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Abstract

We study the problem of defying catastrophic
forgetting when learning a series of language
processing tasks. Compared with previous
methods, we emphasize the importance of
not caching history tasks’ data, which makes
the problem more challenging. Our proposed
method applies the parameter isolation strategy.
For each task, it allocates a small portion of pri-
vate parameters and learns them with a shared
pre-trained model. To load correct parameters
at testing time, we introduce a simple yet effec-
tive non-parametric method. Experiments on
continual language learning benchmarks show
that our method is significantly better than all
existing no-data-cache methods, and is compa-
rable (or even better) than those using historical
data1.

1 Introduction

Deployment of NLP models could be dynamic in
real-world scenarios: models need to evolve con-
tinually when coming in new tasks or new domains
(updating an event detection model to handle new
event types, for example). Recent studies on con-
tinual (language) learning (Biesialska et al., 2020;
De Lange et al., 2021) show that, compared with
sticking with one single unchanging task, incre-
mentally updating a model for a series of tasks is
challenging: learning a new task will make our
model perform poorly on previously learned tasks.
The so-called catastrophic forgetting phenomenon
is the central research topic in continual learning
(Kirkpatrick et al., 2017).

One method for mitigating forgetting is through
data replay (rehearsal). The model caches some
previous tasks’ training data along the sequential
learning process. When learning a new task, all pre-
vious tasks are re-learned with the current task. The
vanilla rehearsal-based approach performs well on

1Code is available at https://github.com/Dicer-Zz/
EPI

many continual learning problems (Rebuffi et al.,
2017; Rolnick et al., 2019; de Masson d’Autume
et al., 2019), but access to previous tasks’ data
could conflict with the original intention of con-
tinual learning. In fact, if previous tasks’ data
are given, it approaches multi-task learning where
all tasks are given at once and forgetting is not a
problem. Meanwhile, in some situations, previous
datasets are not available due to regulation or pri-
vacy considerations. Therefore, it is essential to
look into rehearsal-free methods.

In this work, we study parameter isolation strate-
gies for rehearsal-free continual language learning.
Basically, each time a new task comes in, such a
strategy allocates a new set of model parameters
for that task, which aims to prevent potential in-
terference with already learned knowledge, so that
forgetting could be alleviated (Rusu et al., 2016;
Mallya and Lazebnik, 2018). Three cruxes of mak-
ing the idea work in practice are,

• for a possibly large number of tasks, we need to
control the storage budget for each task.

• given a set of learned models, we need to identify
the right model to query for a test sample.

• besides alleviating forgetting, we also would like
to facilitate information sharing among tasks.

We give a solution for the above cruxes under
the framework of parameter efficient tuning (PET)
of pre-trained language models (PLMs). For each
task in the continual learning sequence, we build
a model for it using two sets of parameters: one is
from a frozen PLM, another is an additional small
set of new parameters (namely, delta parameters
(Ding et al., 2022)). PET methods (Li and Liang,
2021; Hu et al., 2022; Liu et al., 2022a) show that
by only fine-tuning delta parameters, performances
of downstream language learning tasks could be
competitive with (or even better than) the full-scale
fine-tuning of the PLM. Therefore, we can share
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the PLM among all tasks in continual learning,
while keeping a private delta parameter for each
task, which is usually negligible compared with the
PLM (less than 0.3% of the PLM’s parameters in
our experiments).

Second, to determine which model to query in
testing time, we propose using a nonparametric
task identification method. Specifically, for each
task, we record the first and the second moment
of its training samples, and approximate the task’s
input distribution with a Gaussian. Given a sam-
ple, we test whether it belongs to a task using its
Mahalanobis distance to the task’s Gaussian (Lee
et al., 2018; Ren et al., 2021). We show that, com-
pared with state-of-the-art parametric task iden-
tifiers (Wang et al., 2022b,a), the nonparametric
method significantly boosts the accuracy of getting
the correct model (and performances of continual
learning) despite its simplicity.

