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Abstract

To help the visually impaired enjoy movies, au-
tomatic movie narrating systems are expected
to narrate accurate, coherent, and role-aware
plots when there are no speaking lines of ac-
tors. Existing works benchmark this challenge
as a normal video captioning task via some
simplifications, such as removing role names
and evaluating narrations with ngram-based
metrics, which makes it difficult for automatic
systems to meet the needs of real application
scenarios. To narrow this gap, we construct a
large-scale Chinese movie benchmark, named
Moviel01. Closer to real scenarios, the Movie
Clip Narrating (MCN) task in our benchmark
asks models to generate role-aware narration
paragraphs for complete movie clips where no
actors are speaking. External knowledge, such
as role information and movie genres, is also
provided for better movie understanding. Be-
sides, we propose a new metric called Movie
Narration Score (MNScore) for movie narrat-
ing evaluation, which achieves the best corre-
lation with human evaluation. Our benchmark
also supports the Temporal Narration Ground-
ing (TNG) task to investigate clip localization
given text descriptions. For both two tasks,
our proposed methods well leverage external
knowledge and outperform carefully designed
baselines. The dataset and codes are released
at https://github.com/yuezih/Moviel01.

1 Introduction

The estimated number of visually impaired people
worldwide was about 285 million by 2020, accord-
ing to reports (He et al., 2020). While regulations
are in place to ensure increased access for these
audiences to experience the culturally dominant
movies and TV shows on popular media platforms,
technologies that provide them with genuine expe-
rience are becoming increasingly important. Audio
description (AD, also known as video description)
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is a form of such technology intended for visu-
ally impaired audiences to experience the movie or
TV show by hearing what is happening on-screen.
However, producing movie narration scripts is not
trivial, often requiring a professional writer to over-
see the original movie. The high cost of narration
generation (Lakritz and Salway, 2006) greatly hin-
ders the production of movies with AD and thus
limits the opportunities for visually impaired users
to experience movies.

To address this issue, attempts have been car-
ried out to automate AD production. Datasets of
movies with ADs are constructed to support the
research on automatic AD generation, including
the MPII-MD dataset (Rohrbach et al., 2015) and
M-VAD dataset (Torabi et al., 2015), with shot-
level ADs or scripts aligned to the visual contents
of movie. Consequently, different solutions for au-
tomatic movie narrating have been proposed based
on these datasets (Rohrbach et al., 2017).

However, existing benchmarks suffer from sev-
eral limitations. Firstly, there is a gap between
the designed tasks and the actual movie narration
scenario. These tasks mainly focus on generat-
ing single-sentence narrations for shots of a few
seconds. They can not support the generation of
coherent narrations for longer plots, which is crit-
ical for the visually impaired to better understand
the movie, and the timestamps of these shots are
carefully annotated, which are difficult to obtain
for new movies in real application. Meanwhile,
these tasks treat the very distinctive movie narrat-
ing task as a normal video captioning task through
some simplifications such as replacing role names
with SOMEONE, resulting in the inability to connect
roles to plots. Secondly, these benchmarks evaluate
the generated narrations with ngram-based metrics,
which can over-penalize a semantically correct but
textually inconsistent narration, especially when
there is only one reference available. In addition,
these existing datasets are all in English. However,
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Title: Goodbye Mr. Loser
Year: 2015
Area: Mainland China

At the wedding of his
first love QiuYa, Xialuo
pretended to be rich and
made a fool of himself,
Genre: and was exposed by his
Comedy Romance Crossover wife MaDongmei ...

00:29:03-00:29:21: QiuYa picked up a pencil and drew

a boundary line in the center of the table. XialLuo took

the pencil from QiuYa and kept staring at her.

MaDongmei was so angry that she pushed ZhangYang

00:30:42-00:30:56: QiuYa was crying alone
when YuanHua walked over slowly from
behind. He looked up at QiuYa's back. QiuYa
looked back at YuanHua and turned around.

o~
di

off his seat and sat behind Xialuo. She stared at

Xialuo, but XiaLuo was looking at QiuYa affectionately. tree.

YuanHua was so angry that he punched the

Role: Ei& Role: 3EH Role: TAHE  Role: R
Actor: JLBE  Actor: BFF  Actor: £8  Actor: FIE

Figure 1: Data samples from the movie Goodbye Mr. Loser. (English translations are provided for easy reading.)

about one-fifth of the world’s population speaks
Chinese as their mother tongue, of whom more
than 17 million are visually impaired (Yu and Bu,
2021). Therefore, building a Chinese movie narra-
tion benchmark is necessary.

Intending to address the limitations of the exist-
ing narrating benchmarks, in this work, we propose
a new benchmark with 101 Chinese movies for
movie understanding, named Moviel01. We col-
lect the movies from the barrier-free channel on
Xigua Video platform!, where normal movies are
remastered with ADs. Through automatic process
and manual correction, we obtain the ADs and ac-
tor lines from the raw videos. We crawl rich meta-
information relevant to the movies as well. Finally,
Moviel01 contains 30,174 narration clips totaling
92 hours, with data samples as shown in Fig. 1. As
our investigation shows that narrations mostly oc-
cur at those times when no actors are speaking (see
Appendix A), to achieve realistic movie narrating,
we propose the Movie Clip Narrating (MCN) task
that requires a model to narrate where there are
no lines. It brings a potential benefit for identify-
ing where to narrate in an unlabeled new movie,
since the timestamps of the actor lines are easily
accessible?. Meanwhile, in order for the audience
to accurately comprehend the role-related plots,
concrete role names should be contained in the gen-
erated narration. For the MCN task, we reorganize
the Moviel01 dataset, merging the narration clips
between two actor dialogues into a longer clip, to
simulate real-scenario movie narrating. We thus
obtain 14,109 long clips of variable length for nar-
ration generation. Moreover, to better evaluate the
quality of model-generated narrations, we conduct

"https://www.ixigua.com/channel/barrier_free

The timestamps of the lines can be obtained from the
movie script or by automatic methods such as OCR and ASR.

human evaluations and design a new metric specific
to movie narrating, namely Movie Narration Score
(MNScore), which well aligns with human eval-
uation. In addition to the MCN task, our dataset
also supports the Temporal Narration Grounding
(TNG) task, which asks a model to locate target
clips in the movie according to some text descrip-
tions. For both tasks, we benchmark the perfor-
mance of existing methods, and further propose
our improved models by incorporating auxiliary
external knowledge. In addition to MCN and TNG
tasks, Moviel01 can also potentially support other
movie understanding tasks such as visual question
answering and action recognition, etc.

