5%

Table 1: Language modeling performance. The baseline WCPC accuracies are from the original paper. For

perplexity, lower is better; for accuracy, higher is better.

Sense Vector 10 (Word Composition)

Sense Vector 12 (Character Meaning Relatedness)

K (sky / day) 3 (enter / advance / come in)

K (sky / day) 3 (enter / advance / come in)

(F)VE (distant land) ()% (settle in)
(K)# (Tianjin City) (#H) A (enter)
(R)Z (Ancient India) ()% (march)
(R)HF (exceptional talent) () (attack)

(R)## (beautiful voice) ()& (make progress)

B (early) 3 (walk / step / pace)
% (night) W (must / will / certainly)

g (wake up) ¥ (blanket / carpet)
Hf (night) fib (lie / crouch)

#% (approach / rise high) i (eddy / whirlpool)

Table 2: The sense vectors in the same index learned a particular facet of character usage in pretraining. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.
Sense vector 10 excels in composing two-character words, while sense vector 12 demonstrates strong character-level

semantic correlations.

vectors of the constituent characters to represent
the word’s sense vector.

Secondly, we hypothesize that words with a com-
plicated, non-systematic function from characters
to the word meaning will have their constituent
character senses weighted similarly no matter what
context they appear in—thus constructing the non-
systematic meaning. Suppose we have a context
c that contains a target word with p constituent
characters w = x1, ..., X,, with the index of these
characters in the context c as jx, , - - - , jx,, We cal-
culate the average contextual composition ratio
A(c)¢ on sense vector £ as

A(€)eji, A(€) 1w, ®
PRP () D P (31
where
1 e|+1 s
A(€)ejy., B 9)

el =x, i=jxp+1 2 k1 Wi

We expect the ratios A(c1), = - = A(cq)¢ for
any q contexts without any significant semantic am-
plifications on the meaning any of the constituent
characters. Assuming this hypothesis holds, a word

w could be represented as

1 L2
Cw)e==> > Mem)e,, Clxs)e  (10)
q m=1 s=1
for samples of context cy, ..., cq.

To prove the feasibility of the second method,
we designed several prompts (Appendix 9) that fit
different types of words and calculate the average
contribution ratio of each character’s sense vectors
among all constituent characters in the word and
how much each contribution is away from the av-
erage value. We created a dataset containing 120
compound words, 102 loanwords, and 104 idioms,
and validated the above hypothesis on this dataset.
Our experimental results showed that each char-
acter’s contribution ratio in a word on each sense
vector for prediction remained stable across vari-
ous contexts. Furthermore, the stability of word
compositions was observed to follow the order of
idiom > compound word > loanword as shown in
Table 3. However, we also observed that while the
senses of most vocabulary items are highly stable
across different contexts, there exists a subset of
vocabulary items that exhibit poor stabilities. The
underlying reasons for this phenomenon warrant
further investigation. More word examples are in
the Appendix 8.
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Type <+10% < +20% > +20%
compound words  69.53% 26.61% 4.06%
loanwords 60.60% 29.64% 9.76%
idioms 84.94% 13.94% 1.20%

Table 3: How the contribution ratio of sense vectors on
characters of a word varies among the different contexts.
A more minor variation in the contribution ratio indi-
cates a more stable word composition.

5.1.3 Lexical Relationship Test

We evaluated the lexical relationship of the sense
vectors using two datasets: Wordsim-240 and
Wordsim-297 (Niu et al., 2017), and represent a
word by averaging all the sense vectors of the con-
stituent characters. To assess the quality of the re-
sulting lexical representations, we computed Spear-
man rank-order correlation coefficient between the
relationship scores in the datasets and the cosine
similarities of each word pair across all the sense
vectors of our models. For the GPT2 model, we rep-
resented each word by averaging the embeddings
of the constituent characters.

Our results in table 4 show that our Backpack
Model outperformed the same-scaled GPT2 model,
but the results were significantly inferior to word
embeddings trained directly on words using meth-
ods such as word2vec (Mikolov et al., 2013) or
GLoVe (Pennington et al., 2014).

Representation WS240 WS297
Backpack-micro #14 0.335 0.226
GPT2-micro 0.164 0.271
Backpack-small #9 0.384 0.426
GPT2-small 0.225 0.334
Word-tokenized models

(not comparable)

CBOW 0.561 0.626
GloVe 0.558 0.584

Table 4: Pearson product-moment correlation coeffi-
cients between the provided scores and the cosine sim-
ilarities of the word pairs are calculated. Character-
tokenized Backpack LMs outperform GPT?2 but are in-
ferior to word-tokenized models.