Third, to enhance knowledge transfer among
continually learned tasks, we investigate informa-
tion sharing methods among delta parameters of
each task. We show that, by simply initializing the
current task’s delta parameters with those of pre-
vious tasks (either by directly copying from them
or soft selecting via attention mechanisms), the
transfer of knowledge from learned tasks could be
improved, especially in few-shot situations.

We conduct extensive evaluations on standard
continual language learning benchmarks. The re-
sults show that our algorithm not only outperforms
all existing rehearsal-free methods by a large mar-
gin (40% F1), but also is competitive with (or even
better than) state-of-the-art rehearsal-based meth-
ods with the standard setting of data cache size.

2 Problem Definition

Continual learning aims to solve problems in
streams: a model no longer faces a single un-
changing task but a series of tasks arrived sequen-
tially. Following previous works, we focus on
task streams containing text classification prob-
lems, while the algorithm could be extended to
other language learning problems.

Denote T = {T1, T2, · · · , T|T |} as a sequence
of tasks, and the training set of the t-th task Tt is
{(xti, yti)}, where xti ∈ Xt is an input text, yti ∈
Yt is its class label. At timestamp t, a continual
learning model learns a mapping fθ : ∪tτ=1Xτ 7→
∪tτ=1Yτ . The key property is that the model can
only query the training data of Tt, and aims to

update the model parameter θ to not only predict
the t-th task, but also keep performances on all
previous tasks (even without using their data). In
the testing phase, the model predicts a sample’s
label from all seen labels ∪tτ=1Yτ without knowing
which task it belongs to (class incremental).

In this work, we will focus on the above
rehearsal-free setting of continual learning. Sev-
eral relaxations of this setting could be applied to
upper-bound its performances,

• rehearsal-based continual learning, where some
previous tasks’ data can be used when training
the current task. If all previous data are given,
the problem is reduced to multi-task learning.

• task incremental continual learning, where task
labels are given in testing time. It provides ad-
ditional information about samples and makes
prediction easier than the class incremental set-
ting.

3 Approaches

Our method is summarized in Figure 1. In the train-
ing stage, for a new task, we assign (and save) a
new private delta parameter for it and train the pa-
rameter (jointly with a shared frozen PLM) on the
task’s dataset. We also save some statistics about
the training set to model the task as a Gaussian dis-
tribution (e.g., the averaged vector representations
of samples). In the testing stage, for a given sam-
ple, we fetch a proper learned delta parameter for
predicting its label by consulting the Mahalanobis
distance between the sample and the distributions
of all previously encountered tasks. In the follow-
ing, we start by describing the parameter isolation
strategy with PET methods (Section 3.1). Then, we
illustrate the task identification method used in the
testing stage (Section 3.2) and knowledge sharing
methods (Section 3.3).

3.1 Parameter Isolation with PET
One reason that causes catastrophic forgetting in
continual learning is the interference among tasks:
different tasks may guide the model to move to-
wards different directions. Therefore, a simple way
to alleviate forgetting is to use different parameters
for different tasks. On the other side, a sufficient
model capacity for each task is crucial to get high-
performance models. Directly separating models
could make large storage costs. Here, we adopt the
parameter-efficient tuning framework which is able
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Figure 1: The process of our method. The left panel of the figure shows the training process. We counted the class
prototypes and covariance matrix of each dataset while training. The right panel shows the inference process, which
consists of two forward propagations: (A) obtain a PET module suitable for the input sample by PLM. (B) predict
the label of it by PLM with the selected module.

to take advantage of a fixed powerful pre-trained
model while keeping individual tasks moderately
separated. In the following, we briefly review pre-
fix tuning (Li and Liang, 2021) (the main PET
method used in our experiments). 2

Denote a Transformer-based pre-trained model
with multi-head attention blocks to be MHA(X).
It maps an input sentence X ∈ Rn×d to a hidden
semantic space H ∈ Rn×d, where n is the sentence
length, d is the dimension of token embeddings and
hidden vectors. For the t-th task in continual learn-
ing, we prepare a set of task-specific parameters
by prepending p soft virtual tokens to the input of
multi-head attention blocks at each layer. Denote
parameters in the prefix as P ∈ Rp×d×L, where
L is the number of MHA layers in the pre-trained
model. 3

Besides prefixes P, another set of task-specific
parameters are classification heads (we apply soft-
max activation for the multi-class classification).
4 During the training process, parameters of the
PLM are frozen (thus, shared among all tasks), and

2The same idea can be applied with other PET meth-
ods (e.g., prompt-tuning (Hu et al., 2022), LoRA (Liu et al.,
2022a)).