The main contributions of this paper are as fol-
lows: 1) We propose a new benchmark for movie
understanding, Moviel01, with a large number of
video-aligned text descriptions in Chinese. 2) We
propose two primary tasks, MCN and TNG, and a
new narrating evaluation metric MNScore, where
MCN is more in line with the needs of actual movie
narrating, while MNScore is more consistent with
human evaluation. 3) We benchmark state-of-the-
art models and propose improved models enhanced
by external knowledge for MCN and TNG, respec-
tively. We expect our proposed MovielO1 bench-
mark can inspire more explorations on narrating
and understanding a whole movie.

2 Related Works

Datasets. Existing datasets to support the au-
tomatic narration generation task include M-
VAD (Torabi et al., 2015) and MPII-MD (Rohrbach
et al., 2015), which are merged into LSMDC
(Rohrbach et al., 2017). M-VAD, which is collected
based on an automatic AD segmentation and align-
ment method, contains 47K videos from 92 DVDs,
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with an average length of 6.2s, each with an aligned
narration. MPII-MD contains 68K videos from 94
movies with an average duration of 3.9s, about half
of which come with paired scripts and the other half
with paired ADs. In addition to movies, TV shows
are also good data sources for automatic narration
generation. Lei et al. (2020) propose TV Show
Caption (TVC), a variant of TV Show Retrieval
(TVR). It contains 11K short videos averaging 9.1s
in length, and 26K captions describing the visual
content, dialogues, and subtitles. All the existing
datasets are in English.

Video Captioning. As a classic vision and lan-
guage task, the video captioning task requires a
model to generate natural language descriptions for
given videos. Solutions for normal video caption-
ing go through stages from pre-designed templates
(Kojima et al., 2002; Guadarrama et al., 2013) to
sequence-to-sequence generation with deep neural
networks (Pasunuru and Bansal, 2017). A challeng-
ing variant for this task is dense video captioning
(Krishna et al., 2017), which requires the genera-
tion of multi-sentence descriptions for long multi-
event videos. The two-stage generation approach,
which firstly performs proposal detection on the
video and then generates descriptions for each pro-
posal separately, has been the dominant approach
(Krishna et al., 2017; Park et al., 2019; Rohrbach
et al., 2014; Xiong et al., 2018). Recently, some
works avoid event detection and generate paragraph
descriptions directly based on the video, such as
the one-stage paragraphing model (OVP) (Song
et al., 2021), obtaining competitive performance
compared to previous works, inspired by which
we propose our knowledge-enhanced movie narrat-
ing model. Identity-aware video description that
distinguishes different persons is more practical
in real applications. Park et al. (2020) attempt to
achieve role-aware movie narrating by distinguish-
ing different people using labels such as PERSONT,
PERSON2, etc. However, it fails to generate concrete
role names and falls short in terms of practicality.

Temporal Sentence Grounding. The temporal
sentence grounding (TSG) task aims to localize the
moment in a video based on a natural language
query (Gao et al., 2017). A two-step pipeline
has been the mainstream approach, which first
produces a large number of moment candidates
via sliding windows, then ranks them with their
similarity to the query sentence. The following
works try to improve the grounding performance

by enhancing interaction between video and query
modalities (Liu et al., 2021; Li et al., 2022) or in-
troducing novel detection heads (Lei et al., 2021;
Zhang et al., 2020a). Specifically, for interaction
methods, Liu et al. (2021) adopt an Iterative Align-
ment Network (IA-Net) to iteratively interact inter-
and intra-modal features within multiple steps. Li
et al. (2022) explicitly decompose video and query
into multiple structured hierarchies and learn fine-
grained semantic alignment among them. In this
work, we propose to incorporate external knowl-
edge based on the IA-Net model structure.

3 Dataset
3.1 Data Collection

Movie Acquisition. To the best of our knowl-
edge, there are only a handful of platforms that
provide accessible movies in Chinese. The barrier-
free channel of Xigua Video is one such platform
that provides over 100 accessible movies online,
and new movies are still being released that can
support further expansion of our dataset. From
Xigua Video, we collect all 101 movies available
to date and crawl as much meta information as pos-
sible for each movie, including title, introduction,
genres, directors, actors, etc. We emphasize actors
in particular, including actor names, role names,
actor portraits, role rankings, and other information
about important roles. We expect such information
can benefit the movie narrating task and general
movie understanding tasks.

Narrations and Lines Extraction. As the movie
lines and narrations are only available in the subti-
tle and audio format respectively from the platform,
we therefore leverage OCR and automatic speech
recognition (ASR) tools for transcription. For lines,
we extract text from subtitles by open-source OCR
toolkit PaddleOCR? at 2.4 FPS, and manually re-
move the irrelevant subtitles from the beginning
and the end of each movie. For narrations, we ex-
tract the audio track from the movie and utilize the
ASR service provided by iFlyTek*, which detects
the speech in the audio and transcribes it into text.
In addition, the service supports identifying dif-
ferent speakers, which helps discriminate the nar-
rator from the actors. However, the ASR service
is not perfect, and its outputs contain errors such
as wrong characters, unreasonable sentence break-
ing, and misidentification of narrations as movie

3https: //github.com/PaddlePaddle/PaddleOCR
4https: //www.xfyun.cn/doc/asr/1fasr/API.html
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Table 1: MovielO1 and other Movie Narrating and Temporal Sentence Grounding datasets. (* indicates statistics

based on Chinese characters.)