5.2 Sense Vectors for Control

In this section, we showcase two character-level
interventions on the sense vectors as proof-of-
concept.

5.2.1

In Modern Chinese, most professions are com-
posed of two or more Chinese characters, mak-
ing direct debiasing of stereotypically gendered
profession nouns difficult. To address this issue,
we attempted two approaches: 1) identifying the
characters within the composed words that con-
tain gender-biased meanings and debiasing them
from their sense vectors, and 2) directly debiasing
the sense vectors of the composed words using the
method discussed in Word Representations.

We hypothesized that the first approach could
be practical because many Modern Chinese words
are combined from ancient single-character words
that represent a relevant meaning to the composed
words. For example, the word "1-J&" (soldier) is
composed of """ (man/warrior) and "F%" (arms),
both of which carry stereotypical male bias. In our
experiments, we attempted to identify the sense vec-
tors of characters that contain gender stereotypes
and compared |(EC (Xne )¢ — EC(Xshe)¢)| to de-
termine which sense vectors contribute to gender
bias. We found that sense 3 contributed the most
bias. Using the method described in the Backpack
paper, we reduced the weight of sense 3 on these
characters. We evaluated how the composed words
were gender debiased by creating several prompts
(Appendix 10) that fit all the profession words, fill-
ing in the target word, and computing the average
bias probability score of "ftf, (he/him)" versus "1

(she/her)" as IEx eprompts [max( ((:;;"’:2) B ((S}l::llxx)) )]

Mitigating gender bias

Baseline. 'We employed a similar approach as de-
scribed in the Backpack paper, which was inspired
by the work of (Bolukbasi et al., 2016). Specifi-
cally, we computed the gender bias direction us-
ing the difference between the embeddings of the
words "ftfl (he/him)" and "fif, (she/her)," denoted
as FXpe — FXghe, and then projected the embed-
dings of the biased characters onto the nullspace of
this direction.

Results. We experimented with investigating the
effect of removing sense 15 from several charac-
ters on bias scores of profession words containing
those characters. The bias ratios resulting from this
experiment are reported in the table 5. Our exper-
imentation demonstrated that removing sense 15
substantially decreased the bias in words that were
originally more biased while producing a consid-
erably lesser impact on words with lower levels of
bias. Nonetheless, this approach yielded significant
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Transformers Backpacks (ours)
Character Target Word GPT2 GPT2proj Backpack half#15 remove #15
£T (arms) 12 (soldier) 70.32 55.55 58.13 34.95 21.34
% (alert) 22 (police) 20.93 20.47 23.62 14.90 9.47
5 (act) {# 5 (actor / actress)  6.58 6.19 4.92 4.50 4.13
2 (teach) #UM (teacher) 2.45 2.40 4.69 4.13 3.65

Table 5: Character-level bias ratio; by partially or totally removing sense 15, the character and the words composed
by the character get debiased. A perfect unbiased model would achieve a ratio of 1.

Multipliers 1 b & i A A Bk i
?P(sand),#(beach)  (sanding) (particle) (castle) (dune) (stone) (people) (ball) (sea) (bask)
1,1 1 1 1 1 1 1 1 1 1
4,1 2.13 1.74 1.42 1.27 1.14 0.78 0.71 0.62 0.61
1,4 0.54 0.55 0.70 0.71 0.71 1.23 1.25 1.24 1.48

Table 6: The ratio of probabilities on predicting certain characters by amplifying the sense vectors with multipliers
for the characters "} (sand) and "J#" (beach) compared to the original probabilities.

improvements compared to the GPT?2 baseline.

Besides, we explored the second approach by
removing sense 15 for both constituent characters.
Surprisingly, this approach was less effective than
the first approach. To investigate whether there
exists a specific sense vector to remove for all char-
acters in all compositional words for gender debi-
asing, we experimented and observed that reduc-
ing sense 3 significantly reduced the bias in the
word %% (police); however, the reducing sense
3 method did not generalize to other words. We
hypothesize that the model might not effectively
learn the gender-representing information due to
the limited model size and pretraining steps. Some
critical gender-related information might still dis-
tribute among several sense vectors.