3In the implementation, virtual tokens are added by con-
catenating two Rp×d matrices to key and value matrices.

4For simplicity, we assume tasks have disjoint label spaces,
thus their classification heads are different. In practice, those
heads could be shared.

only private prefixes and classification heads are
trained.

Private parameters are saved after training. One
key property of PET methods is that one can train
well enough models for tasks with a small size
of P and a powerful PLM. It facilitates reducing
the storage cost for parameter isolation methods.
while retaining high-performance models for indi-
vidual tasks (e.g., decrease by 1.34% in a bench-
mark dataset). In our experiments, the size of P is
0.27% of the PLM. Hence, the same storage budget
for two tasks with full PLM fine-tuning can support
370 tasks with prefix tuning.

3.2 Task Identification

As we use different prefixes for different tasks,
when a test sample comes, it is necessary to de-
termine which prefix should be applied. One ap-
proach is to try all learned prefixes, and choose one
with the largest prediction probability on the sam-
ple. In practice, this method suffers from the over-
confidence problem of softmax predictors: even for
those unrelated tasks, a prefix might give a predic-
tion with high probability.

Another approach is to compare the test sample
with training samples and choose its nearest neigh-
bor’s prefix (Mensink et al., 2013). It works around
the over-confidence problem, but still depends on
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the robustness of sample representation and dis-
tance metrics. Here, inspired by recent studies on
out-of-distribution detection (Lee et al., 2018; Ren
et al., 2021), we improve this method by compar-
ing the test sample with full distributions of tasks’
training samples. In the following, we represent
an input x with the average of the last Transformer
block’s outputs of the PLM, denoted by h(x) (i.e.,
the “pre-logit” vector).

First, for the t-th task, we perform a Guassian
discriminant analysis as suggested by the softmax
classifier: given p(y = c|h(x)) in the form of
softmax (c ∈ Yt is a class label), we can assume
p(h(x)|y = c) is a Gaussian with estimated mean
µc
t and a shared covariance Σt among classes,

µc
t =

1

Nc

∑

yi=c

h(xi), (1)

Σt =
1

N

∑

c

∑

yi=c

(h(xi)− µc
t) (h(xi)− µc

t)
⊤(2)

where Nc is the number of training samples with
label c, and the values are obtained by maximum
likelihood estimation.

Next, for a test sample x, we compare it with all
tasks’ Gaussian and choose the nearest task’s prefix
as the prefix for predicting x’s label. Unlike com-
puting distance between samples, we need to apply
metrics measuring distance between samples and
distributions. Here, we use Mahalanobis distance.
Specifically, the distance between x and class c is

− (h(x)− µc
t)

⊤ (Σt)
−1 (h(x)− µc

t) . (3)

In practice, we find that directly ranking tasks
with Σt makes the distances have large numeric
deviation. To make the computation more stable,
we further share the covariance among all tasks
Σ =

∑
tΣt and change the computation of Maha-

lanobis distance accordingly.
To implement above non-parametric task identifi-

cation method, we need additional storage for store
class means {µc

t} and a shared covariance Σ. Fur-
thermore, though they are moments of distributions,
there may be a chance to get information about in-
dividual samples (Dwork and Roth, 2014). Here,
inspired by querying with randomized response in
differential privacy, we propose to add randomly
masking on sample representations h(x). Specifi-
cally, we assign a random mask (with q% entries
0, other entries 1) for all tasks. For each h(x), the
masked dimensions are dropped during the compu-
tation of µc

t and Σc
t . The model saves the masked

vectors and the mask itself (or the random seed
generating the mask) for testing time distance com-
putation. Besides encrypting moments, the simple
masking strategy also helps to reduce storage cost.