Task | Dataset | Videonum. Textnum. Avg. videolen. Avg. textlen. Avg. actions Avg. role names
M-VAD 47K 47K 6.2 sec. 10.8 - -
Narratin MPII-MD 68K 68K 3.9 sec. 9.6 14 0.37
g TVC 109K 262K 9.1 sec. 13.4 1.9 0.75
\ Moviel01-N \ 14K 14K 20.4 sec. 80.7* 12.3 2.0
Charades-STA 10K 16K 31 sec. 7.2 1.1 0
Groundin ActivityNet 20K 72K 118 sec. 13.5 2.1 0.02
& TVR 22K 109K 76 sec. 13.4 1.9 0.75
\ Moviel01-G \ 101 30K 6,144 sec. 47.3% 6.9 1.1
Comedy 25%
Romance 20%
Action 15%
Crime 10%
Detective 5%
costume 0%, 12 20 28 36 44 52 €0 68 76 84 952 100
Fantasy Clip Duration (seconds)
Young 25%
Buddy 20%
Swordsmen 15%
0 10 20 30 40 10%
Movie Count
5%
Figure 2: Distribution of movie genres. 0% 07732 €4 96 128 160 192 224 256 288 320 352 384 416

roles actions

VooNOOUBEWNELO

9

Figure 3: Distribution of the number of role names and
the number of actions in each narration in MovielOl.

dialogues, etc. Therefore, we recruit human annota-
tors to further correct the ASR transcription errors
and remove non-narration texts manually to im-
prove the data quality. We also delete the irrelevant
fragments at the beginning (e.g., movie synopsis,
cast introductions) and the summary narration at
the end. For coherency, we further organize the nar-
ration fragments at the clip level. We merge every
two fragments if their temporal gap is less than 1
second. we also apply a paragraph-length threshold
of 100 characters to limit over-merging to avoid
excessively long clips. We take punctuation into
account as well, for example, a period in Chinese
is likely to mean the end of a narrative paragraph.
Further detailed descriptions of data quality can be
found in Appendix B.

Moviel01-N and Moviel01-G. For real-life
movie narrating, models are expected to narrate
in the breaks between different actor dialogues.

Paragraph Length (Chinese characters)

Figure 4: Length and duration distribution of narration
clips in Moviel01-N.

Thus, we reorganize MovielOl to fit this task for-
mat. Concretely, we first merge the independent
lines in MovielO1 into dialogues, where two lines
with a temporal gap shorter than 5 seconds are con-
sidered to belong to one dialogue. Then, we merge
all the narration clips between two adjacent dia-
logues into a long paragraph. In this way, we obtain
Moviel01-N with narration paragraphs separated
by dialogues, which well simulates the practical
narrating challenge. Meanwhile, with rich video-
text pairs in MovielO1, we create another variant
dataset to support the temporal grounding tasks,
named Moviel01-G, where narrations are taken as
queries and aligned videos serve as targets. For val-
idation and testing, we carefully select 10 movies
of different genres for each respectively.

3.2 Dataset Statistics

Movie Properties. Moviel01 contains 101 movies,
involving 41 genres (a movie can belong to up
to 4 genres) and 645 roles in total. Fig. 2 shows
the numbers of movies in the top 10 most popular
genres, with comedy, romance, and action in the
top 3.

Clip Properties. MovielO1l contains a total of
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Figure 5: The frameworks of our models. (a) Role-pointed Movie Narrator (RMN) for the Movie Clip Narrating
task, and (b) Global Shot Retrieval + Local Temporal Grounding for the Temporal Narration Grounding task.

30,174 short narrated clips with an average dura-
tion of 11.0 seconds and an average length of 47.3
Chinese characters. From the narrations, we locate
role names and action words with the metadata and
the Chinese Part-Of-Speech (POS) tagging tool-
box HanLP?, to detail role and action content in
narrations. Fig. 3 shows the distribution of the
number of role names and actions per single clip.
The narrating variant dataset Moviel01-N contains
14,109 long narration clips of an average length
of 20.4 seconds and 80.7 characters. The compar-
ison in Table 1 shows that Moviel01-N contains
much longer video clips and text descriptions than
existing movie narrating datasets, while the length
distribution in Fig. 4 indicates that the clip length
varies a lot. Moviel01-G contains 30,174 clips to
be located from 101 movies. The average video
length of 6,144 seconds also greatly exceeds exist-
ing TSG datasets.

4 Movie Clip Narrating

4.1 Task Description

In order to help the visually impaired keep up with
the plot in the movie, we first propose a Movie
Clip Narrating (MCN) task, which aims to gen-
erate a plot-related paragraph description given a
clip in MovielO1-N. Besides, the narration styles
may vary across different genres of movies. The
role portraits are important external knowledge for
a model to accurately describe the subject of ac-
tions. Thus, we also provide this information in
Moviel01-N to support the MCN task.

5https ://github.com/hankcs/HanLP

4.2 Proposed Method

For the MCN task, with multimodal inputs in-
cluding video, movie genres, role names, and
actor portraits, we propose a Transformer-based
(Vaswani et al., 2017) model with an encoder-
decoder framework, namely Role-pointed Movie
Narrator (RMN), where the encoder mainly en-
codes video clips and the decoder generates narra-
tions, as shown in Fig. 5 (a).

On the encoder side, taking into account the
frame-level visual information, the video clip is
embedded into a sequence of frame-level features.
To emphasize the roles, we extract face features
from each frame and concatenate them to the cor-
responding frame feature sequentially based on the
confidence scores of face detection. With learnable
genre embeddings, genres are also represented as a
sequence of genre features. After video and genre
representation, we apply a Transformer encoder
to perform cross-encoding. Then, we follow the
One-stage Video Paragraphing model (OVP) (Song
et al., 2021) to use a dynamic memory bank to re-
fine the video-part representations, which updates
at each decoding step.