5.2.2 Character Amplification Control

Focusing on sub-meanings or properties in a word
constructed by multiple characters makes more
sense in character-based languages. For instance,
the Chinese word "1 #" which means "dictio-
nary," is composed of the characters "7]" (word)
and "#L" (book, in ancient Chinese), and when gen-
erating text from input containing this word, the
model could focus on either the "word" or "book"
property. By adjusting the weights of the sense vec-
tors of the constituent characters, we were able to
amplify implicit meaning of a constituent character
and bias the model toward generating text related
to a specific property. Specifically, we conducted
experiments to amplify the contribution of the first

or second character four times each while keep-
ing the total contribution of the word unchanged
in the output. We found that the model tended
to generate sentences that relate to the amplified
character with greater probability, as shown in Ap-
pendix 11. We assessed the efficacy of the proposed
method by computing the ratio of expectations for
the controlled model relative to an uncontrolled
model in the context of predicting semantically
related characters from an open-topic prompt as
Crar get[%m]. Table 6 illustrates an in-
stance of the outcome of amplifying characters in
the word "V»i#" (beach). Notably, the findings
indicate that character-specific semantics were the
most amplified. We hypothesize that this work can
assist in scenarios where it is necessary to precisely
generate expressions that convey the author’s in-
tended meaning in a short sequence, such as poetry,
songwriting, or beginning a discourse around one
of the meanings in a polysemous word.

6 Conclusion

In this paper, we presented implementing, pre-
training, and evaluating a character-based Chinese
Backpack language model. We conducted exten-
sive experiments on sense vector visualizations,
word representations, lexical relationships, and id-
iom compositions and explored two approaches to
character-level interventions. Our results demon-
strate the potential of Backpack LM in language
modeling tasks for character-based languages, the
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interpretability of the sense vectors on the character
and word level, and the potential of character-level
interventions across various contexts.

7 Limitations

Despite these promising results, there are several
limitations to our study. First, we had limited GPU
resources, which prevented us from attempting a
larger batch size during pretraining. Second, our
word interventions depend on the sub-meanings of
the characters, and we currently have no solution
to effectively intervene in transliterated words by
modifying the sense vectors of the characters that
only represent phonetic information. Therefore,
intervening in character-based languages where
many words are transliterated, such as Korean, re-
mains challenging. Third, we observed that al-
though our approach enables greater flexibility in
character-level sense vectors to represent richer
morphological structures, word representations by
characters are less interpretable than word sense
vectors learned by models using word tokeniza-
tions, particularly for complex words such as id-
iomatic phrases. We believe that this issue could
be mitigated by increasing the number of sense
vectors with a larger contextualization model and
pretraining with more data. Further research is re-
quired to address these limitations and explore the
potential of word representations and interventions
in character-based languages.
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A Language Modeling Details

A.1 Residual Connection

We started our experiment with no second residual
connection. However, we found that adding sec-
ond residual connection by unsqueezing the output
from the first feed-forward layer by dimension &
to match & x d dimensions improved training sta-
bility compared to the specification of Hewitt et al.
(2023).

A.2 Comparison of Parameter Numbers

The contextualization weight function was defined
with mask filling and an extra dropout layer in-
cluded after the Softmax function.

To make a fair comparison with the correspond-
ing GPT2 model, we analysed the number of pa-
rameters and removed one block from the Trans-
former structure of the Backpack model. As
discussed, the contextualization weight of each
sense vector is calculated with additional matri-
ces K,Q € R¥? The first feed forward layer
in the sense vector layer involves an up projec-
tion matrix € R%*4? and a down projection matrix
€ R**d_Summing up these parameters, we have
a 10d? additional parameter size, which is close
to the 12d? parameter size in a single Transformer
block so that by removing one block, we will only
add (k — 2) * d*> ~ k * d? parameters which are
necessary for representing the sense vectors.

B Interpreting Idiom Composition

We investigated which sense vectors played a dom-
inant role when the model used the first three char-
acters of idiomatic phrases as input to predict the
last character. However, we encountered difficulty
in interpreting the character composition of id-
iomatic phrases. For example, when analyzing
the phrase "E#ERN(E)" i.e., "drawing legs on a
snake," which means "an unnecessary and redun-
dant act that spoils the original effect or even makes

it worse," by stacking weights of the first three
characters on 16 or 64 sense vectors, we found that
using any single sense vector for prediction did
not significantly lead the model to output the tar-
get character, even though the model correctly out-
putted " 2" i.e., "leg" after performing a weighted
sum of these sense vectors. We projected 16 sense
vectors onto the vocabulary and examined their pro-
jections onto the character; however, we observed
that none exhibited a disproportionately large or
small projection onto the resulting character. This
experiment provides evidence that the top compo-
nents of sense vectors may not effectively capture
how they will compose to make predictions.
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Sense Vector 10 (Word Composition)