3.3 Knowledge Transfer

Separating parameters is effective in mitigating
catastrophic forgetting, however, it also blocks
knowledge transfer among tasks. Given a sequence
of learned prefixes P = {P1, ...,Pt−1}, we try
several ways to utilize the knowledge acquired
from preceding tasks in the hope that they could
improve and accelerate the current task learning,

• Prefix Fusion. A natural way to combine knowl-
edge from previous tasks is through the use of
the attention mechanism. This allows the model
to automatically extract useful information from
previous tasks and integrate it into the current
learning process. To achieve this, we prepend
the learned prefixes of previous tasks to the pre-
fix of the current task. Knowledge transfer is
automatically facilitated through the multi-head
attention mechanism of the Transformer. Dur-
ing new prefix learning, we fix the prefixes of
previous tasks to avoid parameter drifting and
catastrophic forgetting.

• Prefix Initialization. Training starting from
well-trained parameters is another way to pro-
mote knowledge transfer, thus we can initialize
a prefix with previously learned prefixes instead
of random initialization. A good initial point
can also help to speed up the convergence of
the training process of PET methods. We try
two ways, namely initialized with the last prefix
Pt ← Pt−1 and initialized with the mean prefix
Pt ← 1

t−1

∑t−1
τ=1Pτ .

4 Experiments

Datasets To demonstrate the generalizability of
our approach, we use two kinds of datasets, dif-
ferentiated according to the domain relevance be-
tween tasks. Far-domain, where the domain bound-
ary among tasks are clear. Following MbPA++
(de Masson d’Autume et al., 2019) and IDBR
(Huang et al., 2021a), we use 5-datasets col-
lected by Zhang et al. (2015) to evaluate our
method. It consists AG News (news), Yelp (busi-
ness reviews), Amazon (product reviews), Ya-
hoo!Answer (Q&A), and DBPedia (encyclopedic
articles). These datasets are categorized into two
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text classification tasks: topic classification (AG
News, Yahoo!Answers, and DBPedia) and sen-
timent classification (Yelp and Amazon). Near-
domain where the tasks are more closely related.
We use Web of Science (WOS) from Kowsari et al.
(2017) and 20 Newsgroups from Lang (1995) to
assess our method for datasets with high inter-task
relevance. WOS contains seven parent classes and
five sub-classes under each parent class which have
close relations. We organize continual learning
tasks according to parent classes. The 20 News-
groups consists six topics of news. We rearranged
it into four tasks based on the principle of maximiz-
ing inter-task correlation. The details of the two
datasets are in Appendix B.

Metrics Let ai,j be the testing accuracy on the
i-th task after training on j-th task, the metrics for
evaluating are,

• Performance of Continual Learning (CL). The
average accuracy of all tasks after training on the
last task, 1

|T |
∑|T |

i=1 ai,|T |

• Forgetting (Fgt). The degree of forgetting of
previous tasks after training on the last task,

1
|T |−1

∑|T |−1
i=1 (max

|T |−1
k=i ai,k − ai,|T |)

• Accuracy of Task Identification (TI). The ac-
curacy of getting the correct prefix for testing
samples after training on all tasks.

Baselines We use the following continual learn-
ing techniques as baselines:

• FT, fine-tuning a model for each task sequen-
tially while catastrophic forgetting occurs. This
method is the lower bound of continual learning.

• MTL, training a model on all tasks as multi-task
learning. This method is the upper bound of
continual learning.

• Replay, saving part of the previous tasks as mem-
ory, train a model one step on the memory after
every β ( 10 for our experiments) steps of training
on the new task.

• LwF (Li and Hoiem, 2017), a typical
regularization-based approach. We also combine
LwF with the replay method as an enhancement.

• IDBR (Huang et al., 2021b), disentangling in-
formation by two simple auxiliary tasks (next

sentence prediction and task-id prediction) for
learning better generic and specific representa-
tion spaces. This approach applies both episodic
memory replay and regularization techniques.

• L2P (Wang et al., 2022b), it first introduces
a prompt-based framework to continual learn-
ing. The main difference between L2P and our
method is that L2P uses a parametric task iden-
tifier, while our identifier is non-parametric. We
also adopt L2P-R, which is L2P equipped with a
rehearsal buffer.