On the decoder side, in addition to the Trans-
former decoder, we enable the model to directly
choose a complete role name from the movie cast
according to context during token-by-token gener-
ation via a pointer network (Gu et al., 2016). At
the decoding step ¢, with the decoder hidden state
h:, we first calculate the token scores y;°¢ among
normal vocabulary. Then we design a Role Selec-

tor module to get the name scores among external
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Table 2: Accuracy of metrics in terms of their assess-
ment of the candidate narrations against human assess-
ment. (Acc.: accuracy; Info.: informativeness; Qual.:
textual quality)

Metric | Acc. Info. Qual. | Overall

CIDEr 86.7 83.0 820 87.0
BLEU @4 85.0 82.0 803 86.0
METEOR 87.0 827 827 87.0

CLIPScore | 39.7 40.0 38.0 39.0
BERTScore | 88.0 84.7 87.7 90.3
EMScore 403 423 413 41.3

DIV 517 513 573 54.7
PPL 43.0 4677 450 453
RoleF1 33.0 31.0 283 323

MNScore | 90.3 867 863 | 92.0

role vocabulary. Concretely, with the decoder’s
video-part attention distribution oy, we perform a
weighted summation among video representations
to get a context-filtered video feature. Then the
role scores y° are computed with the context-
filtered video feature as query and portrait features
as key. Finally, the prediction distribution at step ¢

is calculated as follows:

ye = F([y°% M) (1)

where [;] means concatenation, A is a gate com-
puted from Ay, f() is the softmax function.

4.3 Evaluation

Existing movie narration benchmarks directly
adopt ngram-based metrics including CIDEr,
BLEU, and METEOR as in normal video caption-
ing. However, there are pitfalls for these metrics,
such as underestimating semantically correct but
textually inconsistent phrases, which have been
widely reported (Zhang et al., 2020b; Shi et al.,
2022). For movie narrating, a movie clip can be
narrated in multiple expressions, while there is only
one reference. Thus, text matching is inadequate to
measure the quality of a narration paragraph.

To better evaluate the generated narrations in the
MCN task, we conduct a manual evaluation to in-
vestigate how humans assess different narrations.
We randomly select 30 movie clips, each with 5
candidate narrations, of which 3 are derived from
the predictions of different models and 2 are ob-
tained by disturbing the ground truth narrations.
Next, we recruit 10 annotators to individually rank
the candidates for each video in terms of accuracy,
informativeness, and textual quality. Accuracy de-
fines how the narration accurately describes the

video, especially roles, actions, and objects; infor-
mativeness defines how richly the narration reveals
the video content; textual quality is determined by
the narration fluency and grammatical correctness.

With the human evaluation results, we inves-
tigate a wide range of objective metrics as fol-
lows: (1) State-of-the-art video captioning metrics
based on deep neural networks including CLIP-
Score (Hessel et al., 2021), BERTScore (Zhang
etal., 2020b) and EMScore (Shi et al., 2022), which
are reported outperforming ngram-based metrics
in video captioning evaluation; (2) Textual quality
metrics including n-grams diversity(Shetty et al.,
2017) (DIV) and causal language model perplex-
ity (PPL); (3) F1 score of role name generation
(RoleF1). For every two candidate narrations of
a video, we use human ranking as a reference to
determine whether these metrics correctly judge
which of the two candidates is better or worse, and
the accuracy is used for evaluating metrics’ corre-
lation with human judgment. Finally, we settle on
a new metric Movie Narration Score (MNScore) as
follows:

l-ems+4-berts+1-rfl
6

mns = x 100 (2)
where mns, ems, berts and r f1 refer to MNScore,
EMScore, BERTScore and RoleF1, respectively.
As shown in Table 2, BERTScore outperforms
ngram-based metrics in narration evaluation accu-
racy, while our new proposed MNScore achieves
the best alignment with human evaluation. More
details about the implementation of the candidate
narrations and the above metrics are presented in
Appendix C.

4.4 Experiments

Implementation Details. In our proposed method,
models are trained with next-token language model-
ing by the maximum likelihood estimation (MLE)
objective. For videos, we use CLIP (Radford et al.,
2021) pre-trained on large-scale image-text pairs
and MIL-NCE (Miech et al., 2020) pre-trained on
HowTol100M videos (Miech et al., 2019) to ex-
tract frame-level CLIP and S3D features with di-
mensions of 512 and 1024, respectively, at 1 FPS,
and further concatenate them. For faces in video
frames and portraits, we use the Arcface model
(Deng et al., 2019) pre-trained on MS1M (Guo
et al., 2016) to extract face features. When there
are insufficient faces detected within a frame, the
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Table 3: Movie Clip Narrating Performance on Moviel01-N. (f,: face features from the video; g: movie genres)

Model | fo g | EMScore BERTScore RoleF1 | MNScore
Vanilla Transformer 0.153 0.150 0 12.55
OvVP 0.155 0.159 0 13.18
0.153 0.185 0.195 18.13
RMN v 0.154 0.186 0.240 18.97
v v 0.154 0.188 0.238 19.07

Table 4: Global Shot Retrieval performance of the first-
stage model on Moviel01-GSR(temp).

Model | Recall@1
CNCLIP ‘ 25.98

Recall@5
54.91

Recall@10
66.99

face feature extractor compensates by substituting
the extracted features with zero-vectors.

Results & Analysis. We choose Vanilla Trans-
former (Zhou et al., 2018) and state-of-the-art video
paragraphing model OVP (Song et al., 2021) as the
MCN baselines.

As shown in Table 3, RMN outperforms the base-
lines by a large margin, especially on RoleF1. This
indicates that our model learns to generate role
names from external knowledge with the help of the
pointer network. To verify the contribution of the
genre and face representations in our RMN model,
we also perform an ablation study by progressively
adding these representations as input. From the
results, face features extracted from video frames
bring significant gains in role awareness, which
shows that using face features to bridge the video
content and external actor portraits is beneficial
for generating role-related narrations. Qualitative
results can be found in Appendix D.

