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Abstract

Neural language models are increasingly val-
ued in computational psycholinguistics, due to
their ability to provide conditional probability
distributions over the lexicon that are predic-
tive of human processing times. Given the vast
array of available models, it is of both theoret-
ical and methodological importance to assess
what features of a model influence its psycho-
metric quality. In this work we focus on pa-
rameter size, showing that larger Transformer-
based language models generate probabilistic
estimates that are less predictive of early eye-
tracking measurements reflecting lexical access
and early semantic integration. However, rel-
atively bigger models show an advantage in
capturing late eye-tracking measurements that
reflect the full semantic and syntactic integra-
tion of a word into the current language context.
Our results are supported by eye movement
data in ten languages and consider four models,
spanning from 564M to 4.5B parameters.

1 Introduction

The role of context-dependent statistical informa-
tion in human language processing has received
considerable attention in cognitive modelling. A
solid empirical finding that has emerged from this
research line is that speakers actively anticipate the
upcoming linguistic material (Huettig, 2015; Staub,
2015). Indeed, behavioral and neural patterns
that are diagnostic of reduced cognitive cost have
been reported in response to predictable words;
these emerged from the analysis of eye movements
(Staub, 2015; Ehrlich and Rayner, 1981), changes
in pupil size (Frank and Thompson, 2012), self-
paced reading times, (Frank and Hoeks, 2019; Fer-
nandez Monsalve et al., 2012), ERP responses (De-
Long et al., 2005; Van Berkum et al., 2005; Kwon
et al., 2017), frontotemporal blood oxygenation lev-
els (Baumgaertner et al., 2002; Dien et al., 2008),
and MEG data (Takahashi et al., 2021).

Inferential theories of language comprehension
argue that prediction must be an intrinsic feature
of an incremental probabilistic cognitive proces-
sor (Levy, 2008; Shain et al., 2022). These ac-
counts contend that the Kullback-Leibler (KL) di-
vergence (i.e., relative entropy) between the prob-
abilistic state of the processor before and after ob-
serving a given word is the cause of the processing
difficulty associated with that word. It has been
demonstrated that the KL divergence associated
with this probability shift is mathematically equiv-
alent to the surprisal of that word, i.e., the neg-
ative logarithm of its probability conditioned by
the preceding sentence context (surprisal(wi) =
− logP (wi|w1, w2 . . . wi−1); Levy, 2008). Infer-
ential theories, which predict a logarithmic linking
function between contextual predictability and cog-
nitive cost, are supported by extensive experimental
evidence in the computational psycholinguistics lit-
erature (Smith and Levy, 2008, 2013; Wilcox et al.,
2020; Shain et al., 2022, but see Hoover et al., 2022;
Brothers and Kuperberg, 2020).

Statistical language models developed in NLP
research have been of paramount importance in the
evolution of inferential theories of language com-
prehension. Indeed, language models are usually
trained to predict the upcoming word in a corpus
of naturalistic text, and thus define a conditional
probability distribution that can be employed to
compute word surprisal. Modern computationally-
derived estimates of word predictability have been
shown to perform on par (Shain et al., 2022) or
even better (Hofmann et al., 2022; Michaelov et al.,
2022) than predictability estimates obtained with
expensive human annotation (although they fail to
account for the processing demands of some spe-
cific linguistic patterns, see Arehalli et al., 2022;
Van Schijndel and Linzen, 2021; Hahn et al., 2022).
However, given that language models display a
great amount of variation in their architectures and
performances, various studies have investigated
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which models are better suited to characterize the
behavioral correlates of human sentence compre-
hension. Seminal work has shown that the “linguis-
tic accuracy” of a model (i.e., its ability to accu-
rately predict the next word) is positively related
to its “psychological accuracy” (namely, the capa-
bility of a surprisal estimate to explain variance in
human responses, as captured by the increase in
fit in a corresponding statistical model; Goodkind
and Bicknell, 2018; Wilcox et al., 2020; Merkx and
Frank, 2021, but see Hao et al., 2020; Kuribayashi
et al., 2021).

A recent incidental finding by Shain et al. (2022)
shed doubt on such conclusion. The authors re-
ported that the GPT-2small model substantially out-
performed GPT-3 in predicting self-paced reading
times and fixation patterns while having a parame-
ter size smaller by three degrees of magnitude and
displaying higher perplexity values in next-word
prediction. The result, which suggests that the
correlations between the linguistic and psycholog-
ical accuracy of language models might not hold
for very deep transformer-based architectures, has
been promptly replicated with different GPT-2 vari-
ants (Oh et al., 2022; Oh and Schuler, 2022). This
observation is at odds with the empirical scaling
laws for neural language models (Kaplan et al.,
2020), which show that the quality of a language
model (both in terms of test loss and downstream
performance, Hernandez et al., 2021) increases
monotonically as the number of parameters in-
creases (although see Lin et al., 2022).