To ensure a fair comparison, FT, MTL, Replay
and LwF are all prefix-based. We re-implement
L2P to make it support prefixes (instead of only
prompts in the original code).

Details We use BERT (Devlin et al., 2019) from
HuggingFace Transformers (Wolf et al., 2020) as
the PLM of our model. We set the default prefixes
length to 16. Because our methods progressively
assign a prefix to new tasks, we assign the same
number of parameters to all baseline methods to
ensure a fair comparison. See Appendix C for other
configurations.

4.1 Main Results
In Table 1, we present the results of our method
and baselines on the sampled 5-datasets and WOS.
On the sampled 5-datasets, the rehearsal-based
approach stores 50 samples per class, equivalent
to 2.5% of the entire training dataset (except for
IDBR, which is 20 per class). From the results, we
can find that,

• On sampled 5-datasets, our approach surpasses
all rehearsal-free methods by a large margin. It is
even better than rehearsal-based methods: com-
pared with the previous SOTA method IDBR,
our method improves the accuracy from 73.19%
to 74.43%, reducing the gap to the upper bound
(75.40%) by 56%.

• When changing task orders of the sampled 5-
datasets, the standard deviation of our method
is small, which indicates that it is insensitive to
task orders, which is rare in approaches without
replaying.

• On the more challenging WOS, our approach
is still comparable to replay methods that use
approximately 10% training data (20 samples per
class).
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Method Buffer 5-datasets Average Buffer WOSSize Order 1 Order 2 Order 3 Size

Replay
50/class

67.87±0.18 68.27±0.46 69.01±0.10 68.38±0.47
20/class

77.86±0.48
+LwF 70.08±0.15 70.12±0.09 69.65±0.36 69.95±0.21 76.78±0.66

L2P-R 68.02±0.27 67.90±0.16 68.49±0.27 68.14±0.25 77.10±0.44

IDBR† (20/class) 72.63 73.72 73.23 73.19±0.44 –

FT

0

29.54±0.63 36.06±0.88 24.65±1.16 30.08±4.67

0

53.86±1.64
LwF 27.40±0.98 31.27±0.91 23.34±2.01 27.33±3.24 30.96±0.48
L2P 30.34±0.32 35.78±0.12 23.45±0.47 29.86±5.05 54.62±0.85
Ours 74.38±0.04 74.53±0.07 74.38±0.01 74.43±0.07 77.83±0.14

MTL – 75.40 75.40 75.40 75.40 – 85.25

Table 1: Summarization of results on sampled setting of 5-datasets and WOS. We report the average accuracy and
standard deviation over 3 runs. † denotes the results come from (Huang et al., 2021b). Dash line indicates data is
not available or not meaningful. The best results of all methods are bolded, and the best results of rehearsal-free
methods are underlined. We also bold the smallest standard deviation of all methods, where a smaller one indicates
a more robust method.

Method MR TT TI LA 5-datasets

Order 1 2 3 4 Average
MbPA++† ✓ ✓ 74.9 73.1 74.9 74.1 74.3
LAMOL† ✓ ✓ ✓ 76.1 76.1 77.2 76.7 76.5
IDBR† ✓ ✓ 75.9 76.2 76.4 76.7 76.3

Ours ✓ 77.4 77.3 77.2 77.4 77.3
Ours (oracle) ✓ ✓ 79.1 79.0 78.9 78.9 79.0

Table 2: Results on the full setting of 5-datasets. All results are averaged over 3 runs. † denotes the results
come from (Huang et al., 2021b). To compare different methods, four method features have been defined, with a
checkmark indicating the presence of the corresponding feature. Specifically, MR indicates whether the method
requires replaying stored memory (rehearsal-based or rehearsal-free). TT indicates whether task-id is available
during training. TI indicates whether task-id is available during inference. LA indicates whether performing local
adaptation during inference.

