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Abstract
In this paper, we present UFAL-ULD team’s
system, desinged as a part of the BLP Shared
Task 1: Violence Inciting Text Detection
(VITD). This task aims to classify text, with
a particular challenge of identifying incite-
ment to violence into Direct, Indirect or Non-
violence levels. We experimented with sev-
eral pre-trained sequence classification mod-
els, including XLM-RoBERTa, BanglaBERT,
Bangla BERT Base, and Multilingual BERT.
Our best-performing model was based on the
XLM-RoBERTa-base architecture, which out-
performed the baseline models. Our system
was ranked 20th among the 27 teams that par-
ticipated in the task.

1 Introduction
The rapid proliferation of social media platforms
has revolutionized the way we communicate, share
information, and engage with diverse communities
online. However, with this newfound connectivity
and freedom of expression, we have also witnessed
a troubling trend – the weaponization of social me-
dia for the incitement of violence. The Bengal
region, comprising Bangladesh and West Bengal,
India, has not remained untouched by this unset-
tling phenomenon. Online platforms, once hailed
as vehicles for progress and connection, are now
grappling with the disturbing spread of violence-
inciting language, leading to communal discord,
destruction, and loss of life.

In this digital age, where the boundaries between
the virtual and the real world blur, it becomes
imperative to address the multifaceted manifesta-
tions of communal violence, particularly in regions
like Bengal. The Violence Inciting Text Detection
(VITD) shared task emerges as a beacon of hope
and a clarion call for the natural language process-
ing (NLP) community to confront this pressing is-
sue head-on.

The VITD shared task centres on the precise cat-
egorization and discernment of violence-inciting

text within social media comments, echoing the
broader challenge of understanding the dark under-
belly of online discourse. The violence we seek to
detect and categorize transcends mere words on a
screen; it has the potential to manifest as explicit
threats, divisive propaganda, and derogatory lan-
guage that can irreparably harm individuals and
communities.

This paper discusses our team’s system, built as
a part of the BLP Shared Task 1: Violence Incit-
ing Text Detection (VITD) (Saha et al., 2023b,a).
In this work, we experimented with several pre-
trained sequence classification models with the
provided data only where we contributed to data
augmentation, sampling stratgies, fine-tuning and
hyper-parameter tuning to optimize the perfor-
mance of these models.1 Our system was ranked
20th among the 27 teams that participated in the
task.

2 Related work
The proliferation of hate-speech, verbal threats,
aggression, cyberbullying, trolling, abuse, offen-
sive and misogny content are experiencing rapid
growth on social media. A considerable number
of researchers have been actively involved in in-
vestigating the automated detection of offensive
and hate speech content as well as many shared
tasks were organising (Waseem and Hovy, 2016;
Kumar et al., 2018; Mandl et al., 2019; Zampieri
et al., 2020; Davani et al., 2023). However, there
is considerably less research on violence detec-
tion specifically. A few works are as follows:
Cano Basave et al. (2013) present the Violence
Detection Model (VDM), a probabilistic frame-
work for identifying violent content and extract-
ing violence-related topics from social media with-
out requiring labeled data. VDM uses word prior
knowledge derived from relative entropy to cap-

1Our code is available at https://github.com/souro/
classification_tasks_bangla
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ture word violence indicators, outperforming in-
formation gain methods in topic identification and
violence classification. Chang et al. (2018) ad-
dress the detection of aggression and loss in social
media, particularly among gang-involved youth.
Their system incorporates contextual representa-
tions and domain-specific resources, improving the
Convolutional Neural Network’s performance for
detecting aggression and loss. Jahan et al. (2022)
introduce BanglaHateBERT, a retrained BERT
model for abusive language detection in Bangla. It
outperforms generic pre-trained models on various
datasets and includes a 15K Bangla hate speech
dataset for research use. Zandam et al. (2023)
explore the expression of threatening themes in
the Hausa language on social media, developing
a classification system using machine learning al-
gorithms. XGBoost achieves the highest accuracy
of 72% in classifying threatening content. Aber-
crombie et al. (2023) conduct a systematic review
of resources for automated identification of online
Gender-Based Violence (GBV), highlighting limi-
tations in existing datasets, such as a lack of theo-
retical grounding and stakeholder input. The study
recommends future resources grounded in socio-
logical expertise and involving GBV experts and
those with lived GBV experience.