2 Related work and motivation

Research in computational psycholinguistics has
largely followed the progressive switch to the
Transformer architecture that has characterized the
NLP literature in the last years, with Transformer-
based surprisal estimates being evaluated as predic-
tors of processing difficulty (Wilcox et al., 2020;
Hao et al., 2020; Merkx and Frank, 2021). While
early studies within this research line have doc-
umented a positive relationship between the lin-
guistic and the psychological accuracy of a model
(Goodkind and Bicknell, 2018; Wilcox et al., 2020;
Merkx and Frank, 2021), recent findings with
decoder-only large language models have docu-
mented an opposite pattern, with larger and better-
performing pre-trained Transformers providing
worse psychometric estimates than their smaller
counterparts (Oh et al., 2022; Oh and Schuler,

2022).

The possibility that cognitive modelling might
constitute an exception to scaling laws is intrigu-
ing, but further examination is needed to warrant
such claims. All the evidence in support of this
view has come from the English language alone
(except from Kuribayashi et al., 2021), leaving an
open question as to the cross-lingual generalizabil-
ity of these findings. The English-centric approach
to this problem is not surprising, since inferential
approaches to language processing have been pri-
marily supported by experimental evidence in En-
glish (Aurnhammer and Frank, 2019; Frank and
Bod, 2011; Frank et al., 2015; Fernandez Mon-
salve et al., 2012; Wilcox et al., 2020; Goodkind
and Bicknell, 2018; Smith and Levy, 2013), Dutch
(Frank and Hoeks, 2019; Brouwer et al., 2010) and
German (Boston et al., 2008; Brouwer et al., 2021),
while empirical support from non-Germanic lan-
guages is far more limited (although see Fan and
Reilly, 2020; Kuribayashi et al., 2021). To the best
of our knowledge, there is only one study that pro-
vided large-scale cross-lingual evidence in support
of surprisal theory (de Varda and Marelli, 2022).
Indeed, both NLP (Joshi et al., 2020) and cognitive
science research (Blasi et al., 2022) have long over-
relied on the English language to develop language
processing systems and test theories of language
and cognition. This tendency can lead to hasty
claims of generality, and must be mitigated with
cross-linguistic research efforts challenging the uni-
versality of English-specific findings.

Another potential shortcoming of the studies that
reported the inverse scaling trend is that they only
considered a single eye-tracking measurement as
an index of processing cost (Oh et al., 2022; Oh
and Schuler, 2022). This choice reflects a common
tendency within the inferential language processing
framework (Aurnhammer and Frank, 2019; Good-
kind and Bicknell, 2018; Smith and Levy, 2013;
Wilcox et al., 2020); however, natural reading is an
ability composed of multiple sub-processes char-
acterized by different levels of complexity (see for
instance Plaut et al., 1996; Coltheart et al., 2001).
In principle, it is reasonable to assume that differ-
ent processing stages, characterized by different
degrees of complexity, might be better captured by
models with varying parameter sizes, with shallow
processes better modelled by (relatively) simpler
networks, and complex integrative operations bet-
ter characterized by more complex architectures.
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3 Aims

The current work aims at inspecting the relation-
ship between the linguistic and the psychological
accuracy of a neural language model across lan-
guages, testing whether previous observations on
inverse scaling in cognitive modelling hold across
a sample of ten languages belonging to four dif-
ferent families. Furthermore, our study considers
different eye-tracking measures that are thought to
reflect different processing stages, to examine the
possibility that the relationship between the psycho-
logical and linguistic accuracy of a model might
vary as a function of the computational complexity
of the cognitive operations being studied.

4 Methods and materials

4.1 Data

In this study, we considered the eye movement
data from the MECO-L1 corpus (Siegelman et al.,
2022), a large-scale repository of eye-tracking
records covering 13 languages. Participants en-
gaged in a naturalistic reading task, and were pre-
sented with 12 texts consisting of encyclopedic
entries on a handful of topics; five of the twelve
original texts were translated from English to the
target languages, while the other seven were non-
translated texts on the same topics and with the
same writing styles, comparable length, and similar
difficulty. Data points that showed either very short
first fixation durations (< 80 ms) or very long total
fixation times (top 1% of the participant-specific
distribution) were discarded. We analyzed three
measures of eye movement behavior for each word
wi, which are thought to reflect early, intermediate,
and late stages of processing:

1. First fixation (FF): the time elapsed during the
first fixation on wi. This measure is often assumed
to reflect low-level oculomotor processes, early
lexical access, and predictive processing (Demberg
and Keller, 2008; Staub, 2015).
2. Gaze duration (GD): the sum of the fixations

landing on wi before the gaze leaves the word for
the first time. This measure is thought to be indica-
tive of lexical access, and possibly of early syntac-
tic and semantic integration (Inhoff and Radach,
1998; Rayner, 1998).