5 Temporal Narration Grounding

5.1 Task Description

To help people locate clips of interest during movie
entertainment, an Al agent should be able to under-
stand users’ intentions and locate the target clips.
To achieve this goal, we propose the Temporal Nar-
ration Grounding (TNG) task. Given a clip narra-
tion as the query, TNG aims to predict the starting
and ending time of the clip in the whole movie.

5.2 Proposed method

Existing temporal sentence grounding models can
hardly handle an entire movie input with limited
computational resources. Thus, we propose a two-
stage framework for the TNG task, with global shot
retrieval to coarsely locate the target clip in the first

Table 5: Local Temporal Grounding performance of
the second-stage models on Moviel01-LTG(temp). (f
and f; refer to adding face features to the video and text
representations, respectively.)

Model | o f | Rank@1 | Rank@5
| | 10U0.3  IoU0.5 | 10U0.3  IoUO.5
2D-TAN 25.85 18.60 52.17 43.82
IA-NET 25.16 17.98 57.11 42.68
RNL v 26.64 19.01 59.63 44 .51
RNL v 16.98 19.57 57.18 42.86
RNL v Vv 27.54 20.22 59.52 45.69

stage and local temporal grounding to finalize the
precise timestamp of the target clip in the second
stage, as shown in Fig. 5 (b).
Global Shot Retrieval. To find the approximate
location of the target, we treat it as a text-video
retrieval subtask. We divide a movie into 20s-long
shots, and the shot with the highest similarity to
the text query will be used as the anchor for further
grounding in the second stage. For training such a
retrieval system, we construct a temporary dataset
Moviel01-GSR(temp). Concretely, after cutting
the movie into shots, each shot and each annotated
narration in MovielO1 are judged with the tempo-
ral overlap whether they can be considered as an
aligned video-text pair.®

We build the retrieval model by transferring
a Chinese Vision-Language Pre-training (VLP)
model ChineseCLIP (Yang et al., 2022) (CNCLIP)
from image-text to video-text. Specifically, the shot
frames are separately encoded as image features by
the visual encoder of CNCLIP, and the final video
feature is obtained by performing mean pooling
over the CLS tokens of all frames. We then per-
form contrastive learning between the video and
text features on Movie101-GSR(temp) to fine-tune
the modified CNCLIP.
Local Temporal Grounding. After obtaining
the anchor shot in the first stage, we further lo-

®A shot and a narration with a temporal overlap larger
than half of the duration of either the shot or the narration are
regarded as aligned.
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Table 6: Combined inference performance of our proposed two-stage method on Moviel01-G.

M | k-way | Rank@1 | Rank@5
odel —rankin
| NS 1001 10U03 ToUOS  ToU0.7 | ToUO.I  10U0.3  ToUOS  IoU0.7
1 1869 1165 666 1538 | 3579 2977 2268  14.87
CNCLIP+RNL 2 1817 10.53 599 1445 | 3698 3098 2628  13.56
3 1718 1005 547 1396 | 3791 3023 2537  13.33

calize the target clip within a 200-second window
around the anchor shot. This requires the tempo-
ral sentence grounding in a 200s-long movie clip,
where comprehending the actions of different roles
is critical. Therefore, based on the state-of-the-art
TSG model IA-Net (Liu et al., 2021), we propose
Role-aware Narration Locator (RNL). With a bi-
directional GRU (Chung et al., 2014) visual en-
coder, we encode the input frame features to get
temporal context-aware frame representations V.
We in addition extract face features from the frames
and encode them with a fully connected (FC) layer
to filter key face information F'. Then we finalize
the visual representation by summing V" and F'. For
text encoding, to relate role names in the text query
with roles in the video, we extract face features
from the portraits that correspond to the role names
and encode them as visual token representations
with a FC layer, which are then concatenated to the
query’s textual token representation sequence. Dur-
ing training, for each target, we randomly select
a 200s-long clip window that covers the target in
each training epoch. We also construct a temporary
dataset Moviel01-LTG(temp) with fixed window
to separately evaluate the second-stage model per-
formance.

5.3 Experiments

Implementation Details. For Global Shot Re-
trieval, we use average Recall@n (n € 1,5,10)
to evaluate the retrieval performance on all movies.
For Local Temporal Grounding, following previ-
ous works (Zhang et al., 2020a), we use “R@n,
IoU@m” as metrics, which are defined as the
percentage of at least one of top-n proposals
having a larger temporal IoU than m with the
ground truth. We fine-tune CNCLIP-huge on our
Moviel01-GSR(temp) for Global Shot Retrieval,
and benchmark two code-released state-of-the-art
temporal grounding models 2D-TAN (Zhang et al.,
2020a) and IA-Net(Liu et al., 2021) on MovielO1-
LTG(temp) for Local Temporal Grounding. In our
RNL model, the video frame, face, and text fea-
ture extractors are pre-trained MIL-NCE, Arcface

(same as in the MCN task) and BERT-base-Chinese
(Devlin et al., 2019), respectively.

Results & Analysis. Table 4 and Table 5 show the
performance of models on Global Shot Retrieval
and Local Temporal Grounding, respectively. Our
RNL outperforms baselines by introducing role-
aware video and text encoding, indicating that dis-
tinguishing actions of different roles is critical for
grounding movie narration. Furthermore, we per-
form an ablation study to verify the effectiveness of
role-aware encoding. As shown in Table 5, adding
face features to either video or text representations
outperforms our base method IA-Net. RNL with
both role-aware video and text encoding achieves
the best performance. Table 6 shows the perfor-
mance of combined inference by Global Shot Re-
trieval and Local Temporal Grounding. We in ad-
dition show the performance of k-way re-ranking,
where the top-k shots retrieved in the first stage are
respectively used as the anchors in the second stage,
and all predictions obtained are re-ranked with their
confidence scores. The experimental results show
that k-way re-ranking improves Rank@5 perfor-
mance but harms Rank@1 performance. Qualita-
tive results can be found in Appendix D.