K (sky / day) ) (sand) 73 (enter / advance / come in) H (from / self)
(F)VE (distant land) (YT (desert) (F)5E (settle in) (B)H (freedom)
(R)E (Tianjin City) (I)E (gull) (HH)A (enter) ()& (console)

(R)Z (Ancient India) (MWL (hoarse) G#H)ZE (march) (B)UA (the App Ziroom)
(R (exceptional talent)  (¥P)i (actor Yi Sha) ()L (attack) (B)FA (selfie)
(R)#i (beautiful voice) 3 (Beach) ()& (make progress) (B)#H! (self-dumping)

Sense Vector 12 (Character Meaning Relatedness or Composition)

K (sky / day) b (sand) j# (enter / advance / come in) H (from / self)
B (early) 04 (FC Schalke 04) 3% (walk / step / pace) M (from)
% (night) (Y)#8 (sandbox) W (must / will / certainly) Z (he/she/it/go/’s)
2 (wake up) ()& (sandbox) £ (blanket / carpet) ¥T (since)
H% (night) #F (poison) fib (lie / crouch) & (sense / feel)
#% (approach / rise high) 1 (platinum) i (eddy / whirlpool) 1 (ant)

Sense Vector 15 (Character Meaning Relatedness or Composition)

K (sky / day) b (sand) i# (enter / advance / come in) H (from / self)
(black) I (drizzle) ()& (progress) (B)X (arrogant)
7% (light) M (clear) JIii (smooth) (B)i# (complacent)

E (yesterday) 1 (lake) 1 (magical / god) JR (ruthless)
(black) % (mountain) 12 (slow) (B)# (Give up on yourself)
4> (today) 1#% (tangerine) %% (delay) (B (to resign voluntarily)

Table 7: The sense vectors in the same index are considered to have a particular facet of character usage. Each
column contains the characters with the highest scores under the projection of the sense vectors on the vocabulary.

Type Word Stablility < +10% < +20% > +20%
compound FHL (telephone) = F (hand) + #/1 (machine) high 16 0 0
words K2 (university) = K (large) + 2 (learn) high 16 0 0
P (lonely) = I (isolated) + 74 (alone) low 1 6 9
28, (Mosaic) high 16 0 0
loanwords RR (mini) high 12 4 0
%57, (quark) low 5 7 4
FiFEMET (in a difficult situation with no easy way out) high 16 0 0
idioms [ ¥E A &2 (to do something unnecessary even harmful) high 14 2 0
$EYEF7ME (to wait for the right moment to shine) low 12 2 2

Table 8: How many sense vectors for each range of the contribution ratio on characters of a word varies among the
different contexts. A more minor variation in the contribution ratio indicates a more stable word composition.

prompt English
WORD WORD

"WORD"/&E B & The meaning of "WORD" is
HITYHE, WORD A teacher told that WORD

*FWORD, About WORD,
HEMEY, WORD  InTV, itis said that WORD
WORDE WORD is
F %15 WORD I think WORD

Table 9: General prompts for different type of nouns
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prompt English
A ~WORD,, That WORD said,
X WORDE(E This WORD believes
WORD#HZ|EFH, The WORD enters the house,

WORDAEER, IRF

WORDZE T 14 %,

The WORD sat in the car, and then

Then WORD came over,

Table 10: General prompts for gender bias evaluations

Word Multiplier Output
PP (beach) 1,1 i EERZ A
VP (sand) ¥ (beach / puddle) (There are a lot of people on the beach.)
Vb (beach) 4,1 Ui EEARZ KRR/ IV N HE -
> (sand) #(beach / puddle) (On the beach, there are many big and small sand dunes.)
i (beach) 1.4 i EERE AL EIE -
7> (sand) {# (beach / puddle) (There are many people fishing by the seaside on the beach.)
FEAE (ideal) 1,1 PR R AT 2 03 ARATE, TEIEH D ER 4 -
i (principle / logic) ?'ﬁ(irnagine / want) (What is ideal? I am confused and unsure of what I truly like.)
A8 (ideal) 4,1 BB A0 TR
! (principle / logic) %8 (imagine / want) (What is ideal? How to understand it?)
FHAE (ideal) 1,4 FAREAT 27 Wil fgE]?

i (principle / logic) 48 (imagine / want)

(What is ideal? How to achieve it?)

Table 11: Generative outputs on the character amplification control task with top probabilities. Note that the word
"HAE" means "ideal" but is combined with the characters meaning "principle / logic" and "imagine / want".
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