Table 2 presents the performances on the full
5-datasets. The conclusions drawn from this table
are generally consistent with Table 1, but it also
showcases some new findings:

• Our rehearsal-free method, even without task
ID during the testing phase (class incremental),
can outperform previous SOTA methods such as
LAMOL (Sun et al., 2020), which relies on re-
hearsal and has knowledge of the task ID during
testing (task incremental).

• When provided with the task ID ("oracle"), our
method’s performance can be further improved
by 1.7%. This suggests that there is still potential
for enhancing our approach.

4.2 Discussions
To further inspect the proposed methods, we inves-
tigate the following research questions.

How the task identifier performs? To show the
validity of the Mahalanobis distance (MD), we

compare it with two methods: (i) Maximum over
softmax probability (MSP): using all prefixes for
inference (task by task) and then choosing the label
with the highest probability; (ii) Euclidean distance
(ED) which ignores the covariance in Equation 3.
The results are in Figure 2. We find that,

• MSP performs poorly (especially on 5-datasets).
It shows that, at least for the vanilla MSP met-
ric, the over-confidence problem is still essential.
Another drawback of MSP is that it has to per-
form forward passes with all prefixes while our
method only needs to compare vectors.

• Mahalanobis distance is always better than Eu-
clidean distance for task identification. There-
fore, different dimensions of sample representa-
tions should have different importance for detect-
ing tasks, and modeling tasks’ distribution with
anisotropic Gaussians provides a better approxi-
mation of the actual distribution.
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Figure 2: Comparisons of prompt selection strategies on
three datasets. We report the average result over 3 runs.
MSP: Maximum Softmax Probability. ED: Euclidean
Distance. MD: Mahalanobis Distance.

Method Parametric 5-datasets WOS 20 Newsgroups

Euclidean no 62.82 53.61 53.43
+ Prefix yes 71.44 66.99 55.78

Mahalanobis no 69.78 72.36 63.08
+ Prefix yes 74.38 77.84 64.05

Table 3: Comparing non-parametric and parametric clas-
sifiers. The best results is highlighted in bold.

Does prefix tuning help continual language
learning? We can directly use the non-
parametric task identifier to infer class labels of
samples. Hence, one question is whether the
additional prefix parameters provide performance
gains. We build two non-parametric classifiers
which use Euclidean and Mahalanobis distance.
The samples are encoded only with representations
from the PLM (without prefixes). As shown in
Table 3, we can find that,

• Regarding the performance of continual learn-
ing (CL), the two non-parametric classifiers per-
form quite well: the classifier with Euclidean
distance performs much better (62.8%) than all
rehearsal-free method in Table 1 (< 30%) on
5-datasets, and is competitive on WOS. The clas-
sifier with Mahalanobis distance is more effec-
tive (69.8%): it is even competitive with the pri-
mary reply method (Replay). The success of
non-parametric classifiers implies that the power-
ful representation ability from PLM is crucial to
perform continual learning.

• With the help of parametric prefix tuning, the
performances of the two methods are largely
boosted. It proves that task-specific information
is also important. Regarding the performances
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Figure 3: The results of bert-base (~110M) and bert-
large (~340M) on three datasets. ↑ means larger is better,
and ↓ means smaller is better.

of direct fine-tuning in Table 1, using separate
prefixes could alleviate catastrophic forgetting.

How do different PLMs influence perfor-
mances? The above analyses on non-parametric
classifiers suggest us to explore the influence of
different PLMs (Figure 3 and Table 4). We find
that,

• Owing to the presence of a larger number of
parameters, the sentence representations gener-
ated by larger models enhance task identifica-
tion. Moreover, previous studies also suggest that
the larger the PLM, the more effective the PET
(Lester et al., 2021; Liu et al., 2022b). Figure
3 presents the performance across model scales,
which are consistent with the previous findings
in continual language learning.