6 Conclusion

In this work, we propose Moviel0l, a Chinese
large-scale video benchmark for movie understand-
ing. To assist visually impaired people in enjoy-
ing movies, we propose a more realistic Movie
Clip Narrating task to address the automatic movie
description issue and design a human-preference-
compatible metric MNScore for narrating evalua-
tion. MovielO1 also supports the Temporal Nar-
ration Grounding task, which is more challenging
than the previous TSG benchmarks. Furthermore,
our experiments validate the importance of external
knowledge including genres and roles for movie
understanding. However, there is still a significant
gap between our models and expert annotations.
This reveals that further research endeavors are
still needed to help visually impaired people enjoy
movies by Al
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Limitations

Keeping narration coherent within a movie is cru-
cial for visually impaired people to enjoy the movie.
In this work, we move a step forward for this target
by setting the ground-truth texts in the Movie Clip
Narrating task as narration paragraphs and provid-
ing longer video clips as inputs. However, how
to ensure description coherence across different
clips within a movie has not been studied in this
work. This requires a higher-level comprehending
ability of models to process the whole movie and
connect different plots. We leave this to our future
investigation.

Ethics Statement

We propose MovielO1, a new benchmark to sup-
port exploring technologies to benefit the accessi-
bility of the visually impaired. There are two po-
tential ethical issues with our work, regarding data
source and crowdsourcing services, respectively.
We state each of them as follows:

Data Source. The collected movies are publicly
available from Xigua Video, and are allowed to
be crawled according to the service contract of
the website’. Considering the copyright issue, we
will only release the url list of movies. Besides,
our data source does not contain any information
that names or uniquely identifiable individuals or
offensive content.

Crowdsourcing Services. We recruited 20 Chi-
nese college students (12 females and 8 males) via
social media. For ASR outputs cleaning, workers
were required to correct errors in the narration text
while watching the movie. For each movie, it took
about 2 hours with a payment of 50 RMB ($7.40
USD). To review corrections, for each movie, it
took about 30 minutes with a payment of 25 RMB
($3.70 USD). Our payment is fair and reasonable
in China, especially since the work is easy and fun.
Before the annotation works began, we introduced
the future use of the data in the task document to
ensure that everyone was informed.
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A Narration Distribution

Clips where ‘no actors are speaking’ refer to ANY
scene wherein no verbal dialogue is being em-
ployed by the actors, regardless of whether they
are visually present or absent. This definition en-
compasses, for example, a scene focused solely
on a depiction of the sky. We detail the dialogues
and narrations in the 101 collected movies. By
merging the actor lines, we obtain a total of 15,307
dialogues, constituting 15,206 dialogue gaps with
a total duration of 99.4 hours. The 30,174 narra-
tion clips we collect fill in 95.3% of the dialogue
gaps in terms of quantity and cover 92.9% in terms
of duration. Therefore, it is reasonable to assume
that where there are no lines, there is a need for
narration.

B Dataset Quality Description

We adopt a two-stage annotation process to en-
sure the quality of the narrations. In the first stage,
a group of workers is recruited to clean the data
according to our guidelines. In the second stage,
another group of workers further checks and cor-
rects the annotation data. Our heuristics used to
divide the paragraphs are designed based on our ob-
servation experience. We further conduct a manual
evaluation of the narration quality. Of the randomly
sampled 300 paragraphs, (1) in terms of narration
recognition, 96.7% are textually consistent with
original ADs; (2) as for the paragraph coherence,
90% maintain complete and coherent semantics,
7.7% should be merged with contexts, and 2.3%
should be divided into multiple paragraphs. Thus,
the narration is of good quality to support down-
stream tasks.

C Implementation Details

Candidate Narrations. In Section 4.3, We
provide 5 different candidate narrations for each
sampled movie clip for human evaluators to rank.
These candidates are created as follows:

1. generated by the Vanilla Transformer (Zhou
et al., 2018);

4679


https://doi.org/10.1109/CVPR46437.2021.01109
https://doi.org/10.1109/CVPR46437.2021.01109
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/2107.02137
https://arxiv.org/abs/1503.01070
https://arxiv.org/abs/1503.01070
https://arxiv.org/abs/1503.01070
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2211.01335
https://arxiv.org/abs/2211.01335
https://arxiv.org/abs/2211.01335
https://aaai.org/ojs/index.php/AAAI/article/view/6984
https://aaai.org/ojs/index.php/AAAI/article/view/6984
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.1109/CVPR.2018.00911
https://doi.org/10.1109/CVPR.2018.00911

Table 7: Key hyperparameters and computational burden for models training.

Model ‘ Batch size  Learning rate  Training epochs GPU hours / epoch

VT 150 le—4 <100 ~3min on single RTX 2080ti
OVP 56 le—4 < 100 ~40min on single RTX 3090

RMN 56 le—4 <100 ~1h on single RTX 3090
CNCLIP 16 2e—6 <1 ~1h on 4 RTX A6000 nodes
2D-TAN 64 le—4 <30 ~40min on single RTX 3090
IA-Net 64 8e—4 <15 ~20min on single RTX 3090
RNL 64 8e—4 <15 ~20min on single RTX 3090

2. generated by the OVP model (Song et al.,

2021);

generated by our proposed RMN model;

4. generated by disturbing the ground truth with
role name removal and replacement;

5. generated by disturbing the ground truth with
nouns and verbs replacement.

et

Metrics Implementation. For CLIP-based met-
rics including CLIPScore and EMScore, we fine-
tune ChineseCLIP-huge (Yang et al., 2022) on our
dataset in the same way as in Section 5.2. For
each movie clip and generated narration, CLIP-
Score is calculated with the mean pooled feature
of 10 uniformly selected frames and the overall
text feature, while EMScore is calculated with all
selected frame features and textual token features.
For BERTScore, we use the BERT-base-Chinese
(Devlin et al., 2019) model checkpoint to calculate,
and rescale the raw BERTScore with baseline®. For
DIV, we calculate 1-gram diversity and 2-gram di-
versity following Shetty et al. (2017), and average
them. For PPL, we obtain the perplexity of each
narration with the causal Ernie 3.0 model (Sun
et al., 2021) following the calculation of Hugging-
Face’. For RoleF1, we extract role names from
the ground truth and the generated narration. We
measure how the generated narration covers the
roles appearing in the movie clip by Recall; given
that these generated role names may also come
from the model’s hallucination, for example from a
wrong movie, we also take Precision into account.
Finally, we calculate the F1 score with Precision
and Recall.