3. Total reading time (TT): the total amount of
time spent looking at wi, including fixations return-
ing to the word after having left it. This measure is
thought to reflect full semantic integration (Radach

and Kennedy, 2013) and syntactic integration and
reanalysis (Meseguer et al., 2002).

4.2 Models

In this study, we employed the XGLM family of
auto-regressive language models (Lin et al., 2021).
XGLMs are Transformer-based, decoder-only lan-
guage models inspired by GPT-3 (Brown et al.,
2020). We considered four pre-trained models,
with 564M, 1.7B, 2.9B, and 4.5B parameters, and
extracted word-by-word surprisal estimates from
each of them. In the case of multi-token words,
we summed the log probabilities assigned to the
sub-word tokens, following the chain rule.

4.3 Analyses

Of the 13 languages included in the MECO dataset
we had to exclude the Hebrew, Dutch, and Norwe-
gian data, since these languages were not included
in the XGLM pre-training data. Thus, our analy-
ses were conducted in ten languages belonging to
four language families (see Appendix A). On aver-
age, there were 65,450.8 available data points for
each language (SD = 19,712.2). We fit 120 linear1

mixed-effects regression models (10 languages ×
4 models × 3 fixation measurements), with ran-
dom intercepts for participants and items. We in-
cluded as linear covariates length, log-frequency,
and their interaction relative to wi, wi−1, and wi−2,
to account for spillover effects. Our models also
included a main effect of surprisal relative to wi,
wi−1, and wi−2. All the variables were standard-
ized before being entered into the mixed-effects
regression models.

To evaluate the increase in the goodness of fit
due to the inclusion of surprisal as a fixed effect,
we compared each model with a corresponding
baseline model, which was identical except for
the absence of the fixed effects of surprisal. As
common practice in the literature, we calculated
the difference in the log likelihood between the
baseline and the experimental model (∆LogLik;
Goodkind and Bicknell, 2018; Wilcox et al., 2020;
Kuribayashi et al., 2021; Oh and Schuler, 2022). In
the literature we have reviewed in §1, a common
approach was to correlate the perplexity of a lan-
guage model with the ∆LogLik obtained by adding
the surprisal terms; however, perplexity values can

1Our choice of fitting linear models is supported by ample
evidence showing that the functional form of the effects of
log-probabilities on reading times is indeed linear (see Smith
and Levy, 2008, 2013; Wilcox et al., 2020; Shain et al., 2022)

141



(a) First fixation duration (b) Gaze duration (c) Total reading time

Figure 1: Plots of the increase in model fit (∆LogLik) obtained by adding the surprisal estimates from XGLM
models with different parameter sizes. The horizontal lines in the box plots indicate the median value obtained
across languages, while the squared marker shows the mean value. Note that the ∆LogLik values were standardized
by language.

be properly compared only in the context of a fixed
reference vocabulary (Wilcox et al., 2020). Techni-
cally, XGLM models produce a conditional proba-
bility distribution over the same whole vocabulary,
regardless of the language of the specific text they
are processing. However, the models have received
strong evidence during pre-training that some sub-
portions of the vocabulary (e.g. Cyrillic tokens)
should be essentially ignored while processing text
in some languages (e.g. English), thus reducing
their actual reference vocabulary. Hence, while we
report the perplexity-based results in Appendix B,
we focused on the link between the linguistic and
psychological accuracy of the models by observing
how the ∆LogLik was affected by the parameter
size of the model. The choice of employing param-
eter size as a proxy of linguistic accuracy is sup-
ported by the results in the original XGLM paper,
where the authors reported better results in almost
all downstream tasks with the bigger versions of
the XGLM model family (Lin et al., 2021).

The code employed in this study is publicly avail-
able2.

5 Results

The first main finding of our study is that sur-
prisal is a solid predictor of reading times across
the languages considered, confirming the previous
observation that context-dependent probabilistic
processing generalizes beyond the Germanic lan-
guage sample typically considered in the literature
(de Varda and Marelli, 2022). The XGLM-based
surprisal estimates were statistically significant in
all cases when considering GD and TT, and in the
vast majority of the cases when considering FF (see

2https://github.com/Andrea-de-Varda/
surprisal-across-languages

Appendix A).
The increase in goodness of fit that could be

attributed to surprisal is displayed in Figure 1,
grouped by model type and fixation measure. Con-
cerning FF (1a), we reported a general decrease in
∆LogLik when increasing the number of parame-
ters, with the smallest XGLM564M variant outper-
forming the bigger models in terms of psycholog-
ical accuracy. A similar trend can be observed in
GD (1b), although the difference in psychologi-
cal accuracy between XGLM564M and XGLM1.7B
appears to be rather small3. The results are differ-
ent when considering TT as the dependent variable
(1c), as in this case the model that provided the
highest average increase in goodness of fit was
XGLM1.7B

4.