3 Dataset

The VITD Shared Task 1 dataset (Saha et al.,
2023b) was provided by the task organisers. Indi-
vidual samples in the dataset are labeled as Direct
Violence, Indirect Violence, and Non-Violence,
which are represented numerically by 2, 1 and 0
respectively (see Saha et al., 2023b for further de-
tails).

The dataset is divided into training, develop-
ment and test sets, consisting of 2,700, 1,330 and
2,016 samples respectively.2

4 Experiments

This section discusses an extensive account of the
system we designed for the VITD and Sentiment
Analysis of Bangla Social Media Posts tasks. Our
strategy encompasses several stages, such as data
preprocessing, model choice, hyperparameter ad-
justment, and advanced methods, all aimed at at-
taining commendable outcomes.

2https://github.com/blp-workshop/blp_task1/
tree/main/dataset

4.1 Data Preprocessing
At the outset, a thorough data preprocessing
and cleaning phase was performed for our
system, which established a robust basis for
subsequent operations. We harnessed the tools
offered by the Bangla Natural Language Pro-
cessing (BNLP) toolkit (Sarker, 2021). In
addition to basic text processing, we imple-
mented crucial transformations like setting
fix_unicode=True, unicode_norm=True,
and unicode_norm_form="NFKC". These
steps ensured consistent and standardized text
representations, enhancing the quality of our
dataset.

4.2 Model Selection
Our system employed a range of pre-trained
sequence classification models to tackle
the classification tasks effectively. No-
table models we experimented with include
XLMRobertaForSequenceClassification,
BertForSequenceClassification, and their
variants. Specifically, we explored the following
models: XLM-RoBERTa (base and large versions)
(Conneau et al., 2019), BanglaBERT ‘’ (Bhat-
tacharjee et al., 2022), Bangla BERT Base (Sarker,
2020) and BERT-base-multilingual-cased (Devlin
et al., 2018). 3 After thorough evaluation, we
found the XLM-RoBERTa-base model to perform
best on this task.

4.3 Hyperparameter Tuning
Based on hyperparameter search on the develop-
ment data, we chose the following hyperparameter
settings: batch size of 5,learning rate (lr) 1e-5, us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019), training for 15 epochs, setting gradient clip-
ping to 1.0, a weight decay of 0.01, and a dropout
rate of 0.1.

4.4 Sampling Strategies
Class imbalance arises when certain classes have
notably fewer samples than others, potentially lead-
ing to bias in favour of the majority class within the
model. This is the case in tasks such as violence de-
tection, where violent texts are in the minority. To

3We use the models from HuggingFace:
https://huggingface.co/xlm-roberta-base,
https://huggingface.co/xlm-roberta-large,
https://huggingface.co/csebuetnlp/banglabert,
https://huggingface.co/sagorsarker/
bangla-bert-base, https://huggingface.co/
bert-base-multilingual-cased.
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address class imbalance issues, we experimented
with both oversampling and undersampling tech-
niques. Although the outcomes were promising,
our best-performing model ultimately adopted an
alternative approach – focal loss.

Focal Loss (Lin et al., 2017) was incorporated
as a specialized loss function to combat the class
imbalance issues present in our classification tasks.
Focal Loss (Lin et al., 2017) works by significantly
reducing the loss for correctly classified examples
with high confidence, effectively handling easy in-
stances. Simultaneously, it provides a smaller re-
duction in loss for difficult-to-classify or misclas-
sified examples, ensuring that the model concen-
trates on learning from problematic cases. The
key idea behind Focal Loss is to give more atten-
tion to hard-to-classify examples while reducing
the impact of well-classified examples. This is
achieved through two essential parameters: alpha
and gamma.

Alpha Parameter (alpha): In our system, we
set alpha to 1. This value signifies that we as-
signed equal weight to all classes. By doing so,
we aimed to ensure that our model did not exhibit
bias towards any specific class. However, adjust-
ing alpha allows for a flexible weighting scheme,
where higher values give more importance to mi-
nority classes.

Gamma Parameter (gamma): We chose a
gamma value of 2. This parameter regulates the
rate at which the loss decreases as the predicted
probability for the correct class increases. A
higher gamma value, as in our case, slows down
the loss reduction for well-classified examples.
This design decision helped our model focus on
challenging or misclassified instances, potentially
leading to improved overall performance.