Hyperparameters and Computation. We detail
the key hyperparameters and computational burden
for the models training in Table 7. For each model,
the results are derived from a single run.

8https://github.com/Tiiiger/bert_score/blob/
master/journal/rescale_baseline.md

https://huggingface.co/spaces/
evaluate-metric/perplexity

D Qualitative Result

D.1 Movie Clip Narrating

Fig. 6 shows the qualitative results of the MCN
task, including the generation results of baselines
and our proposed RMN model, and the evaluation
results of previous metrics and our proposed MN-
Score. Vanilla Transformer and OVP can correctly
mention some actions but fail to generate correct
role names because these roles never appear during
training. However, with the help of the Role Se-
lector module, our RMN could well relate roles in
video clips with their role names. In addition, these
cases demonstrate that our newly proposed MN-
Score evaluates more consistently with humans.

D.2 Temporal Narration Grounding

Fig. 7 shows the qualitative results of our proposed
two-stage method. Through Global Shot Retrieval,
we obtain an anchor shot near the target clip from
the whole movie, which further helps Local Tem-
poral Grounding to locate the final target.
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GT: HEARRNEHRA B, XFAHMELETREN, RAREEEEFETH
BEHNEREIE, HEBAGhT MIBEELE, (After saying what she want to say YeXun
leaves only to look back at the house again reluctantly. HuangDa hides behind the wall and
hears all that YeXun speaks, and he comes out from behind the wall only after YeXun
leaves. )

VT: i —iEIk—infESNE, —B—IERETE, XETEEC—R, XBETEES
HER, XAEKI&HIRIE, (As he turns back and walks out the door, he looks back, looks
at himself again, looks at his back again, and looks down again without speaking, )

ovp: IATEIOMBIRELE T THIY, BEEXE, MEIGREEHMTHATA,
(The drug dealer he is standing in the doorway stop and look at the place, and he turn to look
at the two men at his feet, )

GT: EZBUERMADAERIE, FEABKRREER, —R

HERHE, 5—R
FHREEANE"F, WRXXFE—KREZALNR, GRER FLE. BLE
EEFIM, ESETFERER), REFTEETNT . (WangDuoyu stands at the
top of the insurance company building, wearing red clothes and green pants, one hand
behind the back, the other hand holding the huge “thin” character, legs crossing, with a face
of enjoyment, closing eyes, leaning on the “thin” character. The camera slowly rises,
WangDuoyu becomes smaller and smaller, and finally completely invisible. )

VT: ERANBEITT, RKEDHEX—F, TANSET, FEDOERERL. (n the
crowd hold under the high, ZhangBiao is also in this scene, below the high floor, Arjun also
falls to the ground. )

ovp: FEE CHRIRNSA, MREREA T, MERE LNIEN, MEET —1Takng
%, XN, RBHMERET — MR, KEMT EE. (With the roar of the plane,
continues capture downward, while on the stairs of the temporary, he chooses a tall figure, at
this point, anxious he chooses a button, the building flies downward. )

HuangDa
HuangDa HuangDa
Candidate CIDEr BLEU@4 METEOR MNScore Manual Ranking |
VT 14.30 6.24 11.75 21.65 3.87
OovpP 0.01 0 6.70 17.46 4.37
RMN 3.67 0 7.43 27.22 3.63

GT: MGARH LNBFETER, BANERARSBAARS, HFENT 2L
ZIGfET T3, (The numbers on the big screen turn up, and HuangDa and the host turn to
look at the big screen, the numbers turns for a while and then stops. )

VT: IES EMRE, NEENUE ESTHUNEEA, (They watch from the stage,
the position between time on the stage in the chamber of the observer, )

ovP: BZR, ZAXEMG, ECMRE—EEFERE LOEER, ZABHT. (The
next day, the three come to the scene, MengYun and YuFei look at the multiple choice
questions on the screen together, the three leave. )

Ez& 28
I8
WangDuoyu WangDuoyu
WangDuoyu
Candidate CIDEr BLEU@4 METEOR MNScore Manual Ranking|
VT 0 0 0 7.90 4.73
OVP 0 0 4.02 9.31 3.90
RMN 4.97 7.06 11.84 29.83 3.20

GT: fEIA/NE, FEMEERCKHO, MHPXBEFBIZETE., (He comes close to

Xiaoxing, proudly pounding his chest. LinChong then frowns and props up his chin. )
VT: MMEBEMA], sk, sk, (LinJia looks at them, nods her head, nods her head. )
ovP: MMEEEMM, XEMMBCIRIE, (Linlia looks at Lili, and then looks at herself and

HiK RE¥NEE says. )
HuangDa YuFei HuangDa Vs
PR 988 o ChenShanshan
LinChong
Candidate CIDEr BLEU@4 METEOR MNScore Manual ing|
VT 0.01 0 4.98 9.47 433 Candidate CIDEr BLEU@4 METEOR MNScore Manual Ranking|
ovp 3128 7.95 1665 24.65 3.87 vr 0.67 0 964 19.67 4.83
RMN 13.12 0 1075 3476 3.53 ove 357 0 11.62 2683 3.713
RMN 11.89 0 9.80 29.77 3.37

) | ‘ '," e

GT: EARMBIREPE R BEMIR T —THALERAL, (In the sound of everyone’s

ridicule, XiaLuo smiles awkwardly and sits in the seat, )