6 Discussion

In this experiment, we showed that large multilin-
gual Transformer-based models were outperformed
by their smaller variants in predicting early eye
movement measurements of processing difficulty.
These measurements are thought to reflect predic-
tive processes, lexical access, and early semantic
integration. This result corroborates the previous
claims that cognitive modelling might constitute
an exception to empirical scaling laws in NLP (Oh
and Schuler, 2022). However, predictability es-
timates computed by relatively larger variants of
the same architecture – but not the largest – pro-
vided surprisal estimates that better captured late

3An anonymous reviewer rightfully noted that cross-
lingual variation increased in GD and TT with respect to
FF; we provide a tentative explanation for this phenomenon
in Appendix C.

4Note that a coherent pattern was observed when employ-
ing perplexity as an index of the language model’s linguistic
accuracy (Appendix B).
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eye-tracking measurements, which are thought to
reflect the full semantic and syntactic integration of
a word into the phrasal context. This dissociation
is in line with the observation that it is not appro-
priate to adopt a “one-size-fits-all” approach when
studying how linguistic distributional knowledge
explains different cognitive processes (Wingfield
and Connell, 2022). Instead, context-dependent
probabilistic information derived from different
neural architectures might be more apt to model
certain cognitive mechanisms, depending on the
computational complexity of the processes being
considered.

Limitations

This work complemented previous analyses on the
link between the linguistic and psychological accu-
racy of a neural language model by expanding the
language sample to ten typologically distinct lan-
guages. However, our sample of neural language
models was limited with respect to the literature
focusing exclusively on English (Oh et al., 2022;
Oh and Schuler, 2022; Shain et al., 2022). This
problem cannot be overcome at the present state of
affairs, since there are very few available massively
multilingual auto-regressive language models, and
the only one with sufficient coverage of our lan-
guage sample was XGLM. This problem is an ex-
pression of a general difficulty in NLP to conduct
experimental research on low-resource languages,
due to the extreme skewness in the distribution of
available resources (Joshi et al., 2020). However,
we are confident that future developments in natu-
ral language engineering will support an additional
test of our hypotheses with a more representative
sample of models.

References
Suhas Arehalli, Brian Dillon, and Tal Linzen.

2022. Syntactic surprisal from neural models pre-
dicts, but underestimates, human processing diffi-
culty from syntactic ambiguities. arXiv preprint
arXiv:2210.12187.

Christoph Aurnhammer and Stefan L Frank. 2019.
Comparing gated and simple recurrent neural net-
work architectures as models of human sentence pro-
cessing.

Annette Baumgaertner, Cornelius Weiller, and Chris-
tian Büchel. 2002. Event-related fmri reveals corti-
cal sites involved in contextual sentence integration.
Neuroimage, 16(3):736–745.

Damián E Blasi, Joseph Henrich, Evangelia Adamou,
David Kemmerer, and Asifa Majid. 2022. Over-
reliance on english hinders cognitive science. Trends
in cognitive sciences.

Marisa Ferrara Boston, John Hale, Reinhold Kliegl,
Umesh Patil, and Shravan Vasishth. 2008. Parsing
costs as predictors of reading difficulty: An evalua-
tion using the potsdam sentence corpus. Journal of
Eye Movement Research, 2(1).

Trevor Brothers and Gina Kuperberg. 2020. Word pre-
dictability effects are linear, not logarithmic: Impli-
cations for probabilistic models of sentence compre-
hension. Journal of Memory and Language, 116.

Harm Brouwer, Francesca Delogu, Noortje J Venhuizen,
and Matthew W Crocker. 2021. Neurobehavioral
correlates of surprisal in language comprehension: A
neurocomputational model. Frontiers in Psychology,
12:615538.

Harm Brouwer, Hartmut Fitz, and John Hoeks. 2010.
Modeling the noun phrase versus sentence coordi-
nation ambiguity in dutch: Evidence from surprisal
theory. In Proceedings of the 2010 workshop on cog-
nitive modeling and computational linguistics, pages
72–80.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Max Coltheart, Kathleen Rastle, Conrad Perry, Robyn
Langdon, and Johannes Ziegler. 2001. Drc: a dual
route cascaded model of visual word recognition and
reading aloud. Psychological review, 108(1):204.

Andrea Gregor de Varda and Marco Marelli. 2022. The
effects of surprisal across languages: Results from
native and non-native reading. In Findings of the
Association for Computational Linguistics: AACL-
IJCNLP 2022, pages 138–144.