• The PLM pre-trained on the same domain of con-
tinual learning tasks is able to extract a more valu-
able representation. For WOS, we replace BERT
with SciBERT (Beltagy et al., 2019), which is
a BERT-like model pre-trained on the scientific
(WOS domain) corpus. As shown in Table 4, the
closer SciBERT performs even better than bert-
large though it is smaller (with the same size as
bert-base). Therefore, if some unsupervised texts
from the same domain of continual learning are
given, one could fine-tune the PLM for a better
performance.
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Model Size TI CL Fgt

bert-base 110 M 85.78 77.84 6.14
bert-large 340 M 87.48 79.90 5.63
sci-bert-base 110 M 87.98 79.92 5.01

Table 4: Comparisons between models of varying sizes
(base vs. large) or trained on different datasets (bert vs.
sci-bert) on the WOS dataset. The average results over
3 runs are reported, with the best results highlighted in
bold.
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Figure 4: Accuracy of task identification and continual
learning vs. random masking ratio. The results are
averaged over 3 runs. Storage Ratio: The ratio of storage
space required for mask to that without mask.

How random masking influence the task identi-
fier? To validate the effect of random masking,
we use five masking ratios equally spaced from 0%
to 80% and two high masking ratios (95% and 99%)
The results are in Figure 4. Our method shows
a slight performance degradation in the range of
masking ratio from 0% to 80%. Compared with
no mask (i.e., masking ratio equal to 0), a mask-
ing ratio of 80% still gives more than 90% of the
performance, and it only needs about 4% of the
storage space for all three datasets. It suggests
that pre-logit vectors (h(x)) is highly redundant
for distinguishing tasks. However, as the mask-
ing ratio increases further, the task identification
performances decrease rapidly, which causes the
end continual learning performances to decrease as
well.

Does knowledge transferability of prefixes mat-
ter? Finally, we evaluate knowledge transfer
methods (Section 3.3) in few-shot settings. As
shown in Table 5, we observe knowledge transfer
in all settings on WOS for all transfer methods but

Datasets # shot None Fusion Mean Last

5-datasets
50 63.56 62.99 62.98 63.35
20 55.30 54.58 54.44 54.41
10 54.10 53.89 54.31 53.89

WOS
50 67.20 67.32 68.28 67.75
20 55.13 55.69 56.18 55.97
10 51.21 52.36 52.83 52.91

Table 5: The results of knowledge transfer methods
in few-shot settings. Fusion refers to Prefix Fusion.
Mean (Last) refers to initialize a new prefix as mean
prefix (last prefix).

only in the 10-shot setting on 5-datasets for Mean.
This is because the tasks in the WOS dataset are
related, and thus knowledge can be shared among
them. Moreover, we do not observe forward trans-
fer in the full-shot setting on any benchmark, be-
cause knowledge transfer is unnecessary when the
data are sufficient.

5 Related work

Continual Learning We discuss three main cat-
egories of continual learning methods: rehearsal-
based, regularization-based, and parameter isola-
tion methods.

Rehearsal-based methods alleviate catastrophic
forgetting by replaying stored examples (Re-
buffi et al., 2017; Rolnick et al., 2019; de Mas-
son d’Autume et al., 2019) or pseudo-generative
examples (Shin et al., 2017; Su et al., 2020; Sun
et al., 2020) of previous tasks. Unfortunately, all
of them carry the risk of privacy leakage and need
nontrivial storage space.

Regularization-based methods restrict the updat-
ing of the model weights by knowledge distillation
(Li and Hoiem, 2017; Triki et al., 2017) or param-
eter importance (Kirkpatrick et al., 2016; Zenke
et al., 2017; Aljundi et al., 2018) to preserve the
knowledge of previous tasks. However, these meth-
ods emphasize the model’s stability to previous
tasks while weakening its plasticity to the new task
(Parisi et al., 2019).

Parameter isolation methods assign a task-
specific parameter to a new task by splitting (Fer-
nando et al., 2017; Mallya and Lazebnik, 2018;
Serrà et al., 2018) or extending (Rusu et al., 2016;
Xu and Zhu, 2018) the current model to prevent
interference between tasks. Because these meth-
ods require task-id to choose the proper model at
testing time, they only apply to task incremental
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continual learning. Although our method also be-
longs to this category, our method applies to class
incremental by introducing task identification.