In summary, Focal Loss played a crucial role
in enhancing the performance of our system, es-
pecially in scenarios with imbalanced class distri-
butions. Our choice of alpha and gamma param-
eters aligns with standard practices for effectively
leveraging Focal Loss to tackle classification chal-
lenges.

4.5 Data Augmentation
The diversity and robustness of our model was en-
hanced through data augmentation. A data aug-
mentation strategy with a probability of 0.5 was in-
troduced on the original data (Saha et al., 2023b).

Model macro-F1
BanglaBERT Baseline 0.7879

XLM-RoBERTa base Baseline 0.7292
BERT multilingual base (cased) Baseline 0.6819

BLP Shared Task 1 winning system 76.044
Our system 69.009

Table 1: UFAL-ULD team and baseline systems results

The techniques employed included synonym re-
placement, insertion, deletion, swap, and shuffling
(cf. Mukherjee and Dusek, 2023). Through a col-
lective application of these techniques, a diverse
set of augmented data was generated that proved vi-
tal to the performance of our best-reported model.

In summary, a systematic approach for data pre-
processing, model selection, hyperparameter tun-
ing, class imbalance handling, the integration of
advanced loss functions, and data augmentation
was employed to achieve competitive results for the
VITD task.

5 Results
The macro-F1 metric has been used for evaluation
measure in the BLP Shared Task 1 (Saha et al.,
2023a), with comparisons made against the ground
truth labels. This metric signifies the comprehen-
sive effectiveness of our system in accurately cat-
egorizing text that incites violence into the speci-
fied classifications: Direct Violence, Passive Vio-
lence, and Non-Violence. The macro F1 score is a
resilient measurement that considers precision and
recall across all categories, making it particularly
suitable for tasks with imbalanced class distribu-
tions. Our system achieved a macro F1 score of
69.01 on the test set (see Table 1), outperforming
baselines. Our system was ranked 20th among the
27 teams that participated in the task.4

6 Conclusion
In this shared task on Violence Inciting Text Detec-
tion (VITD), we have presented our system’s ap-
proach and results, emphasizing the significance
of addressing the challenging problem of identify-
ing and categorizing violence-inciting text in the
Bangla language. Our system, equipped with a
comprehensive set of natural language processing
techniques, achieved a competitive macro F1 score
of 69.009 on the test set. Our system was ranked
20th among the 27 teams that participated in the
task.

4https://github.com/blp-workshop/blp_task1
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We remain committed to further refining our sys-
tem and exploring innovative approaches to con-
tribute to the ongoing efforts in violence detection
and prevention.

Limitations

While our system performed well in the VITD
shared task, it is essential to acknowledge certain
limitations:

Data Availability: Our system’s performance
heavily relies on the quality and quantity of train-
ing data. The availability of more extensive and
diverse annotated datasets in Bangla could further
enhance our system’s capabilities.

Ethical Considerations: As with any content
analysis task, there is the potential for bias and sen-
sitivity in handling violent or offensive text. Ensur-
ing ethical considerations and responsible AI prac-
tices are crucial in the development and deploy-
ment of such systems.

Ethics Statement

In developing our system for the Violence Inciting
Text Detection task, we adhered to ethical princi-
ples and guidelines for responsible AI. We are com-
mitted to the following ethical considerations:

Data Privacy: We respect data privacy and en-
sure that any data used in our experiments are
anonymized and do not contain personally identi-
fiable information.

Bias Mitigation: We took measures to mitigate
bias in our system, both in terms of model perfor-
mance and the potential impact of our work on so-
ciety. We recognize the importance of fairness and
impartiality in automated content analysis.

Transparency: We are committed to trans-
parency in our research and have provided a de-
tailed system description, including preprocessing
steps, model selection, and evaluation metrics.

Accountability: We are open to feedback and ac-
countability for our work. We encourage respon-
sible use and scrutiny of AI technologies, and we
remain responsive to concerns or issues related to
our system’s functionality.

By adhering to these principles, we aim to con-
tribute to the responsible development and deploy-
ment of AI systems for content analysis, with a

focus on promoting online safety and mitigating
harm.
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