Katherine A DeLong, Thomas P Urbach, and Marta
Kutas. 2005. Probabilistic word pre-activation dur-
ing language comprehension inferred from electrical
brain activity. Nature neuroscience, 8(8):1117–1121.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Joseph Dien, Michael S Franklin, Charles A Michel-
son, Lisa C Lemen, Christy L Adams, and Kent A
Kiehl. 2008. fmri characterization of the language
formulation area. Brain Research, 1229:179–192.

Susan F Ehrlich and Keith Rayner. 1981. Contextual
effects on word perception and eye movements dur-
ing reading. Journal of verbal learning and verbal
behavior, 20(6):641–655.

143

https://doi.org/10.1016/j.jml.2020.104174
https://doi.org/10.1016/j.jml.2020.104174
https://doi.org/10.1016/j.jml.2020.104174
https://doi.org/10.1016/j.jml.2020.104174


Xi Fan and Ronan Reilly. 2020. Reading development at
the text level: an investigation of surprisal and embed-
dingbased text similarity effects on eyemovements
in chinese early readers. Journal of Eye Movement
Research, 13(6).

Irene Fernandez Monsalve, Stefan Frank, and Gabriella
Vigliocco. 2012. Lexical surprisal as a general pre-
dictor of reading time. In Proceedings of the 13th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 398–408,
Avignon, France. Association for Computational Lin-
guistics.

Stefan Frank and Rens Bod. 2011. Insensitivity of the
human sentence-processing system to hierarchical
structure. Psychological science, 22(6):829–834.

Stefan Frank and John CJ Hoeks. 2019. The interaction
between structure and meaning in sentence compre-
hension. recurrent neural networks and reading times.

Stefan Frank, Leun J Otten, Giulia Galli, and Gabriella
Vigliocco. 2015. The erp response to the amount of
information conveyed by words in sentences. Brain
and language, 140:1–11.

Stefan Frank and Robin Thompson. 2012. Early effects
of word surprisal on pupil size during reading. In
Proceedings of the annual meeting of the cognitive
science society, volume 34.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th workshop on cognitive modeling
and computational linguistics (CMCL 2018), pages
10–18.

Michael Hahn, Richard Futrell, Roger Levy, and Ed-
ward Gibson. 2022. A resource-rational model of
human processing of recursive linguistic structure.
Proceedings of the National Academy of Sciences,
119(43):e2122602119.

Yiding Hao, Simon Mendelsohn, Rachel Sterneck,
Randi Martinez, and Robert Frank. 2020. Probabilis-
tic predictions of people perusing: Evaluating metrics
of language model performance for psycholinguistic
modeling. arXiv preprint arXiv:2009.03954.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.

Markus J Hofmann, Steffen Remus, Chris Biemann,
Ralph Radach, and Lars Kuchinke. 2022. Language
models explain word reading times better than empir-
ical predictability. Frontiers in Artificial Intelligence,
4:214.

Jacob Louis Hoover, Morgan Sonderegger, Steven T
Piantadosi, and Timothy J O’Donnell. 2022. The
plausibility of sampling as an algorithmic theory of
sentence processing.

Falk Huettig. 2015. Four central questions about pre-
diction in language processing. Brain research,
1626:118–135.

Albrecht Werner Inhoff and Ralph Radach. 1998. Def-
inition and computation of oculomotor measures in
the study of cognitive processes. Eye guidance in
reading and scene perception, pages 29–53.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo
Yoshida, Masayuki Asahara, and Kentaro Inui. 2021.
Lower perplexity is not always human-like. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5203–
5217.

Nayoung Kwon, Patrick Sturt, and Pan Liu. 2017. Pre-
dicting semantic features in chinese: Evidence from
erps. Cognition, 166:433–446.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2021.
Few-shot learning with multilingual language models.
arXiv preprint arXiv:2112.10668.

Danny Merkx and Stefan L Frank. 2021. Human sen-
tence processing: Recurrence or attention? In Pro-
ceedings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 12–22.

Enrique Meseguer, Manuel Carreiras, and Charles
Clifton. 2002. Overt reanalysis strategies and eye
movements during the reading of mild garden path
sentences. Memory & cognition, 30(4):551–561.

James A Michaelov, Seana Coulson, and Benjamin K
Bergen. 2022. So cloze yet so far: N400 amplitude
is better predicted by distributional information than
human predictability judgements. IEEE Transactions
on Cognitive and Developmental Systems.

144

https://aclanthology.org/E12-1041
https://aclanthology.org/E12-1041
https://doi.org/10.48550/ARXIV.2102.01293
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.48550/ARXIV.2001.08361


Byung-Doh Oh, Christian Clark, and William Schuler.
2022. Comparison of structural parsers and neural
language models as surprisal estimators. Frontiers in
Artificial Intelligence, 5.