6 Conclusion

In this work, we propose a new rehearsal-free pa-
rameter isolation continual learning method that
leverages the capabilities of a pre-trained language
model (PLM). Extensive experiments show that our
method surpasses all rehearsal-free methods by a
significant margin and is comparable (or even bet-
ter) than previous start-of-the-art rehearsal-based
methods on two benchmarks, whether the tasks
are near or far. Meanwhile, we introduce random
static masking to reduce the storage required by our
method to adapt it to more demanding scenarios.

Limitations

Although our proposed knowledge transfer meth-
ods work well on WOS in the few-shot setting, it is
less effective on 5-datasets. Moreover, all methods
fail in the full-shot setting. Based on our approach,
a more general approach to knowledge transfer
is expected in future works. In addition, our ap-
proach requires a well-trained language model for
task identification and a Transformer-based model
(well-trained also) for parameter efficient tuning.
Therefore, it is challenging to cooperate our ap-
proach with a language model with random initial-
ization or non-transformer architecture.
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Supplementary Material for
Rehearsal-free Continual Language Learning via Efficient Parameter Isolation

A Potential Risks

Pre-trained language models (PLMs) may inherit
biases from the training corpus, resulting in of-
fensive behaviors. Combining our approach with
these toxic language models and deploying them
in realistic scenarios might cause negative social
impacts.

B Datasets Details

Order Task Sequence

1 ag → yelp → amazon → yahoo → dbpedia
2 yelp → yahoo → amazon → dbpedia → ag
3 dbpedia → yahoo → ag → amazon → yelp
4 yelp → ag → dbpedia → amazon → yahoo

Table 6: Four task orders of the 5-datasets.

Task ID 1 2 3 4 5 6 7
# of examples 1499 1132 1959 1925 2107 1617 1728

Table 7: The statistic of original WOS-11967

For 5-datasets, the sampled setting samples
2,000 training examples and 2,000 validation ex-
amples from the original training set. The full
setting is the same as the dataset used by de Mas-
son d’Autume et al. (2019). We show task orders
of 5-datasets we used in Table 6. We did not merge
the label space of Yelp and Amazon as MbPA++
and IDBR did to create a more challenging setup.
Our label space can be mapped to the label space
used by MbPA++ and IDBR and not vice versa.

We download WOS-11967 from Huggingface
Datasets (Lhoest et al., 2021), and we show the
statistics of it in Table 7. We split the whole dataset
to train/val/test set in the ratio of 0.6:0.2:0.2.

We access 20 Newsgroups from Huggingface
Datasets corresponding to the 20news-bydata ver-
sion on the official site. We show the task separa-
tion in Table 8. We take one-sixth of the training
set as a validation set for a train/val/test splitting
ratio 0.5:0.1:0.4.

C Experimental Details

We train all models using AdamW (Loshchilov and
Hutter, 2017) with β1 = 0.9 and β2 = 0.99 cou-

Class Name Train Test

Task 1
comp.graphics 584 389
rec.autos 594 396
sci.crypt 595 396
misc.forsale 585 390
talk.politics.misc 465 310
talk.religion.misc 377 251

Task 2
comp.os.ms-windows.misc 591 394
rec.motorcycles 598 398
sci.electronics 591 393
talk.politics.guns 546 364
alt.atheism 480 319

Task 3
comp.sys.ibm.pc.hardware 590 392
rec.sport.baseball 597 397
sci.med 594 396
talk.politics.mideast 564 376
soc.religion.christian 599 398

Task 4
comp.sys.mac.hardware 578 385
rec.sport.hockey 600 399
sci.space 593 394
comp.windows.x 593 395

Table 8: The task separation and statistic of original 20
Newsgroups.

pled with a linear scheduler with a warm-up ratio
of 0.1. For sampled 5-datasets, WOS, and 20 News-
groups, we set the identical learning rate λ = 0.03.
For the full 5-datasets, we do grid searching for the
learning rate for each task respectively, and the final
learning rates are 0.003, 0.009, 0.005, 0.007, 0.003
for AG News, Amazon, Yelp, Yahoo!Answer and
DBpedia, respectively. All experiments are con-
ducted on NVIDIA RTX 3090 with 24GB video
memory with a batch size of 32 and the maximum
length of a sentence is 256.
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