VT B EEERINET), K EHZBK, MEBETXEE, (He looks at the chopper in front
of him, his face is full of tears, and he has a smile on his face, )

ove: ETRIBMEMEM, MEEH LWABEE, (LiXing's expression is extremely

embarrassed, and he looks at the people as if in thought. )

GT: hFBRIEBDET—HLEF, RAELEFREEET. BRE—TABERIH,

(Taozi stops a cab as she talks, then gets in and quickly leaves. HuangDa freezes alone. )

VT FNBER T BERM, ELEEM, ABETX, (LuXiaoyu sees the look in his

eyes, and he looks down at him, then lowers his head, )

ovp: STEEIILREEM, AFWT S, (liangFeng looks back at him, then sighs, )

gi% B\ XiaLuo k=47 HuangDa
MaXiaoli
Candidate CIDEr BLEU@4 METEOR MNScore Manual Ranking| Candidate CIDEr BLEU@4 METEOR MNScore Manual Ranking|
VT 18.61 0 6.48 12.09 4.60 VT 3.38 0 6.87 16.72 4.13
OovpP 47.52 0 8.73 16.50 4.10 OovpP 0.22 0 5.92 15.73 4.30
RMN 31.05 0 7.02 24.57 3.30 RMN 0.04 0 9.11 27.26 3.12

Figure 6: Qualitative Results of the MCN task. (GT: the ground truth; VT: Vanilla Transformer). In the narration
texts, green and red characters denote the correctly and wrongly generated role names, respectively. In the tables,
metrics in green indicate that the ranking of candidates by the metric is consistent with human ranking, while red

indicates inconsistency.
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Query: % A FHAERECANRIAATEEITH, S%IITRAR—ERIAER
—EANREMIIIMTRRTE, EFTRHERNRFH, —BREELER
—FEREKE, —FRIESAFEQH, XBFELEET. (At the beginning of
the film, a large European-style iron gate full of flowers slowly opens. Inside the
iron gate is a European-style building. A car drives in through the gate, and crosses
the courtyard full of flowers. A security guard holds a barricade in front of the
auditorium with one hand and directs the car forward with the other; this car does
not stop. )

Query: EIXET—XK, —RECNFIFZRAOET, RARRBE—DANZT
THIEERT, XNREBEETIR, MEET —RREBRERL, —
BEEBCSHNNETF, —BETX, RELTEE, S5RBBE:
(Another day, a paper airplane flies through the roof of the school building. QiuYa
is standing alone on the roof, when YuanHua slowly walks over. QiuYa takes a look
at YuanHua and then frowns, while touching her pigtails, while lowering her head,
YuanHua spits out his mouth and asks with tears. )

1825 - - —G;T— - —» 200s 20955 « - - - L - — . 21215
177s —arlc—°—r'°‘—;—’_t—_ 20975 «aﬂc—h‘lrf:.—"t—_» 21175
1835 « - -PLeQiEtion. _ 545 21025 « —PreCiEOn _ 51926

Query: FHIE T ZREREE T IR, MAIMEFEMNKELXFET, BF
thiET, MEERFHRNECIE, MITFIERMN, —REBRETR
i, hAFEEREE, SENEX, HNELEEINRAZNITR,
(A long time later, XiaLuo wakes up. He finds the bathroom faucet can not be
turned off, and the mirror is also broken. He says while looking at himself in the
mirror. He opens the bathroom door, and a dazzling light shines towards him. He
blocks his eyes with his arm, and slowly raises his head. In his pupils is the scene of
the classroom. )

Query: BEIBIEITFEMAEIITAIFL, Fif EAHNAR EEREERN
84998, EE—ENERITESERE, REFERTFE, BFLEEENH
BER, B TMBRAESHLHEIFZBIRITERIE, (MaDongmei walks
towards the Station of Xihong City with her luggage. The large screen above the
station is playing XiaLuo’s meeting 1998. The scene switches to the time after the
college entrance exams, YuanHua is wearing a plaid shirt with a scarf around his
neck to withstand the cold, dialing the phone in a public phone booth with snow
on top. )

677s 2nchorshot oo .
7245 «PIECIEON | 566

Query: KEBE SR T AENER, BZNEE—HEH, HHEEBRRK
REEZEL—RBACRAMENES, XNERNBBHRHERE, SREE
gk, BRREFRERT, EEEOAM, RABMBEEL L, —Eindt
FOARE, (The fire instantly ignits the curtains in the classroom, and the students
are in a mess, and all taking out books to put out the fire. The school principal also
takes out a bottle of ink throwing to the burning curtains. At this time, XiaLuo’s
mother runs into the classroom, XiaLuo slowly turns his head, seeing his mother
coming, slowly walking towards her, and suddenly falling to her knees with a hug
on her thighs. )

35265 + - -2 - - - > 358
giction 35575 Sanorshot | 3597,
35285 «PLeCiEtion | 35 g,

Query: ERIICERTEARTY, —HCEBEER, ERNMDIEENH
M3k, ARMEXRGH, REEE, EWLE-SFL, QEMBES
LIE—SHEEITIEEFHRT, XSS, SBESDEE, TFt
RECNEEINEH, INERRABBELF REARRE, (Xialuo's press
conference begins. A group of reporters surround XiaLuo. On either side of XiaLuo
stand QiuYa and ZhangYang. Everyone is happy and smiling, only Xia Luo faces the
reporters without saying a word. Once when he plays the guitar, Dongmei in the
side holding a light sign quietly listening. When playing the guitar at home,
Dongmei is mopping the floor next to him, and there is also his favorate Dalu
noodles. At this time, XiaLuo suddenly raises his left hand to signal everyone to be
quiet.)

10855 < = = = == = = = = > 1111s

10775 « -2nehorshot _, 4495

47755 « - — - —hG—T—h— - - » 48065
47775 « - 2 d—f’ £shot 47975
4777s + - REACHON_ | 4q036

Figure 7: Qualitative results of the TNG task from the movie Goodbye Mr. Loser.
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