Byung-Doh Oh and William Schuler. 2022. Why does
surprisal from larger transformer-based language
models provide a poorer fit to human reading times?
arXiv preprint arXiv:2212.12131.

David C Plaut, James L McClelland, Mark S Seiden-
berg, and Karalyn Patterson. 1996. Understanding
normal and impaired word reading: Computational
principles in quasi-regular domains. In Connection-
ist psychology: A text with readings, pages 367–454.
Psychology Press.

Ralph Radach and Alan Kennedy. 2013. Eye move-
ments in reading: Some theoretical context. Quar-
terly Journal of Experimental Psychology, 66(3):429–
452.

Keith Rayner. 1998. Eye movements in reading and
information processing: 20 years of research. Psy-
chological bulletin, 124(3):372.

Cory Shain, Clara Meister, Tiago Pimentel, Ryan Cot-
terell, and Roger Philip Levy. 2022. Large-scale evi-
dence for logarithmic effects of word predictability
on reading time.

Noam Siegelman, Sascha Schroeder, Cengiz Acartürk,
Hee-Don Ahn, Svetlana Alexeeva, Simona Amenta,
Raymond Bertram, Rolando Bonandrini, Marc Brys-
baert, Daria Chernova, et al. 2022. Expanding hori-
zons of cross-linguistic research on reading: The
multilingual eye-movement corpus (meco). Behav-
ior research methods, pages 1–21.

Nathaniel J Smith and Roger Levy. 2008. Optimal pro-
cessing times in reading: a formal model and em-
pirical investigation. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 30.

Nathaniel J Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

Adrian Staub. 2015. The effect of lexical predictability
on eye movements in reading: Critical review and
theoretical interpretation. Language and Linguistics
Compass, 9(8):311–327.

Yuta Takahashi, Yohei Oseki, Hiromu Sakai, Michiru
Makuuchi, and Rieko Osu. 2021. Identifying brain
regions related to word prediction during listening to
japanese speech by combining a lstm language model
and meg. bioRxiv.

Jos JA Van Berkum, Colin M Brown, Pienie Zwitser-
lood, Valesca Kooijman, and Peter Hagoort. 2005.
Anticipating upcoming words in discourse: evidence
from erps and reading times. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
31(3):443.

Marten Van Schijndel and Tal Linzen. 2021. Single-
stage prediction models do not explain the magnitude
of syntactic disambiguation difficulty. Cognitive sci-
ence, 45(6):e12988.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu,
Peng Qian, and Roger Levy. 2020. On the predic-
tive power of neural language models for human
real-time comprehension behavior. arXiv preprint
arXiv:2006.01912.

Cai Wingfield and Louise Connell. 2022. Understand-
ing the role of linguistic distributional knowledge in
cognition. Language, Cognition and Neuroscience,
pages 1–51.

A Effects of surprisal by language and
model type

We report in Table 1 the regression coefficients of
surprisal (as computed on the target word wi), the
t statistic and the associated p-value, divided by
language, number of parameters, and fixation mea-
sure considered. The surprisal estimates obtained
from the four XGLM models were statistically sig-
nificant predictors of processing times in all the
language × model combinations when considering
GD and TT, and in the vast majority of the cases
when considering FF as the dependent variable.
These result are overall more solid than the ones
obtained by de Varda and Marelli (2022), who did
not report significant partial effects of surprisal on
FF and GD in some of the languages considered.
The authors derived their probabilistic estimates
employing mBERT, a bidirectional encoder. This
finding highlights the importance of employing
standard left-to-right causal language models when
studying the effects of predictability on incremental
sentence processing.

B Relationship between perplexity and
∆LogLik

The perplexity of a model (Eq. 1) is commonly
considered as an intrinsic measure of a language
model’s linguistic accuracy. The employment of
perplexity as an evaluation of a multilingual lan-
guage model is not free of concerns (see §4), but for
completeness and consistency with the literature
we also report the relationship between perplexity
and ∆LogLik.

exp

[
− 1

N

N∑

i=1

logP (wi|w1...i−1)

]
(1)

We analyzed the relationship between perplexity
and ∆LogLik by fitting three generalized additive
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mixed models (GAMMs; one for each eye-tracking
measure considered), with random slopes and in-
tercepts for language. Note that the presence of
by-language random effects mitigates the problem
of comparing perplexity values with potentially dif-
ferent employed vocabularies.

The results are graphically depicted in Figure 2.
In the case of FF (2a), we found a significant rela-
tionship between perplexity and ∆LogLik (EDF =
6.093, F = 3.623, p = 0.0095), which appears to be
positive and (near)-linear from graphical inspection.
In the case of GD (2b), we still found a significant
partial effect of perplexity (EDF = 6.760, F = 4.466,
p = 0.0019); however, the functional form of this
relationship is far from linearity in this case, and
is characterized by an initial growth in ∆LogLik
with increasing perplexity, a local plateau, and an
inversion of the trend in the 400-550 perplexity
range. There is then a second inversion of the trend
in the 500-600 perplexity range, although with high
partial residuals. In the case of TT (2c), the relation-
ship is clearly quadratic from graphical inspection,
although the partial effect of perplexity is not sta-
tistically significant (EDF = 2.016, F = 2.152, p =
0.123).

Taken together, these results corroborate our ob-
servation that there is a negative relationship be-
tween the linguistic and the psychological accuracy
of a model when considering the earliest fixation
measurement, namely FF (§5); this relationship
is less clear-cut when considering GD, and non-
significant when considering TT. The very absence
of a significant relationship between perplexity and
∆LogLik in this latter case demonstrates that the
finding that smaller models outperform their over-
parametrized counterparts in cognitive modelling
critically depends on the computational complexity
of the mental processes being analyzed.

C Cross-lingual variation in later
measurements

The cross-lingual variation of our results increased
with gaze duration and total reading time, in par-
ticular when considering XGLM564M; our tentative
explanation for this pattern is motivated by the fact
that late eye-tracking measures subsume the early
ones (FF < GD < TT). XGLM564M is very effective
at capturing early eye movement measurements
(Figure 1a); some of the later measures are de facto
equivalent to the earlier ones in some cases (e.g.,
if a word is only fixated once, FF, GD, and TT

will have the same value). XGLM564M might be
more effective in modelling late eye tracking data
in languages where these cases are more common,
and less effective in languages where it is more
common to refixate. This hypothesis relies on the
observation in the MECO paper that refixations are
more common in some languages than others (e.g.,
Estonian, see Siegelman et al., 2022).
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(a) First fixation duration (b) Gaze duration (c) Total reading time

Figure 2: Relationship between perplexity and increase in model fit that could be ascribed to surprisal (∆LogLik).

First fixation duration Gaze duration Total reading time

Language Family θ Estimate t p Estimate t p Estimate t p

Finnish Uralic 564M 0.0147 1.5527 0.1207 0.1118 12.5044 3.87 ·10−34 0.1567 16.8540 2.35 ·10−58

Greek Indoeuropean 564M 0.0237 3.2279 0.0013 0.0777 9.8810 1.66 ·10−22 0.1147 15.2416 1.11 ·10−49

Korean Koreanic 564M 0.0371 4.4060 1.14 ·10−05 0.0817 8.3948 1.22 ·10−16 0.1171 10.6387 1.52 ·10−25

Russian Indoeuropean 564M 0.0300 3.7423 0.0002 0.0879 11.0399 2.00 ·10−27 0.1342 16.1478 7.37 ·10−55

Turkish Turkic 564M 0.0126 1.3442 0.1791 0.0876 10.3490 2.35 ·10−24 0.1290 13.2625 2.87 ·10−38

English Indoeuropean 564M 0.0248 3.6112 0.0003 0.0661 8.9182 1.01 ·10−18 0.0885 11.1290 5.16 ·10−28

Spanish Indoeuropean 564M 0.0131 2.0597 0.0396 0.0554 8.5928 1.57 ·10−17 0.0713 9.9527 6.85 ·10−23

Estonian Uralic 564M 0.0285 3.5439 0.0004 0.1437 17.0570 7.57 ·10−60 0.1764 20.9928 3.12 ·10−86

Italian Indoeuropean 564M 0.0272 3.7723 0.0002 0.0987 13.0335 2.37 ·10−37 0.1108 13.8504 8.62 ·10−42

German Indoeuropean 564M 0.0238 2.7832 0.0054 0.0954 10.4169 8.55 ·10−25 0.1361 15.3138 3.39 ·10−50

Finnish Uralic 2.9B 0.0083 0.9303 0.3524 0.1073 12.7519 2.27 ·10−35 0.1530 17.5951 5.65 ·10−63

Greek Indoeuropean 2.9B 0.0207 2.9912 0.0028 0.0744 10.0489 3.32 ·10−23 0.1037 14.5768 8.41 ·10−46

Korean Koreanic 2.9B 0.0378 4.6397 3.83 ·10−06 0.0780 8.2755 3.23 ·10−16 0.1112 10.4415 1.11 ·10−24

Russian Indoeuropean 2.9B 0.0209 2.7227 0.0065 0.0816 10.6812 7.95 ·10−26 0.1313 16.5508 2.49 ·10−57

Turkish Turkic 2.9B 0.0096 1.0695 0.2850 0.0903 11.1858 4.66 ·10−28 0.1350 14.6822 4.57 ·10−46

English Indoeuropean 2.9B 0.0180 2.7426 0.0062 0.0593 8.3905 8.81 ·10−17 0.0800 10.5037 3.37 ·10−25

Spanish Indoeuropean 2.9B 0.0100 1.6592 0.0972 0.0474 7.7710 1.17 ·10−14 0.0600 8.8493 1.67 ·10−18

Estonian Uralic 2.9B 0.0160 2.0700 0.0386 0.1397 17.2667 3.91 ·10−61 0.1695 20.9452 7.97 ·10−86

Italian Indoeuropean 2.9B 0.0217 3.1766 0.0015 0.0852 11.7870 4.51 ·10−31 0.0981 12.8402 2.24 ·10−36

German Indoeuropean 2.9B 0.0188 2.4136 0.0159 0.0849 10.1956 7.62 ·10−24 0.1278 15.9417 5.10 ·10−54

Finnish Uralic 1.7B 0.0166 1.8208 0.0689 0.1079 12.5299 2.91 ·10−34 0.1511 16.8523 2.44 ·10−58

Greek Indoeuropean 1.7B 0.0188 2.6711 0.0076 0.0694 9.1802 1.05 ·10−19 0.1015 13.9720 2.18 ·10−42

Korean Koreanic 1.7B 0.0361 4.3679 1.35 ·10−05 0.0804 8.4397 8.62 ·10−17 0.1115 10.3313 3.21 ·10−24

Russian Indoeuropean 1.7B 0.0280 3.6187 0.0003 0.0835 10.8437 1.52 ·10−26 0.1332 16.6544 5.51 ·10−58

Turkish Turkic 1.7B 0.0160 1.7717 0.0766 0.0927 11.4122 4.25 ·10−29 0.1390 15.0582 3.17 ·10−48

English Indoeuropean 1.7B 0.0218 3.2646 0.0011 0.0614 8.5422 2.50 ·10−17 0.0851 11.0218 1.62 ·10−27

Spanish Indoeuropean 1.7B 0.0117 1.9096 0.0563 0.0500 8.0723 1.11 ·10−15 0.0650 9.4580 7.24 ·10−21

Estonian Uralic 1.7B 0.0213 2.7109 0.0068 0.1427 17.4455 2.85 ·10−62 0.1757 21.5929 1.89 ·10−90

Italian Indoeuropean 1.7B 0.0225 3.2373 0.0012 0.0905 12.3422 8.42 ·10−34 0.0990 12.7184 9.68 ·10−36

German Indoeuropean 1.7B 0.0226 2.8348 0.0046 0.0914 10.7334 3.47 ·10−26 0.1328 16.1677 2.01 ·10−55

Finnish Uralic 4.5B 0.0065 0.7063 0.4801 0.1082 12.3959 1.33 ·10−33 0.1539 16.9725 4.49 ·10−59

Greek Indoeuropean 4.5B 0.0140 2.0330 0.0422 0.0671 9.0501 3.32 ·10−19 0.0979 13.7244 4.97 ·10−41

Korean Koreanic 4.5B 0.0345 4.1755 3.16 ·10−05 0.0845 8.8906 2.05 ·10−18 0.1201 11.2087 4.63 ·10−28

Russian Indoeuropean 4.5B 0.0189 2.4883 0.0129 0.0742 9.7792 5.17 ·10−22 0.1206 15.1986 3.92 ·10−49

Turkish Turkic 4.5B 0.0088 0.9803 0.3271 0.0876 10.8771 1.14 ·10−26 0.1290 14.0001 2.96 ·10−42

English Indoeuropean 4.5B 0.0234 3.5854 0.0003 0.0591 8.3770 9.82 ·10−17 0.0790 10.3938 1.01 ·10−24

Spanish Indoeuropean 4.5B 0.0092 1.5360 0.1247 0.0446 7.3498 2.75 ·10−13 0.0569 8.4442 5.21 ·10−17

Estonian Uralic 4.5B 0.0232 2.9332 0.0034 0.1446 17.5013 1.14 ·10−62 0.1787 21.8217 3.29 ·10−92

Italian Indoeuropean 4.5B 0.0227 3.3715 0.0008 0.0800 11.1795 3.31 ·10−28 0.0922 12.1985 4.12 ·10−33

German Indoeuropean 4.5B 0.0126 1.6572 0.0976 0.0791 9.6844 1.02 ·10−21 0.1210 15.3631 1.70 ·10−50

Table 1: Effects of surprisal across languages on the three fixation measurements considered. The first three columns
indicate the language from which the reading data were obtained, the corresponding language family, and the
number of parameters of the model considered. The following columns indicate the regression coefficients of
surprisal, the t statistic and the respective p-value for FF, GD and TT.
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